8a.Objektové metody viditelnosti. Robertsův algoritmus

Rozměr: px
Začít zobrazení ze stránky:

Download "8a.Objektové metody viditelnosti. Robertsův algoritmus"

Transkript

1 8a. OBJEKOVÉ MEODY VIDIELNOSI Cíl Po prostudování této kaptoly budete znát metody vdtelnost 3D objektů na základě prostorových vlastností těchto objektů tvořt algortmy pro určování vdtelnost hran a stěn 3D objektů Výklad 8a.1. Robertsův algortmus ato metoda je použtelná pro konvexní (vypuklé) plochy a tělesa. Dále jen u ploch a těles, jejchž povrchy jsou rovnné část. Řeší hranovou vdtelnost ve scéně, která obsahuje konvexní objekty - mnohostěny. Algortmus byl publkován v roce [ Roberts, L.G.: Machne Percepton of ree Dmensonal Solds. MI Lncoln Lab.Rep.., R 315, May 1963.] Obecný postup Robertsova algortmu lze snadněj pochopt z následujícího počítačového programu. Vstup: scéna s konvexním mnohostěny. Výstup: vdtelné hrany {a nevdtelné hrany } for všechny hrany objektů na scéně do begn f hrana je průsečncí dvou nevdtelných hran then Hrana je nevdtelná else begn Vytvoř prázdný seznam vdtelných hran; Ulož hranu do seznamu vdtelných hran; for všechny mnohostěny na scéně do f seznam vdtelných hran není prázdný then for všechny hrany ze seznamu do begn Vyjm hranu ze seznamu vdtelných hran; 138

2 end; end Otestuj hranu na zakrytí mnohostěnem case výsledek_test of jeden, dva vdtelné úseky: Zařaď tyto úseky do seznamu vdtelných hran nevdtelná hrana: nedělej nc { hrana je vyjmuta ze seznamu vdtelných hran } end {case} end {for } else ext for cyklu pro mnohostěn; f seznam vdtelných hran není prázdný then Vykresl vdtelné hrany ze seznamu Po realzac tohoto programu máme seznam vdtelných a nevdtelných hran pro jednotlvé konvexní objekty. Jestlže průměty vdtelných hran se překrývají, je nutno řešt vdtelnost příslušných hran na základě "zdánlvých" průsečíků těchto překrývajících se průměrů hran. Jestlže budeme předpokládat, že těleso je konvexní a je ohrančeno rovnam, problém se poměrně zjednoduší a je ho možno řešt následujícím způsobem. Každý poloprostor je dán nerovncí:.j. kde v. x 0 [ a, b, c, d ]. [ x, y, z, 1 ] 0. a1, b1, c1, V an bn cn je matcí, kde každá řádka reprezentuje jednu rovnu ohrančující dané těleso. Dále budeme předpokládat, že rovny jsou orentovány tak, že 139 d 1 v d n vn (8a.1)

3 v. x 0 (jsou hodnoty vektoru kladné) v. x 0 (alespoň jedna hodnota záporná ) v. x 0 & j v. x 0 s kde x I je lbovolný bod uvntř tělesa, x 0 x S je lbovolný bod vně tělesa, je lbovolný bod na povrchu tělesa. j Jestlže není předem určena orentace rovn a tím poloprostorů, je nutno specfkovat bod X, který je uvntř prostoru. Potom musí platt: v. x 0. Jestlže tomu tak není a je v. x 0 musíme vektor v nahradt vektorem - v.o znamená změnt znaménka u koefcentů a, b, c a d. Protože objekt je konvexní, vntřní bod lze určt jako střed spojnce dvou bodů, které neleží na jedné stěně objektu, ale jsou vrcholy tohoto objektu. Pro body x a y j bude platt x = ( x + x j ) / 2. Jako vntřní bod lze určt střed spojnce vrcholů které leží v různých rovnách. Jestlže předpokládáme - u rovnoběžného promítání - že pozorovatel je v nekonečnu, je možno pozc pozorovatele defnovat vektorem x P = [ 0, 0, -1, 0 ]. ím je dána také pozce testovacího bodu. ento vektor reprezentuje v nehomogenních souřadncích lbovolný bod v rovně z = -, to je lbovolný bod (x,y,- ). Pro rovny, které jsou "odvrácené" od pozorovatele potom platí: v. x 0 je ekvvalentní podmínce c j > 0. j Je zřejmé, že tento vcelku jednoduchý způsob je velm vhodný pro určování vdtelných a nevdtelných ploch u konvexních těles. A tak pak je možno určt vdtelné resp. nevdtelné hrany. Platí: a) průsečnce dvou vdtelných ploch - rovn (hrana společná dvou vdtelných ploch) je vdtelná - pokud není překryta jným tělesem. b) průsečnce dvou nevdtelných ploch - rovn (hrana společná dvou nevdtelných ploch) je nevdtelná. c) průsečnce vdtelné a nevdtelné plochy - rovny 140 s

