České vysoké učení techncké v Praze Fakulta stavební Katedra vyšší geodéze Magsterská práce 211 Mloš Tchý
Prohlašuj, že jsem tuto magsterskou prác vypracoval samostatně, pouze za odborného vedení vedoucího prof. Ing. Jana Kosteleckého, DrSc. Dále prohlašuj, že veškeré podklady, ze kterých jsem čerpal, jsou uvedeny v seznamu použté lteratury. podps
Děkuj prof. Ing. Janu Kosteleckému, DrSc, za podnětné přpomínky a cenné rady, které vedly k vylepšení práce. Děkuj též svým kolegům z Observatoře Kleť Ing. Janě Tché, Mgr. Mchaele Honkové a dr. Mchalu Kočerov, za vynkající spoluprác př získávání dat, použtých př přípravě a tvorbě této práce.
Metody určování poloh a dentfkace těles sluneční soustavy Methods of astrometry and dentfcaton of the solar system bodes
Anotace: V prác jsou presentovány metody astrometrckých měření na obloze se zaměřením na malá tělesa sluneční soustavy, v tomto případě planetky a komety, a to včetně základních nformací o astronomckých souřadncích a používaných astrometrckých katalozích. Druhá část práce je zaměřena na metody dentfkace malých těles sluneční soustavy v souvslost s astrometrckým měřením poloh těles a včetně výpočtů jejch efemerd. Poslední část práce popsuje metody dentfkací těles ve sluneční soustavě s ohledem na jejch dráhové parametry s užtím metod nebeské mechanky a meznárodních databází drahových elementů těles. V prác jsou též presentovány vybrané příklady dentfkací planetek a komet spočtené autorem. Klíčová slova: astrometre, dráhové elementy, dentfkace, planetky, komety Abstract: The work presents methods for astrometrc measurements, wth a focus on small Solar system bodes, n ths case asterods and comets, ncludng basc nformaton about the astronomcal coordnates systems and astrometrc catalogs. The second part s drected to methods of dentfcaton of small Solar system bodes n relatonshp to astrometrc measurements ncludng calculaton of ther ephemerdes. The last part of the work descrbes a method of dentfcaton of small Solar system bodes wth regard to ther orbtal elements usng the methods of celestal mechancs and nternatonal databases of orbtal elements of asterods and comets. At ths work selected examples of dentfcatons of asterods and comets calculated by the author are also presented. Keywords: astrometry, orbtal elements, dentfcaton, mnor planets, comets
Obsah 1 Úvod... 4 2 Hstorcký přehled astrometrcké astronome... 4 2.1 Bezdalekohledová astrometre... 4 2.1.1 Jakubova hůl... 4 2.1.2 Paralaktcké pravítko... 5 2.1.3 Kvadrant... 6 2.1.4 Oktant... 7 2.2 Astrometre s použtím dalekohledu... 8 2.2.1 Sextant... 9 2.2.2 Zakreslovací dalekohledová astrometre... 1 2.2.3 Pasážník... 1 2.3 Technologcký zlom aneb od oka k fotograf a CCD... 1 2.4 Fotografcká astrometre... 11 2.5 CCD astrometre... 11 3 Souřadncové systémy... 13 3.1 Pravoúhlá souřadncová soustava... 13 3.2 Sfércká souřadncová soustava... 15 4 Astronomcké souřadnce... 16 4.1 Obzorníková soustava souřadnc... 18 4.2 Rovníkové souřadnce I. druhu... 2 4.3 Rovníkové souřadnce II. druhu... 22 4.4 Eklptkální souřadncová soustava... 24 4.5 Galaktcká souřadncová soustava... 25 4.6 Převodní vztahy mez jednotlvým typy souřadncových systémů... 27 4.6.1 Transformace obzorníkových a rovníkových souřadnc... 27 4.6.2 Transformace rovníkových a eklptkálních souřadnc... 27 4.6.3 Transformace rovníkových a galaktckých souřadnc... 28 5 Gnómoncká projekce... 29 5.1 Vlastní projekce... 29 5.2 Transformace souřadnc... 32 6 Astrometrcké katalogy... 35 6.1 SAO (Smthsonan Astrophyscal Observatory Star Catalog)... 36 6.2 AGK3... 36 6.3 PPM (Postons and Proper Motons Star Catalogue)... 36 6.4 GSC... 36-1 -
6.5 USNO A-2... 37 6.6 Hpparcos... 37 6.7 Tycho-2... 37 6.8 USNO B-1.... 38 6.9 UCAC 3... 38 7 Astrometre malých těles sluneční soustavy... 38 7.1 Malá tělesa sluneční soustavy... 38 7.2 Blízkozemní planetky... 39 7.3 Astrometre planetek a komet... 41 7.4 Observatoř Kleť a Projekt KLENOT... 42 8 Dráhové elementy malých těles sluneční soustavy... 45 9 Výpočet efemerd malých těles sluneční soustavy... 51 1 Identfkace malých těles sluneční soustavy... 55 1.1 Proč je potřeba dentfkovat tělesa... 55 1.2 Metoda dentfkace malých těles sluneční soustavy... 57 1.3 Příklady dentfkací... 64 1.3.1 Identfkace planetek hlavního pásu... 64 1.3.1.1 Identfkace 2 QM 166... 64 1.3.1.2 Identfkace 1999 LX 5... 65 1.3.1.3 Identfkace 1997 AY 14... 66 1.3.2 Identfkace blízkozemních planetek... 67 1.3.2.1 Amor 23 HU 42... 67 1.3.2.2 Apollo 21 YF 1... 68 1.3.2.3 Apollo 22 SR 41... 69 1.3.2.4 PHA Apollo 1999 TF 211... 7 1.3.2.5 Aten 22 FT 6... 71 1.3.3 Identfkace Kentaurů... 72 1.3.3.1 Kentaur 1997 CU 26... 72 1.3.4 Identfkace komet... 73 1.3.4.1 Kometa C/22 A2 (LINEAR)... 73 1.3.4.2 Kometa C/22 A1 (LINEAR)... 74 1.3.4.3 Kometa P/2 U6 (Tchý)... 75 11 Závěr... 78 Lteratura... 79 Seznam obrázků... 81 Seznam tabulek... 82-2 -
