Potenciální energie atom{atom
|
|
- Lucie Sedláčková
- před 6 lety
- Počet zobrazení:
Transkript
1 Potenciální energie atom{atom 1/16 Londonovy (disperzní) síly: na del¹ích vzdálenostech, v¾dy pøita¾livé Model uktuující dipól { uktuující dipól elst. pole E 1/r 3 indukovaný dipól µ ind E energie u(r) µe 1/r 6 (záporná = pøita¾livost) Odpuzování (repulze) na krat¹ích vzdálenostech: u(r) exp( const r) Dohromady: exp-6 té¾ Buckingham, Born{Mayer({Huggins), Tosi-Fumi,... u(r) = Ae Br C/r 6 Souèást ka¾dé interakce atom{atom Pozn.: \ " = \je úmìrné"
2 Lennard-Jonesùv potenciál Aproximuji disperzní síly: Ae Br A /r 12 Obvyklý tvar: [ (σ ) 12 ( σ ) ] 6 u(r) = 4ɛ r r E min = ɛ, r min = 2 1/6 σ Alternativní tvar: u(r) = E min [2 ( rmin ) 6 ( rmin ) ] 12 r r E / (kj mol -1 ) 2 0 Lennard-Jones (Ar...Ar) σ r min ε 2/ r / nm credit: Wikipedia
3 Mnoho molekul 3/16... napø. kapalný Ar Aproximace párové aditivity, pøesnost 90 % E pot = ij u(r ij ) Lépe: E pot = ij u(r ij ) + ijk u 3 (r ij, r ik, r jk ) kde u 3 (r ij, r ik, r jk ) = u(r i, r j, r k ) u(r ij ) u(r ik ) u(r jk )
4 Elektrické síly 4/16 náboj-náboj (ionty) U = 1 4πɛ 0 q i q j r ij parciální náboje: takové náboje na atomových jádrech, aby se to chovalo stejnì jako skuteèné nábojové rozlo¾ení dipólový moment µ = i q i r i polarizovatelnost (el. pole indukuje dipól) (není párovì aditivní) µ ind = α E
5 Elektrické síly 5/16 náboj-náboj (ionty) U = 1 4πɛ 0 q i q j r ij parciální náboje: takové náboje na atomových jádrech, aby se to chovalo stejnì jako skuteèné nábojové rozlo¾ení dipólový moment µ = i q i r i polarizovatelnost (el. pole indukuje dipól) (není párovì aditivní) µ ind = α E
6 Silové pole (force eld) 6/16 Silové pole = PES jako souèet pøíspìvkù, zahrnuje funkèní tvary i tabulky parametrù malé molekuly: tuhá tìlesa + rotace velké molekuly: mnoho èlenù vazebné síly: vibrace vazeb (1{2), úhlù (1{3) torze (1{4) nevazebné síly (èásteènì 1{4, 1{dále): Lennard-Jones apod., náboj-náboj Modely: full-atom united-atom (-CH 3, -CH 2 - atd.) pomocná interakèní centra (TIP4P) hrubozrnné (coarse-grained) atomistické
7 Vazebné síly { vazby 7/16 Harmonická aproximace: 1.2 pøípadnì U = K(r r 0 ) 2 U = K 2 (r r 0) 2 Pevná délka vazby: r = r 0 E/E dis Morse harmonicky Morse (disociace): [ ] 0 U = E dis 1 e a(r r ) r/r 0 Pøíklad. Jaké K v harmonické aproximaci odpovídá Morsemu potenciálu za malých výchylek? Edisa 2
8 Vazebné síly { úhly 8/16 Harmonická aproximace: U(ϑ) = K harm (ϑ ϑ 0 ) 2 Urey{Bradley: U(ϑ) = K UB ( r 1 r 3 s) 2 + Pøíklad.Oba vzorce jsou ekvivalentní za malých amplitud. Jaký je vztah mezi obìma silovými konstantami? Rada: vzpomeò si na l'hôpitalovo pravidlo. ]2 [ Kharm = ab KUB s sin ϑ0