4 (hrana společná dvou vdtelné a nevdtelné plochy) je vdtelná a tvoří mez vlastního stínu. Hrany, které tuto mez tvoří jsou tedy vdtelné - pokud nejsou překryty jným tělesem nebo plochou. Pro rovny p 1, p 2, p 3, které mají společný bod - vrchol a jsou reprezentovány vektory v 1,v 2,v 3 bude platt v. x 0 v. x 0 v. x V homogenních souřadncích: B. x = r 1, (8a.2) kde B = [ v 1, v 2, v 3, s ], s = [ 0, 0, 0, 1 ], r = [ 0, 0, 0, d ], kde d > 0 je hodnota měřítka. Vynásobíme-l (8a.2) nverzní matcí B -1 dostaneme X = B -1. r. Posledním sloupcem matce B -1 je dán tedy tento společný bod - vrchol. Dalším krokem této metody je zjštění, zda jednotlvé hrany tělesa nejsou zakryty jným tělesem. Zde není jné východsko, než porovnat každou hranu vzhledem ke všem tělesům na scéně, jestl není promítaná hrana zakryta úplně nebo částečně. K urychlení výpočetního procesu přspěje: a) zjstt mnma a maxma jednotlvých souřadnc - "obalt" tělesa resp. plochy hranoly a tím zjstt, zda-l je možný překrývaný průmět. b) určt nejdříve průměty "obrysů" jednotlvých těles a na základě protínajících resp. neprotínajících se vržených stínů vyelmnovat sporné stuace. Určení průsečíků - ať zdánlvých č skutečných - není trvální záležtost. Vede zpravdla na řešení soustavy lneárních rovnc. Vyjádření hrany tělesa: parametrcky v = s + d. t kde - v je vektor na přímce; - s vektor počátečního bodu úsečky; - d je směrový vektor přímky. Jestlže takováto úsečka není celá vdtelná, je Obr. 8a.1 nutno určt hodnoty parametru t pro něž je 141

5 vdtelná. Na obrázku je znázorněn postup: Svazek přímek mez pozorovatelem Q vyjádříme pomocí parametru úhlu. o jest Q (, t ) = v + g. = s + d. t + g. pro t < 0, 1 >, Př paralelní projekc platí kde g je směrový vektor mez bodem na úsečce a pozorovatelem; v je vektor úsečky x 1 x 2. g = [ 0, 0, 1, 0 ]. Jestlže potřebujeme určt hodnoty parametrů t, jakožto hodnoty, které určují zakrytou část úsečky, lze použít opět skalárního součnu. Označíme: h = B. Q (, t ) h = B. s + t. B. d + a. B. g pro t < 0, 1 > & 0. a dále označíme lze napsat p = B. s, q = B. d a w = B. g h = p + t. q +.w pro pro t < 0, 1 > & 0. Jestlže bude exstovat takové j, že bude platt h j = p j + t. p j +. w j > 0 pro t < 0, 1 > & 0, potom pro tuto hodnotu j resp. tento bod přímky je zakryt tělesem, které je matcí B reprezentováno. Zbývá tedy vyřešt soustavu nerovnc h j 0 Mezním případem mez vdtelností a nevdtelností bodu je případ, kdy h j = 0, tj. kdy bod leží v rovně. edy j h = 0 & h j = 0, j & j dostaneme soustavu n ( n - 1 ) / 2 rovnc, které je nutno řešt vzhledem k proměnným t a. Je však potřeba navíc (oprot obecnému matematckému řešení) testovat t < 0, 1 > & 0 & h k > 0 k K, j. 142