Seznam použtých symbolů A [ ] azmut h [ ] výška nad obzorem z [ ] zentová vzdálenost δ č Decl. [ ] deklnace t [ nebo hod.] hodnový úhel α č R.A. [ nebo hod.] rektascenze λ [ ] eklptkální délka β [ ] eklptkální šířka l [ ] galaktcká délka b [ ] galaktcká šířka θ [hod.] hvězdný čas φ [ ] zeměpsná šířka a [AU] velká poloosa dráhy ε [AU] lneární excentrcta e [ ] numercká excentrcta Ω č Per. [ ] délka výstupního uzlu dráhy [ ] sklon dráhy k eklptce ω č Node. [ ] argument šířky perhelu T [datum] čas průchodu přísluním M [ ] střední anomále Epocha [JD] epocha dráhových elementů υ [ ] pravá anomále E [ ] excentrcká anomále P [let] oběžná doba n [ /den] střední denní pohyb q [AU] vzdálenost přísluní Q [AU] vzdálenost odsluní X,Y,Z [AU] pravoúhlé souřadnce (helocentrcké) π [ ] paralaxa ρ [AU] geocentrcká vzdálenost - 3 -
1 Úvod Astrometre, nebol určování přesných poloh objektů na nebeské sféře, patří mez základní úlohy nebeské mechanky. Pomocí astrometre se určovaly nejen polohy objektů na obloze, ale sekundárně poloha pozorovatele na zemském povrchu. Prostřednctvím astrometre tak byly svázány pozemské a nebeské souřadncové systémy. Přesnost astrometre ovlvňovala vývoj astronome, obzvláště vývoj názorů na pohyb těles ve sluneční soustavě, jednotlvé populace těles sluneční soustavy a strukturu ve sluneční soustavě. Díky omezené a neměnící se přesnost astrometrckých přístrojů se až do konce 19. století zdálo, že astrometre bude na okraj vědeckého zájmu. Se zlepšujícím se přístrojovým vybavením a nástupem fotografcké a následně CCD technologe se přesná astrometre následně stala velce důležtou a vlastně základní součástí př výzkumu dynamky těles nejen naší sluneční soustavy ale naší Galaxe a celého pozorovatelného vesmíru. 2 Hstorcký přehled astrometrcké astronome Technologe astrometre její přesnost byla vždy odvslá od technologckého rozvoje. Podobně se měnly velčny, které se prostřednctvím astrometre měří [3]. 2.1 Bezdalekohledová astrometre Astrometre na obloze bez použtí dalekohledu se užívala do počátku 17. století, kdy byl první dalekohled použt na pozorování oblohy. Měřenou velčnou př této astrometr byl úhel, a to buď vzájemná úhlová vzdálenost pozorovaných objektů, tak třeba azmut a výška tělesa nad obzorem. S vývojem technky se používaly různé přístroje, a to čím dál tím větší [9]. 2.1.1 Jakubova hůl Prvním doloženým měřícím astrometrckým přístrojem byla Jakubova hůl. Jakubova hůl je jednoduchý astronomcký přístroj sloužící buď k měření úhlové vzdálenost dvou objektů č k měření výšky objektu nad obzorem. Fungoval na prncpu průhledítka oko se přložlo ke konc pravítka a posuvným ramenem se posouvalo, až se docíllo stavu, aby měřené objekty byly vděny přesně na koncích posuvné část. Na pravítku se pak odečetl úhel mez objekty. - 4 -
Jakubova hůl byla poměrně nepřesná, její přesnost byla na úrovn několka desítek úhlových mnut až do jednoho stupně. Závsela na kvaltě pozorovatele, na jeho schopnostech a zkušenostech. Obr. 1: Jakubova hůl 2.1.2 Paralaktcké pravítko Paralaktcké pravítko nebo též trquetrum, sloužlo též k měření zentové vzdálenost objektů na obloze. Čl měřenou jednotkou byl opět úhel. Vyvnul se z gnómonu přpevněním dvou pohyblvých ramen, kdy jedno bylo přpevněno na vrcholu a mělo průhledítka na zaměřování objektů. Druhé rameno pak sloužlo přímo k měření, kdy na něm byla stupnce zentových vzdáleností a vzájemná poloha obou ramen udávala měřený úhel. Z paralaktckého pravítka posléze vznkly přístroje jako kvadrant, sextant č oktant. - 5 -