9 Vazebné síly { torze 9/16 Torzní potenciál (vlastní torze, té¾ diedrický (dihedral) potenciál) U(φ) = K n cos(nφ) n Obvykle se nevazebné èleny 1..4 pøidávají v urèitém pomìru, napø. 50%, pak ale celkový torzní potenciál je souètem U(φ) a tìchto èlenù! Èlen dr¾ící napø. aromatický kruh planární: φ U(φ) = n K 0 φ 2 Nevlastní torze { planarita >C=O apod: stejný tvar, jen jiná interpretace èlenù Specialita: tetraedrická konformace okolo \united atom" CH: U(φ) = n K 0 [φ arcsin(1/ 3)] 2
10 Nevazebné síly { kombinaèní pravidla 10/16 Lennard-Jones je urèen σ i, ɛ i. Energie identických atomù je [ (σi ) 12 ( σi ) ] 6 u ii (r) = 4ɛ i r r Ale co energie rùzných atomù? (Máme ( N 2 ) párù!). Lorentzovo{Berthelotovo kombinaèní pravidlo (lep¹í pro fázové rovnováhy): ɛ ij = ɛ i ɛ j, σ ij = σ i + σ j 2 Geometrické pravidlo (lep¹í pro krystaly): ɛ ij = ɛ i ɛ j, σ ij = σ i σ j... a mnoho dal¹ích.
11 Konstrukce silových polí 11/16 geometrie: spektroskopie, difrakce, kvantové výpoèty vazebné síly: kvantové výpoèty, spektroskopie Lennard-Jones σ: experimentální hustota, struktura (difrakce) Lennard-Jones ɛ: výparná entalpie U pot,mezimol. = vap U vap H nrt repulzní èást jemnìji: stlaèitelnost, moduly pru¾nosti krystalu parciální náboje: { dipólové momenty: spektroskopie, permitivita { kvantové výpoèty (Mulliken, CHELPG = CHarges from Electrostatic Potentials using a Grid based method) a/nebo: klastry (z kvantových výpoètù) polarizovatelnost: experiment, kvantové výpoèty dal¹í vyladìní: difuzivita a dal¹í kinetické velièiny struktura (radiální distribuèní funkce); reverzní MC
12 Vnìj¹í síly Elektrické, gravitaèní... Stìny, póry: z atomù tuhá stìna U tuhá stìna ( r) = {, pro z < 0, 0 pro z 0 mìkká stìna (zprùmìrované rozlo¾ení atomù) s èíselnou hustotou N = N/V U soft wall ( r) = N u( r + r )d r = N z >0 Lennard-Jones 3-9 potenciál U LJ wall ( r) = 2πɛNσ 3 [ 1 3 dx dy 0 ( σ z ) 3 2 ( σ ) ] 9 45 z dz u( r + r ) 12/16 credit: zeolit: wikipedie èasto se znaèí ρ, pøíp. n
13 Møí¾kové modely: Isingùv model 13/ Jako model feromagnetu: U = J <i,j> s i s j + h i s i, Jako møí¾kový plyn: U = ɛ <i,j> n i n j + µ i n i, Jako model binární slitiny: U = <i,j> ɛ ki k j + i µ ki, s i { 1, +1} = {, } n i {0, 1} = {, } J = interakèní konstanta: ɛ = velikost pøita¾livých sil J > 0: feromagnet, µ = chemický potenciál J < 0: antiferomagnet Ekvivalence: h = intenzita magn. pole n Kritický (Curieùv) bod: h c = i = (1 + s i )/2 0; 2D: T c /J = 2/ ln(1 + 2) k i {, } ɛ,, ɛ,, ɛ, = interakce sousedních atomù µ, µ = chem. pot. atomù Ekviv.: n i = 0 k i = n i = 1 k i =.