6 Budeme-l aplkovat uvedený algortmus na všechny plochy h a h j dostaneme nterval hodnot parametru t, který určuje zakrytou část úsečky. Robertsův algortmus lze rozložt do tří částí. 1. Odstranění nevdtelných hran a povrchů př uvažování samotného konvexního tělesa. 2. Porovnání hrany a ostatních těles a nalezení zakrytých částí. 3. Nalezení hran, které vznknou př eventuálním protnutí dvou těles. Zjstíme je jako průsečnce dvou rovn, které tělesa ohrančují. Přpomeneme: uvedený algortmus platí pouze pro konvexní tělesa. Pro jeho výpočtovou složtost není vhodný pro scény, kde je více těles. Pro tyto složtější případy, kdy na scéně jsou konkávní tělesa jsou vyvnuty vhodnější algortmy. yto modfkace Robertsova algortmu jsou založeny na rozkladě scény na "podscény" a tak je snžována výpočetní náročnost. V následujících příkladech bude ukázáno, jaké prostředky je možno k případné modfkac Robertsova algortmu vdtelnost používat. Určení orentace rovn stěn s ukážeme na následujícím příkladu 1. Příklad 1. Mějme dáno těleso, které je společnou částí poloprostorů zadaných 6-t rovnam: p 1 : x = 1/2, p 2 : x = -1/2 p 3 : y = 1/2, p 4 : y = -1/2 p 5 : z = 1/2, p 6 : z = -1/2. Rovnce rovny p 1 je 2 x - 1 = 0. Matce, která danou krychl určuje tedy bude V Určíme vntřní bod. Na příklad x = ( 0.25, 0.25, 0.25 ). V homogenních souřadncích je tento bod určen vektorem x = [ 1, 1, 1, 4 ]. Orentac jednotlvých ploch určíme: p 3 2y -1 = 0 p 4 2y +1 = 0 z y 0 Obr. 8a.1 p 2 2x +1 = 0 p 1 2x -1 = 0 p 6 2z +1 = 0 x p 5 2z -1 = 0 143

7 V. x , 6, 2, 6, 2, Aby bod x = ( 0.25, 0.25, 0.25 ) byl vntřním bodem, je nutno 1., 3. a 5. řádek matce znásobt konstantou -1. Nebo-l změnt orentac rovn. Po úpravě dostaneme matc, která reprezentuje konvexní těleso (krychl). V edy: [ 2, 6, 2, 6, 2, 6 ].. Pro jné operace na př. posunutí, matce v homogenních souřadncích má tvar: Matce V' defnující konvexní těleso po posunutí je defnováno takto: V ' V Výsledek - matce posunutého tělesa: V ' Jestlže nyní otestujeme bod x = ( 0.25, 0.25, 0.25 ), dostaneme V'. x = [ 26, -18, 2, 6, 2, 6 ]. o znamená, že bod x = (0.25, 0.25, 0.25) leží vně daného n-úhelníka. Budeme-l aplkovat posunutí na bod x dostaneme 144

8 potom x' =. x = [ 13, 1, 1, 4 ], V'. x' = [ 2, 6, 2, 6, 2, 6 ]. Bod x' je vntřním bodem posunutého objektu. Obdobně pro otáčení okolo os o úhel a budou mít transformační matce tvar: Osa y: R y cos 0 sn sn 0 cos Pro = /4 je 2 / / 2 0 Ry / / Matce V'' = V. R 1 y = R R 1 y 1 y cos 0 sn sn 0 cos Matce otočeného konvexního tělesa o úhel /4. 2 / / / / / / / / Z hledska pozorovatele, který je v bodě [ 0, 0, 1, 0 ] jde vlastně o rovnoběžný průmět, protože pozorovatel je v poloze z = je testovací bod potom určen jako x = [ 0, 0, -1, 0 ] V''. x = 2, 2, 0, 0, 2, 2 o znamená, že stěny 1. a 6. jsou nevdtelné. Dále je možný závěr: průsečnce 1. a 6, stěny taktéž není vdtelná. 145

9 je-l dáno: Úsečka: U krychle z příkladu 1 určete, zda úsečka s koncovým body x 1 a x 2 je krychlí zakryta, x 1 = [ -2, 0, -2, 1 ] Krychle: V Jestlže pozorovatel je v bodě ( x, y, ), potom g = [ 0, 0, 1, 0 ], a úsečka s = [ -2, 0, -2, 1 ] (poč.bod) d = [ 4, 0, 0, 0, ] (vektor) x 2 = [ 2, 0, -2, 1 ] Pro jednotlvé koefcenty určující výraz pro h určíme: p = V. s = [ 5, -3, 1, 1, 5, -3 ] q = V. d = [ -8, 8, 0, 0, 0, 0 ] w = V. g = [ 0, 0, 0, 0, -2, 2 ] Obr. 8a.3 Po rozepsání dostaneme soustavu nerovností h j > 0 : 5-8t > t > 0 1 > 0 1 > > > 0 Pro a t dostaneme v oblast dané kartézským součnem t < 3/8, 5/8 > * < 3/2, 5/2 >. Pak lze určt koncové body úseků a to tak, že úsečka je vdtelná v ntervalech 146