Obr. 2: Paralaktcké pravítko 2.1.3 Kvadrant Poměrně málo přesná Jakubova hůl byla v průběhu let nahrazena kvadrantem. Měřenou jednotkou u tohoto přístroje byl úhel. Kvadrant byl zařízen na měření zentových vzdáleností objektů. Měření se provádělo pomocí průzorů, průhledítek, a úhel se následně odečítal na čtvrtkruhové stupnc (proto se přístroj též jmenuje kvadrant). Kvadranty byly jak malé, cestovní, tak velké, nástěnné č stojací. Přpevněním kvadrantu na zeď č na podstavec se zvýšla jejch přesnost, a to nejen díky větším rozměrům ale díky stabltě celého přístroje. Na konc éry kvadrantů v renesanc dosahoval známý dánský astronom Tycho Brahe s kvadrantem přesnost měření až téměř 1 úhlovou mnutu, nebol třcetnu průměru měsíčního úplňku. V samém závěru užívání kvadrantů v astronom byl tento přístroj doplněn dalekohledem. - 6 -
Obr. 3: Kvadrant 2.1.4 Oktant Oktant je dalším přístrojem, který byl vyvnut z paralaktckého pravítka. Měřenou velčnou je opět úhel. Je velm podobný sextantu, jen výsek je osmnový. Oktant byl poprvé zkonstruován v první polovně osmnáctého století v Angl. - 7 -
Obr. 4: Oktant 2.2 Astrometre s použtím dalekohledu Astrometre s přímým použtím dalekohledu vedla ke zpřesnění měření. Sce se pořád k pozorování používalo oko, ale dalekohled díky zvětšení a dosahu na slabší objekty zpřesnl měření, což výsledně vedlo k dalším objevům pohybů těles na nebeské sféře. Prvním přístrojem určeným na měření souřadnc byl sextant. V astronom se prvně používala astrometre zakreslovací, kdy byly pomocí dalekohledu kresleny polohy těles, posléze se používal pasážník - 8 -
2.2.1 Sextant Prvním přístrojem, který na přesnější měření úhlů použl ke stupnc dalekohled, byl sextant. Opět jde o přístroj, který byl vyvnut stejně jako oktant z paralaktckého pravítka. Tento přístroj byl základním navgačním měřícím přístrojem až do nástupu družcové navgace GPS a dodnes slouží jako záložní navgační přístroj. Užívá překryvu obrazů pozorovaného objektu a úhel se měří pomocí pohyblvého zrcátka a kalbrované stupnce. S přesností měření sextantem souvsí délka námořní míle, což byla přesně přesnost měření tímto přístrojem, což v úhlové míře představuje 1. Pomocí sextantu se dá měřt výška těles nad obzorem, s užtím statvu úhlová vzdálenost dvou objektů na obloze. Obr. 5: Sextant - 9 -
2.2.2 Zakreslovací dalekohledová astrometre Šlo o použtí dalekohledu jako pomocného prostředku a jž dříve používané zakreslovací technologe. Polohy objektů pozorované dalekohledem se zakreslovaly do mapy č jné pomůcky, aby byly následně změřeny a převedeny na astronomcké souřadnce. Podobnou technologí byla objevena v roce 181 první planetka Ceres, kdy př mapování oblohy by zjštěn pohyb jednoho ze sledovaných objektů, ze kterého se následně vyklubal objekt dosud neznámého typu planetka. 2.2.3 Pasážník Pasážník je vlastně průhledový dalekohled, který se otáčí pouze v jedné rovně, a to v rovně poledníku. Oprot předchozím metodám jsou zde dvě měřené velčny úhel a čas. Jako základ je měření přesného času průchodu objektu místním poledníkem. Z této velčny př znalost hvězdného času určíme přesně rektascenz objektu. Druhou měřenou velčnou je úhel, nebol výška objektu nad obzorem, která nám př znalost zeměpsné šířky poskytne druhý potřebný údaj, deklnac objektu. Upravený pasážník, otáčející se ve dvou rovnách, deklnační a azmutální, nám může poskytnout nformac nejen o výšce objektu nad obzorem ale o azmutu sledovaného objektu. Oprot klasckému průchodnímu pasážníku může takto upravený přístroj pozorovat po celé obloze, a nejen přesně nad jhem. 2.3 Technologcký zlom aneb od oka k fotograf a CCD Všechny doposud zmíněné technologe astrometre měly jednu podstatnou nevýhodu. Pozorování byla závslá na kvaltě pozorovatele a získaná data se nedala obvykle opakovaně ověřt př stávajících an př objevu nových technologí. To se změnlo koncem 19. století, kdy do astronome nastoupla fotografe. Objekty byly zaznamenány na fotografcké desce a mohlo tak být prováděno několk astrometrckých měření s použtím různých přístrojů č opakovaně. Takto se dají zpětně na nové objekty zpracovávat v mnulost nasnímané archvované desky. V osmdesátých letech dvacátého století byla fotografcká technka nahrazena CCD čpy (CCD = Charge-Coupled Devce nebol zařízení s vázaným náboj), ale prncpy zpracování archvace obrazu zůstaly praktcky nezměněné. - 1 -