14 Isingùv model rychle ochlazená slitina: kritický (Curieùv) bod: [tchem/showisi.sh] 14/16
15 Møí¾kové modely: XY Vrchol i spojitý 2D þspinÿ ϑ i [0, 2π) H = J <i,j> cos(ϑ i ϑ j ) + h i [uvodsim/showxy.sh] 15/16 cos(ϑ i ) = 0 = 120 = 240
16 Møí¾kový model polymeru 16/16 bez vìtvení = neprotínající se náhodná procházka (self-avoiding walk)
Molekulární modelování a simulace
Molekulární modelování a simulace 1/23 Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského studijního
Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Molekulární dynamika vody a alkoholů
Molekulární dynamika vody a alkoholů Pavel Petrus Katedra fyziky, Univerzita J. E. Purkyně, Ústí nad Labem 10. týden 22.4.2010 Modely vody SPC SPC/E TIP4P TIP5P Modely alkoholů OPLS TraPPE Radiální distribuční
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii
Viriálová stavová rovnice 1 + s.1
Viriálová stavová rovnice 1 + s.1 (Mírnì nestandardní odvození Prùmìrná energie molekul okolo vybrané molekuly (β = 1/(k B T : 0 u(r e βu(r 4πr 2 dr Energie souboru N molekul: U = f 2 k B T + N 2 2V Tlak
Základní prvky modelování
Základní prvky modelování? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony: QED { pøesná spektroskopie...
Základní prvky modelování ve fyzice a chemii
Základní prvky modelování ve fyzice a chemii 1/40? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony +
Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =
Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?
John Dalton Amadeo Avogadro
Spojením atomů vznikají molekuly... John Dalton 1766 1844 Amadeo Avogadro 1776 1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904 1981 Fritz W. London 1900 1954 Teorie molekulových orbitalů
Základní prvky modelování
Základní prvky modelování? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony: QED { pøesná spektroskopie...
Molekulová mechanika { statický pohled. Základní prvky modelování. (Hyper)plocha potenciální energie. Co je to pohyb? Modelování v chemii: dìlba práce
Základní prvky modelování? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony: QED { pøesná spektroskopie...
Skupenské stavy látek. Mezimolekulární síly
Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.
Chemická vazba. John Dalton Amadeo Avogadro
Chemická vazba John Dalton 1766-1844 Amadeo Avogadro 1776-1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904-1981 Fritz W. London 1900-1954 Teorie molekulových orbitalů Friedrich und 1896-1997
Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování
eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité
17 Vlastnosti molekul
17 Vlastnosti molekul Experimentálně molekuly charakterizujeme pomocí nejrůznějších vlastností: můžeme změřit třeba NMR posuny, elektrické či magnetické parametry či třeba jejich optickou otáčivost. Tyto
Studium enzymatické reakce metodami výpočetní chemie
Studium enzymatické reakce metodami výpočetní chemie 2. kolo Petr Kulhánek, Zora Střelcová kulhanek@chemi.muni.cz CEITEC - Středoevropský technologický institut Masarykova univerzita, Kamenice 5, 625 00
02 Nevazebné interakce
02 Nevazebné interakce Nevazebné interakce Druh chemické vazby Určují 3D konfiguraci makromolekul, účastní se mnoha biologických procesů, zodpovědné za uspořádání molekul v krystalu Síla nevazebných interakcí
Stavové rovnice. v = (zobecnìný) vylouèený objem. plyn + kapalina
Stavové rovnice Stavová rovnice je vztah mezi p, T, V a n (u smìsí slo¾ením n i ), alternativnì p, T, Vm = V/n (u smìsí je¹tì x i ) èi jinými ekvivalentními velièinami. plyn ideální plyn: pvm/rt = 1 viriálová
Od kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
Základní prvky modelování. Pøed r (Hyper)plocha potenciální energie. Molekulová mechanika { statický pohled. Co je to pohyb? Jak získám PES?