10 t < 0, 3/8 > a t < 5/8, 1 >. Odtud koncové body úsečky: x 3 = s + d. t = [ -1/2, 0, -2, 1 ] x 4 = s + d. t = [ 1/2, 0, -2, 1 ]. Úloha k řešení 8a.1. Mějme stejnou krychl v základní poloze a úsečku danou koncovým body x 1 a x 2, která krychl protíná. Určete průsečíky a vdtelnost úsečky a krychle pro pozorovatele g = [0, 0, 1, 0] 1. 8a.2. Zadávání 3D těles Výklad Na následujícím příkladě 3 je ukázán způsob zadání prostorových hranatých těles zadaných vrcholy, resp. Hranam a stěnam. Jde o průnk dvou hranolů. Obr. 8a.4 Příklad 3. Aplkujte Robertsův algortmus na následující zobrazenou scénu. Pro použtí Robertsova algortmu musíme s označt - očíslovat jednotlvé vrcholy a hrany. Je uvedeno v následujících tabulkách. Vrcholy tělesa jsou zadány formou tabulky 1. Vrcholy těles jsou očíslovány v prvním řádku tabulky. Jednotlvá tělesa jdou postupně ve sloupcích, kde v následujících řádcích jsou souřadnce x, y a z jednotlvých vrcholů. Poznámka: Souřadnce x, y a z jsou načítány a ukládány ve tvaru REAL. Vrcholy: těleso 1 těleso 2 147

11 vrchol x y z abulka 1. V tabulkách 2. a 3. jsou uloženy očíslovány jednotlvé hrany těles. 1. řádek tabulky: očíslované hrany těles. 2. a 3. řádek : čísla vrcholů, které jsou počáteční a koncové body příslušných hran. Hrany: těleso 1 hrana vrchol vrchol abulka 2. těleso 2 hrana vrchol vrchol abulka 3. V tabulce 4. jsou uloženy stěny jednotlvých těles jako očíslované n-úhelníky. U každého n-úhelníka je seznam hran, které n-úhelník tvoří. Stěny (n-úhelníky) n-úhelník hrany n-úhelník hrany 1 2,11, 6, , 23, 18, ,12, 8, , 20, 24,16 3 5, 6, 7, , 18, 19, , 2, 3, , 14, 15, ,12, 7, , 24, 19, , 10, 5, , 22, 17, 21 abulka 4. Poznámka: Všechna čísla vrcholů a hran jsou CELOČÍSELNÁ INEGER. 148

12 Metoda a postup př řešení vdtelnost je 1. určíme vzájemnou polohu těles - objektů. V případě průnků doplnt o další hrany - průsečnce pronkajících stěn. Př zvolení daného místa pozorovatele určíme vdtelnost stěn resp. hran jednotlvých těles. 2. Zjstíme vzájemné překrytí hran resp. stěn. ento postup není unverzálním typem pro řešení podobných problémů. Je spíše seznamem problémů, které je nutno řešt př vdtelnost. Shrnutí pojmů Robertsova metoda metoda na potlačení nevdtelných hran pro prostorová hranatá vypuklá konvexní tělesa zadaná vrcholy a hranam resp. stěnam. ělesa je nutné zapsat formou matce vrcholů. Vz. (8a.1) U stěn a hran je nutné určt jejch vdtelnost. Je nutné určt rub a líc jednotlvých stěn pomocí orentace normály. Otázky 8a. Robertsova metoda 1. Popšte v bodech prncp Robertsovy metody a její použtí. 2. Uveďte vhodnost použtí Robertsovy metody. 3. Vysvětlete prncp zadání hranatých těles. 4. Vysvětlete způsob určování vdtelnost hran, stěn. 149