2.4 Fotografcká astrometre Ve druhé polovně devatenáctého století nastoupla do služeb astronome fotografe. Její obrovskou výhodou byl s ohledem na delší expozce dosah na okem nepozorovatelné objekty a zároveň možnost napozorovaná data archvovat a zpracovávat následně. Zároveň byly vyvnuty přesnější matematcké metody na výpočet astronomckých souřadnc na nebeské sféře z kartézských souřadnc měřených na fotografckých flmech č skleněných deskách [6]. Obr. 6: Fotografcká deska (v tomto případě 13x18 cm s kometou) 2.5 CCD astrometre V polovně osmdesátých let dvacátého století byla postupně fotografcká technologe nahrazena elektronckým záznamem obrazu CCD detektory. Př záznamu obrazu je zde využto fotoefektu, kdy dochází v polovodčovém materálu vlvem absorpce fotonu k exctac elektronu a tím pádem změně vodvost daného pxelu, čl část matce polovodčového prvku. - 11 -
Obr. 7: CCD kamera s řídící elektronkou Výsledně je pomocí AD převodníku počet zachycených fotonů skrze elektrony převeden na ADU jednotky a je z hodnot na jednotlvých pxelech sestaven celý snímek. Nové materály umožňují kvantovou účnnost CCD čpů přesahující 9 procent (pro porovnání, fotografcká deska má kvantovou účnnost cca 1 procento, neozbrojené ldské oko cca,1 procenta) [7, 3]. Obr. 8: CCD snímek (s označeným rychle se pohybujícím objektem) - 12 -
Tab. 1: Astrometrcká přesnost Pozorovatel Technka datum Přesnost Hpparchos Sextant (vzuálně) 15 př.n.l. 5 Tycho Brahe Kvadrant (vzuálně) 16 1 Flamstead Zední kvadrant (dalekohled) 17 1 Bradley Upravený kvadrant (dalekohled) 175,5 Bessel Optcký helometr (dalekohled) 1835,1 Schlesnger et al. Fotografe 192,5 USNO et al. Fotografe 197 5 mas nterfometre Skvrnková nterferometre 199 3 mas USNO et al. CCD astrometre 2 1 mas Hpparcos Družcová astrometre 199 1 mas HST FGS 2,5 mas nterferometre LBI 2 1 µas GAIA Astrometrcká družce 212? 1 µas SIM Vesmírná nterferometre 29 1 µas 3 Souřadncové systémy Polohu lbovolného bodu v trojrozměrném prostoru je možné popsat pomocí různých typů souřadnc. V astronom se nejčastěj používají dva systémy souřadnc - pravoúhlá souřadncová soustava a sfércká souřadncová soustava [1,2,9]. 3.1 Pravoúhlá souřadncová soustava Tř navzájem kolmé vektory, j, k s počátkem v jedném bodě tvoří pravoúhlou nebol ortogonální souřadncovou soustavu. Dané vektory, které určují tento souřadncový systém, jsou na sobě nezávslé. Přímky, které jsou nostelkam vektorů,j,k se nazývají souřadncové osy. Obvykle je označujeme jako osy x, y a z. - 13 -
Obr. 9: Pravoúhlý souřadncový systém Polohu lbovolného bodu R můžeme jednoznačně vyjádřt jako lneární kombnac jednotkových vektorů,j, k. Pokud máme bod R jako koncový bod vektoru r s začátkem v počátku souřadncového systému, dostaneme r = x. + y. j + z. k (3.1) Velčny x, y, z označujeme jako souřadnce bodu R, nebol R (x,y,z). Úhly α, β, γ jsou úhly, které svírá vektor r s jednotlvým souřadncovým osam. Souřadnce jednotkového vektoru nazýváme směrové kosíny. Je zřejmé, že jednotkový vektor splňuje následující podmínku: 2 2 2 x + y + z = 1 (3.2) Souřadncová soustava může mít dvojí orentac. Pravotočvá, kdy př pohledu od konce osy z se dostaneme od osy x k ose y pootočením o 9 v matematcky kladném směru, čl prot směru otáčení hodnových ručček. Druhou orentací je levotočvá soustava, která má orentac os obráceně. - 14 -
3.2 Sfércká souřadncová soustava Sfércká souřadncová soustava je tvořena základní rovnou a základním směrem, kterého počátek leží v základní rovně soustavy. Za základní rovnu se obvykle používá rovna xy, za základní směr se používá směr osy x. Poloha bodu R v trojrozměrném prostoru je pak určena trojcí souřadnc, kde r představuje délku průvodče r, úhel λ představuje úhel mez osou x a průmětem průvodče r do rovny xy, a konečně úhel φ, který představuje úhel mez průvodčem r a rovnou xy. Velčny r, φ a λ se označují jako sfércké souřadnce bodu R nebol R (r, φ, λ). Obr. 1: Sfércká souřadncová soustava V případě, že má R počátek v počátku souřadného systému, dostaneme následující: R = r cosϕ, x = R cosλ, y = R sn λ, z = r snϕ (3.3) A dále pak pro x,y,z dostaneme následující vztahu: x = r cosϕ cos λ, y = r cosϕ sn λ, z = r snϕ (3.4) - 15 -