Základní prvky modelování 1/44 Pøed r. 1930 5/44? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony:
Molekulová mechanika. empirické potenciály silová pole. Michal Otyepka, PřF UP Olomouc
Molekulová mechanika empirické potenciály silová pole Michal Otyepka, PřF UP Olomouc Proč, když máme QM? běžná malá molekula kvantový chemik jásá středně velká molekula kvantovému chemikovi tuhnou rysy
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Molekulární modelování a simulace
Molekulární modelování a simulace 1/35 Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského studijního
Fázová rozhraní a mezifázová energie
Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní s/g s/l s/s 1/14 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti okem) b) 200 nm (hranice
Opakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Fyzika IV Dynamika jader v molekulách
Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment
Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost
Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie
Překryv orbitalů. Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β
Překryv orbitalů Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β Podmínky překryvu: Vhodná symetrie, znaménko vlnové funkce Vhodná energie, srovnatelná,
Klasická termodynamika (aneb pøehled FCH I)
Klasická termodynamika (aneb pøehled FCH I) 1/16 0. zákon 1. zákon id. plyn: pv = nrt pv κ = konst (id., ad.) id. plyn: U = U(T) }{{} Carnotùv cyklus dq T = 0 2. zákon rg, K,... lim S = 0 T 0 S, ds = dq
Molekulární simulace iontových kapalin
INSTITUTE OF CHEMICAL TECHNOLOGY, PRAGUE Department of Physical Chemistry Molekulární simulace iontových kapalin Jiøí Kolafa jiri.kolafa@vscht.cz www.vscht.cz/fch/cz/lide/jiri.kolafa.html tato pøedná¹ka:
Molekulární krystal vazebné poměry. Bohumil Kratochvíl
Molekulární krystal vazebné poměry Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2017 Složení farmaceutických substancí - API Z celkového portfolia API tvoří asi 90 % organické sloučeniny,
Co je to pohyb? Molekulové simulace. Pøíklad { elektrosprej Cytochromu C. Co simulujeme. Pøíklad { voda SIMOLANT
Molekulární modelování a simulace Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ /35 Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského studijního
Mezimolekulové interakce
Mezimolekulové interakce Interakce molekul reaktivně vzniká či zaniká kovalentní vazba překryv elektronových oblaků, mění se vlastnosti nereaktivně vznikají molekulové komplexy slabá, nekovalentní, nechemická,
Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR
Geometrie molekul Lewisovy vzorce poskytují informaci o tom které atomy jsou spojeny vazbou a o jakou vazbu se jedná (topologie molekuly). Geometrické uspořádání molekuly je charakterizováno: Délkou vazeb
Vazby v pevných látkách
Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba
Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
Lekce 9 Metoda Molekulární dynamiky III. Technologie
Lekce 9 Metoda molekulární dynamiky III Technologie Osnova 1. Výpočet sil. Výpočet termodynamických parametrů 3. Ekvilibrizační a simulační část MD simulace Výpočet sil Pohybové rovnice ɺɺ W mk rk = FK,
spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0
Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - instrumentace pulsní metody, pulsní sekvence relaxační
Rovnováha kapalina{pára u binárních systémù
Rovnováha kapalina{pára u binárních systémù 1 Pøedpoklad: 1 kapalná fáze Oznaèení: molární zlomky v kapalné fázi: x i molární zlomky v plynné fázi: y i Poèet stupòù volnosti: v = k f + 2 = 2 stav smìsi
OPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
PLOCHA POTENCIÁLNÍ ENERGIE
PLOCHA POTENCIÁLNÍ ENERGIE Zero point energy - Energie nulového bodu Molekula o určitou část své energie nikdy nemůže přijít Tzv. Zbytková energie (ZPE) vnitřní energie molekuly, která je přítomna vždy
Opakování: Standardní stav þ ÿ
Opakování: Standardní stav þ ÿ s.1 12. øíjna 215 Standardní stav þ ÿ = èistá slo¾ka ve stavu ideálního plynu za teploty soustavy T a standardního tlaku = 1 kpa, døíve 11,325 kpa. Èistá látka: Pøibli¾nì:
10A1_IR spektroskopie
C6200-Biochemické metody 10A1_IR spektroskopie Petr Zbořil IR spektroskopie Excitace vibračních a rotačních přechodů Valenční vibrace n Deformační vibrace d IR spektroskopie N atomů = 3N stupňů volnosti
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
Metropolis Hastings MC: Nesymetrická matice α + 1/21