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC 25 MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC V této kaptole se dozvíte: jak lze obecnou soustavu lneárních rovnc zapsat pomocí matcového počtu; přesnou formulac podmínek řeštelnost soustavy lneárních rovnc

Více

KOMPLEXNÍ ČÍSLA (druhá část)

KOMPLEXNÍ ČÍSLA (druhá část) KOMPLEXNÍ ČÍSLA (druhá část) V první kaptole jsme se senáml s algebrackým tvarem komplexního čísla. Některé výpočty s komplexním čísly je však lépe provádět ve tvaru gonometrckém. Pon. V následujícím textu

Více

Statika soustavy těles v rovině

Statika soustavy těles v rovině Statka soustavy těles v rovně Zpracoval: Ing. Mroslav yrtus, Ph.. U mechancké soustavy s deálním knematckým dvojcem znázorněné na obrázku určete: počet stupňů volnost početně všechny reakce a moment M

Více

[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201

[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201 6.. Gonometrcký tvar kompleních čísel I Předpoklad: 07, 09, 60 Pedagogcká poznámka: Gonometrcký tvar kompleních čísel není pro student njak obtížný. Velm obtížné je pro student s po roce vzpomenout na

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Markéta Brázdová 1 Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Klíčová slova: odbavování záslek, centrum grafu, vážená excentrcta vrcholů sítě, časová náročnost odbavení záslky, vážená

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

c jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.

c jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c. Úloha 1 1 b. Od součtu neznámého čísla a čísla 17 odečteme rozdíl těchto čísel v daném pořadí. Vypočtěte a zapište výsledek v. Úloha 2 1 b. 25 Na číselné ose jsou obrazy čísel 0 a 1 vzdáleny 5 mm. Určete

Více

7 Úvod do kinematické geometrie v rovině

7 Úvod do kinematické geometrie v rovině 7 Úvod do knematcké geometre v rovně ÚM FSI VUT v Brně Studjní text 7 Úvod do knematcké geometre v rovně V této kaptole se budeme zabývat pohybem. Slovo pohyb, které jsme použl v mnulé kaptole, používáme

Více

8. VIDITELNOST. Cíl Po prostudování této kapitoly budete umět. Výklad. P i O M. a A. b A. 8. Viditelnost

8. VIDITELNOST. Cíl Po prostudování této kapitoly budete umět. Výklad. P i O M. a A. b A. 8. Viditelnost 8. VIDITELNOST Cíl Po prostudování této kapitoly budete umět určit viditelné a neviditelné hrany a stěny 3D objektů Výklad Odstraňování neviditelných hran patří k základním procesům 3D grafiky. Nepatří

Více

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i.

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i. Rovnný svazek sl Lze odvodt z obecného prostorového svazku sl vloučením edné dmenze = cos cos =sn e 2 = cos = sn = e 1 e 2 e 1 Určení výslednce r n r = =1 r e 1 r e 2 =...e 1...e 2 : r = n = n =1 =1 n

Více

C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU

C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU 36. Je dán pravidelný čtyřboký jehlan V. Určete průsečíky přímky s hranicí jehlanu. Pro body, platí: = S, = S SV, bod S je střed podstavy.. TRIÉ VSTOSTI ÚTVRŮ V PROSTORU.1 Odchylky přímek a rovin V odchylka

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Výslednice, rovnováha silové soustavy.

Výslednice, rovnováha silové soustavy. Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky

Více

4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy

4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy STROJNICKÁ PŘÍRUČKA čá s t 4, d íl 3, k a p to la 3, str. 1 díl 3, Statka 4/3.3 ROVNOVÁHA TĚLESA Procházejí-l po uvolnění tělesa všechny síly jedním bodem v rovně (tvoří rovnný svazek sl), jsou vždy splněny

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

FUNKCE. Než přistoupíme k samotným funkcím, je třeba nadefinovat a vysvětlit několik pojmů, které k tomu budeme potřebovat.