Inverzní převodní vztahy mají následující tvar: 2 2 2 x z z r = x + y + z, λ = arctan, ϕ = arc cot = arcsn (3.5) y 2 2 x + y r Souřadncové soustavy můžeme umístt a orentovat v prostoru praktcky lbovolným způsobem. Obvykle se jako počátek souřadncového systému používá například střed Země č střed Slunce nebo hmotný střed sluneční soustavy. 4 Astronomcké souřadnce Pro orentac na obloze a schopnost se vzájemně komunkovat mez sebou, používají astronomové systém astronomckých souřadnc [2,9]. Pomocí astronomckých souřadnc defnujeme č určujeme polohu těles na obloze, polohu na nebeské sféře. A to pro jakékolv těleso ať jž umělé, vytvořené ldm, nebo těleso sluneční soustavy č naší Galaxe, nebo objekt na kraj pozorovatelného vesmíru. Abychom mohl zavést souřadncovou soustavu, v tomto případě s ohledem na myšlenou nebeskou klenbu nad našm hlavam sférckou, musíme zvolt tuto sféru (vlastně by se dalo říc koul) s určtým rozměrem a základní směry jednotlvých rovn, které lze matematcky a případně fyzkálně defnovat. Pokud jde o rozměr sféry, je vhodné j zvolt jednotkovou, ušetříme s tím řadu problémů s následným přepočty. Pokud jde o základní směry, máme zde několk možností. Můžeme za základní směr zvolt například svslc v bodě pozorování nebo směr rotační osy naší Země, případně směr k pólu eklptky č k pólu naší Galaxe. Podobné je to se základní rovnou souřadncového systému. Můžeme j vzít jako rovnu horzontu v bodě pozorování, nebo například rovnu světového rovníku. Tento světový rovník získáme průmětem zemského rovníku na nebeskou sféru. Též je jako základní rovnu možné vzít rovnu eklptky. Eklptka je zdánlvá dráha Slunce po obloze z hledska pozorovatele na Zem. Můžeme za základní rovnu vzít také například rovnu naší Galaxe. - 16 -
Z hledska základních směrů a základních rovn můžeme rozdělt sfércké souřadncové soustavy do několka typů. Známe tak obzorníkovou souřadncovou soustavu, rovníkovou I. a II. druhu, eklptkální č galaktckou. Některé z uvedených soustav můžeme ještě dělt z hledska polohy pozorovatele, přesněj z hledska polohy středu koule souřadncové soustavy, na topocentrckou, geocentrckou, helocentrckou č v centru jného objektu, a barycentrcké. Topocentrcká soustava je vztažena přímo k místu pozorování. V případě pozemského pozorovatele je poloha defnována polohou na Zem, čl zeměpsnou šířkou φ a zeměpsnou délkou λ, a nadmořskou výškou h. V astronom se obvykle používá geocentrcká zeměpsná šířka, která představuje úhel, který svírá spojnce daného bodu se středem Země a rovna rovníku. V geodéz se používá přesnější geodetcká (geografcká) zeměpsná šířka, která měří úhel, který svírá normála k použtému elpsodu v daném bodě s rovnou rovníku. S ohledem na malý rozdíl mez oběma druhy zeměpsných šířek, je užtí z hledska geodéze méně přesných geocentrckých souřadnc v astronom s ohledem na rychlejší výpočty topocentrckých korekcí odůvodntelné a logcké. Geocentrcká soustava má za počátek souřadnc střed Země, ke kterému jsou vztaženy všechny souřadnce. Helocentrcká souřadncová soustava má počátek ve středu slunce, případně Xcentrcká ve středu objektu X. Barycentrcká soustava má počátek v těžšt systému. Například barycentrcká soustava v barycentru Země-Měsíc, č například počátek soustavy v těžšt sluneční soustavy. Souřadncové systémy, které jsou vázány na hmotný objekt a které se pohybují vzhledem k základnímu prostoru rovnoměrně a přímočaře nazýváme nercální souřadncové systémy. Například souřadncová soustava navázaná na systém kvazarů, čl velm vzdálených vesmírných objektů, je sama o sobě nercální soustavou. Oprot tomu jakákolv souřadncová soustava pevně spojená s rotující Zemí je soustavou nenercální. - 17 -
4.1 Obzorníková soustava souřadnc Obzorníková souřadncová soustava patří mez souřadncové soustavy, které jsou závslé na čase na pozorovatelském stanovšt. Základním směrem soustavy souřadnc je směr svslce v bodě pozorovatele, čl v místě, kde přímo pozorujeme. Do tohoto bodu je umístěn pomyslný střed jednotkové koule se souřadným systémem. Důležtým bodem je bod, kde nám jednotkovou koul protíná svslce, čl bod přímo nad naší hlavou. Tomuto bodu říkáme zent nebol nadhlavník. Rovna kolmá ke svslc procházející pozorovatelským stanovštěm se nazývá rovnou obzorníku. Jednotkovou koul protíná v hlavní kružnc, která se nazývá horzont nebol obzorník. Horzont nám zároveň rozděluje jednotkovou koul na dvě polovny, ze kterých je vdtelná vždy jen jedna. Obr. 11: Obzorníková soustava souřadnc Hlavní kružnce, které procházejí zentem nadrem, se nazývají vertkály nebol výškové kružnce. Z nch jsou velm význačné dvě - místní poledník a první vertkál. Místní - 18 -