Metropolis Hastings MC: Nesymetrická matice α + 1/21 Co když α j = α j? α j je-li π j α j π α j W j = π j α j α j π α j 1 k, k = p přij = min W k je-li π j α j < π α j pro = j 1, α j exp( βδu) α j Toto
Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118
Chemická vazba Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Většina atomů má tendenci se spojovat do větších celků (molekul), v nichž jsou vzájemně vázané chemickou vazbou. Chemická vazba je
Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =
Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv
A až E, s těmito váhami 6, 30, 15, 60, 15, což znamená, že distribuce D dominuje.
Příklad 1 Vypočtěte počet způsobů rozdělení 18 identických objektů do 6 boxů s obsahem 1,0,3,5,8,1 objektů a srovnejte tuto váhu s konfigurací, kdy je každý box obsazen třemi objekty. Která konfigurace
Symetrie Platonovská tělesa
Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značk a
Fyzika atomového jádra
Fyzika atomového jádra (NJSF064) František Knapp http://www-ucjf.troja.mff.cuni.cz/~knapp/jf/ frantisek.knapp@mff.cuni.cz Slupkový model jádra evidence magických čísel: hmoty, separační energie, vazbové
6. Stavy hmoty - Plyny
skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu
Chemická vazba. Důvody pro vazbu = menší energie atomů ve vázaném stavu než energie jednotlivých oddělených atomů
Chemická vazba Důvody pro vazbu = menší energie atomů ve vázaném stavu než energie jednotlivých oddělených atomů Mechanismus tvorby vazby = sdílení, předávání nebo redistribuce valenčních elektronů Model
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
γ α β E k r r ρ ρ 0 θ θ G Θ G U( r, t) w(z) w 0 ω z R z U( r, t) 1 c 2 2 U( r, t) t 2 = 0, U( r, t) U( r, t) = E( r, t) U( r, t) = u( r)e iωt. u( r) + k 2 u( r) = 0, k = ω/c u( r) = A exp( i k r), k
Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Metody spektrální Metody molekulové spektroskopie NMR Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla
Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:
Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly
GE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Vodič a izolant
Valenční elektrony a chemická vazba
Valenční elektrony a chemická vazba Ve vnější energetické hladině se nacházejí valenční elektrony, které se mohou podílet na tvorbě chemické vazby. Valenční elektrony často znázorňujeme pomocí teček kolem
Symetrie Platonovská tělesa
Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značka Prvek
Opakování: shrnutí základních poznatků o struktuře atomu
11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické
Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně
7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností
Statistická termodynamika (mechanika)
Statistická termodynamika (mechanika) 1/16 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [tchem/simplyn.sh] 2/16 Molekula = hmotný
10. Energie a její transformace
10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na
Fluktuace termodynamických veličin
Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: Vyučující: doc. Ing. Bohumil Dolenský, Ph.D. prof. RNDr. Pavel Matějka, Ph.D., A136, linka 3687, matejkap@vscht.cz doc. Ing. Bohumil Dolenský,
Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)
Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek
Dvojné a trojné integrály příklad 3. x 2 y dx dy,
Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je
3. Konformační analýza alkanů a cykloalkanů
Konformační analýza alkanů a cykloalkanů 45 3. Konformační analýza alkanů a cykloalkanů Konformace je prostorové uspořádání molekuly vzniklé rotací kolem jednoduché vazby. Konformer je konformace v lokálním
Vazby v pevných látkách
Vazby v pevných látkách Proč to drží pohromadě? Iontová vazba Kovalentní vazba Kovová vazba Van der Waalsova interakce Vodíková interakce Na chemické vazbě se podílí tzv. valenční elektrony, t.j. elektrony,
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Seminář chemie (SCH) Náplň: Obecná chemie, anorganická chemie, chemické výpočty, základy analytické chemie Třída: 3. ročník a septima Počet hodin: 2 hodiny týdně Pomůcky: Vybavení odborné učebny,
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce
Aproximace funkcí 1/13 Známe: celý prùbìh funkce Chceme þvzoreèekÿ hodnoty ve vybraných bodech, pøíp. i derivace Kvalita údajù: známe pøesnì (máme algoritmus) známe pøibli¾nì (experiment èi simulace) {
Přednáška IX: Elektronová spektroskopie II.
Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném
Struktura a vlastnosti kovů I.
Struktura a vlastnosti kovů I. Vlastnosti fyzikální (teplota tání, měrný objem, moduly pružnosti) Vlastnosti elektrické (vodivost,polovodivost, supravodivost) Vlastnosti magnetické (feromagnetika, antiferomagnetika)
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie.
Elektronová teorie ktetové pravidlo (Kossel, Lewis, 1916) Chemická vazba sdílení 2 valenčních e - opačného spinu 2 atomy za vzniku stabilní elektronové konfigurace vzácného plynu Spojení atomů prvků v
Disperzní systémy. jsou slo¾ené ze dvou (i více) fází. Zpravidla dispergovaná fáze ve spojité fázi Obvykle s/l, l/l,...
Disperzní systémy 1/21 jsou slo¾ené ze dvou (i více) fází. Zpravidla dispergovaná fáze ve spojité fázi Obvykle s/l, l/l,... Rozdìlení podle velikosti èástic: hrubì disperzní (heterogenní), > 1 µm koloidní
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.
Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností
Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů.
Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů. Ion molekuly vodíku H + 2 První použití metody je demonstrováno při
Balmerova série vodíku
Balmerova série vodíku Eva Bartáková, SGAGY Kladno, evebartak@centrum.cz Adam Fadrhonc, SSOU a U, Černá za Bory, Pardubice, adam@kve.cz Lukáš Malina, gymn. Christiana Dopplera, Praha, lukas-malina@seznam.cz
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
2. Difrakce elektronů na krystalu
2. Difrakce elektronů na krystalu Interpretace pozorování v TEM faktory ovlivňující interakci e - v krystalu 2 způsoby náhledu na interakci e - s krystalem Rozptyl x difrakce částice x vlna Difrakce odchýlení
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
1. 5 I N T E R A K C E A T O MŮ
1. Atomová fyzika 99 1. 5 I N T E R A K C E A T O MŮ V této kapitole se dozvíte: jakými způsoby mezi sebou atomy interagují; za jakých podmínek vzniká mezi atomy chemická vazba; které základní metody kvantové
Molekulové vibrace CO 2. Vidíme pomocí: { IR spektroskopie { Ramanovy spektroskopie
Molekulové vibrace Vidíme pomocí: { IR spektroskopie { Ramanovy spektroskopie Typické frekvence: 10 12 Hz { 10 14 Hz vlnoèty 30 cm 1 Hz { 4400 cm 1 (H 2 ) Kvantované, ovlivòují termodynamické vlastnosti
1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.
. Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární
Orbitaly, VSEPR 1 / 18
rbitaly, VSEPR Rezonanční struktury, atomové a molekulové orbitaly, hybridizace, určování tvaru molekuly pomocí teorie VSEPR, úvod do symetrie molekul, dipólový moment 1 / 18 Formální náboj Rozdíl mezi