FUNKCE. Než přistoupíme k samotným funkcím, je třeba nadefinovat a vysvětlit několik pojmů, které k tomu budeme potřebovat. FUNKCE Než přistoupíme k samotným unkcím, je třeba nadeinovat a vysvětlit několik pojmů, které k tomu budeme potřebovat. Kartézský součin množin A, B je množina všech uspořádaných dvojic [a; b], kde a

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

6. ANALYTICKÁ GEOMETRIE

6. ANALYTICKÁ GEOMETRIE Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

Úlohy domácího kola kategorie B

Úlohy domácího kola kategorie B 47. ročník Matematické olympiády Úlohy domácího kola kategorie B 1. Magický čtverec je čtvercová tabulka přirozených čísel, v níž je součet všech čísel v každém řádku, v každém sloupci i na obou úhlopříčkách

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211

( x ) 2 ( ) 10.2.15 Úlohy na hledání extrémů. Předpoklady: 10211 10..15 Úlohy na hledání etrémů Předpoklady: 1011 Pedagogcká poznámka: Kromě příkladů a není pro studenty problém vypočítat dervace funkcí. Problémem je hlavně nalezení těchto funkčních závslostí, tam postupujeme

Více

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, 1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky LOGICKÉ OBVODY pro kombnované a dstanční studum Zdeněk Dvš Zdeňka Chmelíková Iva Petříková Ostrava ZDENĚK DIVIŠ, ZDEŇKA

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK

VZÁJEMNÁ POLOHA DVOU PŘÍMEK VZÁJEMNÁ POLOHA DVOU PŘÍMEK VZÁJEMNÁ POLOHA DVOU PŘÍMEK p: a x b y c 0 q: a x b y c 0 ROVNOBĚŽNÉ PŘÍMKY (RŮZNÉ) nemají žádný společný bod, můžeme určit jejich vzdálenost, jejich odchylka je 0. Normálové

Více

1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2.

1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2. . Spektrální rozklad samoadjungovaných operátorů.. Motvace Vlastní čísla a vlastní vektory symetrcké matce A = A λe = λ λ = λ 3λ + = λ 3+ λ 3 Vlastní čísla jsou λ = 3+, λ = 3. Pro tato vlastní čísla nalezneme

Více

Určení tvaru vnějšího podhledu objektu C" v areálu VŠB-TU Ostrava

Určení tvaru vnějšího podhledu objektu C v areálu VŠB-TU Ostrava Acta Montanstca lovaca Ročník 0 (005), číslo, 3-7 Určení tvaru vnějšího podhledu objektu C" v areálu VŠB-TU Ostrava J. chenk, V. Mkulenka, J. Mučková 3, D. Böhmová 4 a R. Vala 5 The determnaton of the

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

Určení tlouštky folie metodou konvergentního elektronového svazku (TEM)-studijní text.

Určení tlouštky folie metodou konvergentního elektronového svazku (TEM)-studijní text. Určení tlouštky fole metodou konverentního elektronového svazku (TEM)-studjní text. Pracovní úkol: 1) Nastavte a vyfotorafujte snímek dfrakce elektronů v konverentním svazku, který je vhodný pro určení

Více

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde

Více

ROTAČNÍ PLOCHY. 1) Základní pojmy

ROTAČNÍ PLOCHY. 1) Základní pojmy ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího

Více

A u. jsou po řadě počáteční a koncové body úsečky; t je parametr:

A u. jsou po řadě počáteční a koncové body úsečky; t je parametr: 1 Úvod Trangulace oblast má dnes využtí například v počítačové grafce nebo numercké matematce, kde základní algortmy pro výpočet parcálních dferencálních rovnc vyžadují rozdělení zadané souvslé oblast

Více

1. Nejkratší cesta v grafu

1. Nejkratší cesta v grafu 08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost

Více

Stanislav Olivík POROVNÁNÍ DVOU METOD HLEDÁNÍ ODRAZNÉHO BODU NA POVRCHU ELIPSOIDU

Stanislav Olivík POROVNÁNÍ DVOU METOD HLEDÁNÍ ODRAZNÉHO BODU NA POVRCHU ELIPSOIDU 5. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Stanslav Olvík POROVNÁNÍ DVOU METOD HLEDÁNÍ ODRAZNÉHO BODU NA POVRCHU ELIPSOIDU Abstrakt Úlohou GPS altmetre je nalezení odrazného bodu sgnálu vyslaného z

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy 1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad 1 Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

1.13 Klasifikace kvadrik

1.13 Klasifikace kvadrik 5 KAPITOLA 1. KVADRIKY JAKO PLOCHY. STUPNĚ 1.13 Klasifikace kvadrik V této části provedeme klasifikaci kvadrik. Vyšetříme všechny případy, které mohou různou volbou koeficientů v rovnici kvadriky a 11