poledník je defnován jako kružnce, která protíná horzont přesně na jhu a přesně na severu, a zároveň prochází zentem. Slunce př svém zdánlvém pohybu na obloze je na místním poledníku nachází vždy v pravé místní sluneční poledne. Rovna prvního vertkálu prochází zentem a nadrem a zároveň je kolmá na rovnu místního poledníku. Dala by se defnovat tak, že protíná horzont přesně na východě na západě a prochází nadhlavníkem. Horzont a poledník nám defnují obzorníkovou soustavu souřadnc. Souřadnce se nazývají azmut A a výška objektu nad obzorem h (někdy lze místo výšky nad obzorem použít zentovou vzdálenost z, pro kterou platí z = 9 - h). Azmut je úhel, který svírá rovna vertkálu procházející objektem s rovnou místního poledníku. Měří se od jžní větve místního poledníku, čl od jhu, v matematcky záporném směru, čl od jhu k západu. Azmut měříme v úhlových stupních a nabývá hodnot od do 36. Výška nad obzorem je úhel měřený po výškové kružnc od obzorníku nebol horzontu k objektu. V tomto případě musí být zajštěn tzv. nulový horzont, což je někdy obtížné. Proto lze použít měření zentové vzdálenost, kdy měříme po výškové kružnc úhel mez nadhlavníkem a měřeným objektem a následně provést přepočet ze zentové vzdálenost na výšku tělesa nad obzorem (platí, že z+h=9 ). Výška h je měřena též ve stupních a př praktckých měřeních nabývá hodnot až 9. Teoretcky je možné mít př přepočtech různých souřadnc zápornou výšku tělesa nad obzorem. V takovémto případě se objekt nalézá pod obzorem, kde může nabývat hodnot od - do -9. Obr. 12: Obzorníková soustava souřadnc azmut a výška - 19 -
Pokud proložíme pozorovaným objektem rovnu rovnoběžnou s rovnou obzorníkovou, protne nám tato jednotkovou koul ve vedlejší kružnc, na které mají všechny body stejnou výšku nad obzorem, případně by se dalo říc, že mají stejnou zentovou vzdálenost. Takováto kružnce se nazývá almukantarat. V obzorníkové soustavě souřadnc se souřadnce objektů mění jednak v závslost na čase, což je způsobeno rotací Země, a jednak se změnou pozorovacího místa, protože pro každé místo na Zem má, s ohledem na svoj zeměpsnou šířku φ a zeměpsnou délku λ jný horzont nebol obzorník a jný zent. Z tohoto hledska je tento typ souřadnc s ohledem na jednoduchost určení polohy objektu na obloze vhodný pro pozorování na jednom místě, ale velce nevhodný pro sdílení nformací o souřadncích objektu mez pozorovatel na různých místech zeměkoule. Proto byly navrženy jné pro předávání nformací vhodnější astronomcké souřadncové systémy. 4.2 Rovníkové souřadnce I. druhu Prvním předstupněm pro na pozorovacím stanovšt nezávslém souřadncovém systému jsou rovníkové souřadnce I. druhu. Základním směrem je směr rotační osy Země, která protíná jednotkovou koul přesně v bodech severního a jžního světového pólu. Základní rovnou je rovna světového rovníku. Světový rovník vznkne jako průsečík jednotkové kružnce a zemského rovníku. Rovny, které procházejí oběma světovým póly, severním jžním, se nazývají deklnační kružnce. Polohu objektu vůč světovému rovníku určuje souřadnce, která se nazývá deklnace a značí se δ. Deklnace je úhlová vzdálenost objektu od světového rovníku měřena podél deklnační kružnce (čl by se dalo říc nejkratší vzdálenost). Deklnace se uvádí v úhlových stupních a nabývá hodnot od -9 do +9. Pro severní polokoul platí kladné hodnoty, pro jžní polokoul se deklnace udává v záporných hodnotách. Rovny rovnoběžné s rovnou rovníku protínají jednotkovou koul v kružncích, která nazýváme deklnační rovnoběžky. Po těchto rovnoběžkách vykonávají objekty svůj zdánlvý denní pohyb jako obraz skutečné rotace Země. - 2 -
V rovníkových souřadncích I. druhu je druhou základní rovnou rovna místního poledníku. Polohu hvězdy určuje hodnový úhel, což je úhel, který svírá rovna místního poledníku s deklnační kružncí procházející měřeným objektem. Hodnový úhel měříme v matematcky záporném směru, čl od jhu, kde je t = směrem na západ. Hodnový úhel je udáván v úhlové míře, čl může nabývat hodnot až 36. V prax se používá hodnová míra, kdy 36 odpovídá 24 hodnám (nebol 1 hodna je 15, případně 1 odpovídá 4 mnutám). Pak nabývá hodnový úhel hodnot od hod. do 24 hod. Obr. 13: Rovníkové souřadnce I. druhu Jak vyplývá z defnce, hodnový úhel je závslý na poloze místního poledníku. Ten však vlvem rotace Země mění neustále svou polohu vůč objektům na obloze, z čehož vyplývá změna hodnového úhlu s plynoucím časem. Rovníkové souřadnce I. druhu jsou vlastně mezkrok pro meznárodní komunkac. Deklnace δ je jž souřadncí nezávslou na poloze pozorovatele, ale druhá souřadnce, - 21 -
hodnový úhel t je závslý na poloze pozorovatele. Proto byly tyto souřadnce nahrazeny rovníkovým souřadncem II. druhu, které problém místně závslé druhé souřadnce jž řeší. 4.3 Rovníkové souřadnce II. druhu Rovníkové souřadnce II. druhu je jž souřadncový systém nezávslý na poloze pozorovatele a času pozorování. Základním směrem je stejně jako v případě rovníkových souřadnc I. druhu směr rotační osy Země, která protíná jednotkovou koul přesně v bodech severního a jžního světového pólu. Základní rovnou je opět rovna světového rovníku. Poloha objektů vůč světovému rovníku určuje stejně jako v případě rovníkových souřadnc I. druhu souřadnce, která se nazývá deklnace a značí se δ. Deklnace je úhlová vzdálenost objektu od světového rovníku měřena podél deklnační kružnc (čl by se dalo říc nejkratší vzdálenost). Deklnace se uvádí v úhlových stupních a nabývá hodnot od -9 do +9. Pro severní polokoul platí kladné hodnoty, pro jžní polokoul se deklnace udává v záporných hodnotách. Rovny rovnoběžné s rovnou rovníku protínají jednotkovou koul v kružncích, která nazýváme deklnační rovnoběžky. Po těchto rovnoběžkách vykonávají objekty svůj zdánlvý denní pohyb jako obraz skutečné rotace Země. - 22 -
Obr. 14: Rovníkové souřadnce II. druhu Druhá rovna se od rovníkových souřadnc I. druhu lší. Prvně s musíme nadefnovat pomocnou kružnc. Země obíhá kolem Slunce v rovně, která svírá s rovnou světového rovníku úhel přblžně 23,5. Tato rovna se nazývá rovnou eklptky. Pozorovatel na zemském povrchu se skutečný pohyb Země kolem Slunce jeví jako zdánlvý pohyb Slunce po obloze a to právě po této kružnc, která se nazývá eklptka. Eklptka protíná světový rovník ve dvou bodech. Průsečík, kterým prochází Slunce v den jarní rovnodennost se nazývá jarní bod. Ten to bod se obvykleoznačuje astrologckoastronomckým symbolem souhvězdí/znamení Berana. Druhý průsečík, kde se nalézá Slunce v den podzmní rovnodennost, se logcky nazývá podzmní bod a značí se astrologckoastronomckým symbolem Vah. Pomocnou základní rovnou rovníkových souřadnc II. druhu je deklnační rovna procházející právě jarním bodem. Takto vytvořenou deklnační kružnc zvolíme jako základní, nulovou. Polohu objektů v této souřadné soustavě určujeme pomocí jž předem defnované deklnace δ a rektascenze α. Rektascenze představuje úhel mez deklnační rovnou procházející měřeným objektem a deklnační rovnou procházející jarním bodem. - 23 -
Měří se v matematcky kladném směru, čl prot směru otáčení hodnových ručček. Dalo by se říc, že roste od jhu směrem k východu. Rektascenze je měřena v úhlech a může tak nabývat hodnot od do 36. Obvykle se udává v hodnové míře, čl nabývá hodnot od hodn po 24 hodn. Rovníkové souřadnce II. druhu jsou jž nezávslé na místě pozorování a na čase pozorování. Ale pro přesnost musíme uvést, že tato nezávslost není úplná. V případě těles sluneční soustavy má na výslednou polohu na obloze vlv přepočet geocentrckých poloh na topocentrcké, čl na poloze pozorovatele v případě Zem nebo pozorovatel blízkých objektů je tato souřadná soustava závslá. A je zde určtá závslost na čase, protože na přesné souřadnce má vlv nutace a precese, nebol pohyby souřadné soustavy způsobené změnam polohy rotační osy naší Země. Naštěstí, obojí jsme schopn vyjádřt matematcky a tudíž poměrně snadno transformovat polohu objektu na obloze v jednom místě na místo jné. 4.4 Eklptkální souřadncová soustava Pro některé specální výpočty, aby byl omezen počet mezstupňů př výpočtech, se používají specální souřadncové soustavy. Například pro výpočty pohybů objektů ve sluneční soustavě, a to jak planet, planetek č komet, se používá eklptkální souřadncová soustava. Základní rovnou, jak název napovídá, je rovna eklptky (eklptka je defnovaná u rovníkových souřadnc II. druhu). Hlavním směrem je směr kolmý k rovně eklptky, který protíná koul v pólech eklptky. Jnak, pokud jde o prncp, jde o ekvvalent rovníkových souřadnc II. druhu, jen místo světového rovníku je základní rovnou rovna eklptky. - 24 -