Více

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec

Více

2. Vyplňování. Transformace.

2. Vyplňování. Transformace. 2. Vplňování, transformace Cíl Po prostudování této kapitol budete umět vplňovat a šrafovat ohraničenou oblast zobrazovat objekt 3D do rovin odvodit vztah pro zobrazení 3D objektů do rovin Výklad 2.. Algoritm

Více

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

Analytická geometrie kvadratických útvarů v rovině

Analytická geometrie kvadratických útvarů v rovině Analytická geometrie kvadratických útvarů v rovině V následujícím textu se budeme postupně zabývat kružnicí, elipsou, hyperbolou a parabolou, které souhrnně označujeme jako kuželosečky. Současně budeme

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz

Více

AXONOMETRIE - 2. část

AXONOMETRIE - 2. část AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

7.1.2 Kartézské soustavy souřadnic II

7.1.2 Kartézské soustavy souřadnic II 7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě

Více

Projektivní geometrie. Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

Projektivní geometrie. Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Metody Počítačového Vidění (MPV) - 3D počítačové vidění Projektivní geometrie Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Metody Počítačového Vidění

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných

Více

Numerické metody optimalizace

Numerické metody optimalizace Numercké metody optmalzace Numercal optmzaton methods Bc. Mloš Jurek Dplomová práce 2007 Abstrakt Abstrakt česky Optmalzační metody představují vyhledávání etrémů reálných funkcí jedné nebo více reálných

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :

Více

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 40 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Vypočtěte pro a 1; 3 hodnotu výrazu 4 + a 3 + a 3 ( 2). 1 bod VÝCHOZÍ TEXT

Více

Osově namáhaný prut základní veličiny

Osově namáhaný prut základní veličiny Pružnost a pevnost BD0 Osově namáhaný prut základní velčny ormálová síla půsoící v průřezu osově namáhaného prutu se získá ntegrací normálového napětí po ploše průřezu. da A Vzhledem k rovnoměrnému rozložení

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.

Více

permutace, popisující nějaké symetrie, je i π permutace, popisující nějakou symetrii.

permutace, popisující nějaké symetrie, je i π permutace, popisující nějakou symetrii. DSM Cv Pólyova věta Budeme se zabývat objekty (na množně X - to jsou vrcholy těchto objektů) s různým prvky symetre (například to mohou být různé brože, tsky, ale také strukturní vzorce různých chemckých

Více

Kótované promítání. Úvod. Zobrazení bodu

Kótované promítání. Úvod. Zobrazení bodu Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,

Více

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení

Více

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků.

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků. FOTLOÝ MÍČ Popis aktivit ýpočt odchlek přímek a rovin v tělese, resp. velikostí úhlů, které svírají stěn a hran v mnohostěnu. Předpokládané znalosti Odchlka rovin a přímk, odchlka dvou rovin. Definice

Více

9.1 Definice a rovnice kuželoseček

9.1 Definice a rovnice kuželoseček 9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1 Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

2. kapitola: Euklidovské prostory

2. kapitola: Euklidovské prostory 2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru

Více

7.1.2 Kartézské soustavy souřadnic II

7.1.2 Kartézské soustavy souřadnic II 7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

Vkládání pomocí Viterbiho algoritmu

Vkládání pomocí Viterbiho algoritmu Vkládání pomocí Vterbho algortmu Andrew Kozlk KA MFF UK C Vkládání pomocí Vterbho algortmu Cíl: Využít teor konvolučních kódů. Motvace: Vterbho dekodér je soft-decson dekodér. Každému prvku nosče přřadíme

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Technické osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Technické osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické osvětlení Vypracoval: Martin Hanuš Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že jsem ročníkovou

Více

Analytická geometrie (AG)

Analytická geometrie (AG) Analytická geometrie (AG) - zkoumá geometrické útvary pomocí algebraických a analytických metod Je založena na vektorech a soustavě souřadnic, rozděluje se na AG v rovině a v prostoru. Analytická geometrie

Více

VYBRANÉ STATĚ Z POČÍTAČOVÉ GRAFIKY

VYBRANÉ STATĚ Z POČÍTAČOVÉ GRAFIKY TECNNICKÁ UNIVERZITA V LIBERCI Fakulta strojní Katedra aplkované kybernetky prof. Ing. Vladmír Věchet CSc. VYBRANÉ STATĚ Z POČÍTAČOVÉ GRAFIKY Lberec 007 prof. Ing. Vladmír Věchet CSc. Recenzoval : prof.

Více