Obr. 15: Eklptkální souřadnce Šířkovou kružnc, která prochází jarním bodem, zvolíme jako výchozí čl nulovou. Poloha hvězdy v eklptkální souřadncové soustavě se vyjadřuje v eklptkální délce λ a eklptkální šířce β. Eklptkální délka představuje úhel, který svírá nulová šířkoví rovna s šířkovou rovnou proloženou měřeným objektem. Měří se od jarního bodu v matematcky kladném směru, čl prot směru hodnových ručček a dosahuje hodnot od do 36. Eklptkální šířka je úhel, který svírá směr k objektu s rovnou eklptky podél šířkové kružnce, čl nejkratší vzdálenost. Nabývá hodnot od -9 do +9, s kladným hodnotam pro severní polokoul a záporným pro polokoul jžní. 4.5 Galaktcká souřadncová soustava Další specální varantou souřadnc je galaktcká souřadncová soustava. Slouží specálně pro studum pohybu hvězd v naší Galax, Mléčné dráze. Je vlastně takovou analogí eklptkální souřadncové soustavy. - 25 -
Základní rovnou, jak název napovídá, je rovna naší Galaxe. Hlavním směrem je směr kolmý k rovně galaxe, který protíná koul ve dvou galaktckých pólech, severním a jžním. Jnak, pokud jde o prncp, jde o ekvvalent eklptkálních souřadnc, jen místo eklptky je základní rovnou rovna galaktcká. Obr. 16: Galaktcké souřadnce Šířkovou kružnc, která prochází jarním bodem, zvolíme opět jako výchozí čl nulovou. Poloha hvězdy v galaktcké souřadncové soustavě se vyjadřuje v galaktcké délce l a galaktcké šířce b. Galaktcká délka představuje úhel, který svírá nulová šířková rovna s šířkovou rovnou proloženou měřeným objektem. Měří se od jarního bodu v matematcky kladném směru, čl prot směru hodnových ručček a dosahuje hodnot od do 36. Galaktcká šířka je úhel, který svírá směr k objektu s rovnou galaxe podél šířkové kružnce, čl nejkratší vzdálenost. Nabývá hodnot od -9 do +9, s kladným hodnotam pro severní polokoul a záporným pro jžní polokoul. - 26 -
4.6 Převodní vztahy mez jednotlvým typy souřadncových systémů Astronomcké souřadnce lze pochoptelně mez sebou přepočítávat. Uvedeme základní přepočty používané v astronom. S ohledem na detalní pops souřadncových systémů v předchozích kaptolách uvedeme jen transformační rovnce [2,9]. 4.6.1 Transformace obzorníkových a rovníkových souřadnc cos z = sn ϕ sn δ + cos ϕ cos δ cos t (4.1) sn z sn A = cos δ sn t (4.2) h = 9 - z (4.3) sn δ = cos z sn ϕ - sn z cos ϕ cos A (4.4) cos δ cos t = cos z cos ϕ + sn z sn ϕ cos A (4.5) cos δ sn t = sn z sn A (4.6) α = t - θ (4.7) (t = hodnový úhel, θ = hvězdný čas) 4.6.2 Transformace rovníkových a eklptkálních souřadnc sn λ cos β = sn δ sn ε +cos δ cos ε sn α (4.8) cos λ cos β = cos δ cos α (4.9) sn β = sn δ cos ε - cos δ sn ε sn α (4.1) sn α cos δ = - sn β sn ε + cos β cos ε sn λ (4.11) cos α cos δ = cos β cos λ (4.12) sn δ = sn β cos ε + cos β sn ε sn λ (4.13) - 27 -
Obr. 17: Přehled souřadncových systémů 4.6.3 Transformace rovníkových a galaktckých souřadnc sn l cos b = sn δ sn ε +cos δ cos ε sn α (4.14) cos l cos b = cos δ cos α (4.15) sn b = sn δ cos ε - cos δ sn ε sn α (4.16) sn α cos δ = - sn b sn ε + cos b cos ε sn l (4.17) cos α cos δ = cos b cos l (4.18) sn δ = sn b cos ε + cos b sn ε sn l (4.19) - 28 -
5 Gnómoncká projekce Abychom mohl spočítat sfércké souřadnce nasnímaných objektů, v našem případě rovníkové souřadnce druhého druhu - rektascenz α a deklnac δ, ať už na fotografckých nebo CCD snímcích, musíme nejdříve zjstt, jakým způsobem se zobrazí do rovny snímku. Průmět kulové sféry na tečnou rovnu se nazývá gnómcká projekce [1,9]. 5.1 Vlastní projekce Pro vztah mez sférckým souřadncem objektů α a δ na nebeské sféře a pravoúhlým kartézským souřadncem x, y obrazu těchto objektů na snímku zavedeme tzv. deální č standardní souřadnce ξ a η. Ideální souřadnce určují tečnou rovnu snímku σ, která je rovnoběžná s rovnou záznamového zařízení, tj. fotografcké desky nebo CCD čpu. Tečná rovna se dotýká nebeské sféry v bodě O, který má souřadnce α a δ. Do tohoto bodu směřuje optcká osa záznamového zařízení, přesně z bodu O'. Body A a B na nebeské sféře představují objekty o souřadncích α a δ, jejch projekce do rovny je A' a B' a projekce do tečné rovny představují body A" a B". - 29 -
Obr. 18: Gnómoncká projekce Transformační rovnce rovníkových souřadnc druhého druhu a deálních souřadnc tedy vycházejí z rovnc sfércké trgonometre. Transformační rovnce pro ξ : ( α α ) cotδ sn ξ = = sn α + cotδ cosδ cos( α α ) ( α α ) cosδ sn. (5.1) snα snδ + cosδ cosδ cos( α α ) - 3 -