Základní prvky modelování

Rozměr: px
Začít zobrazení ze stránky:

Download "Základní prvky modelování"

Transkript

1 Základní prvky modelování? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony: QED { pøesná spektroskopie... jádra + elektrony: Schrödingerova rovnice { (praktická) chemie vlastnosti malých molekul, spektra, kinetika, fotochemie... Atomy { klasické molekulové modelování ; kvantová jádra: PI Hrubozrnné (coarse-grained) modely: mezo/nanoskopická ¹kála více atomù = 1 objekt (surfaktant = hlavièka + ocásek, èlánek polymerního øetìzce... ) Mikroskopická ¹kála: disperzní systémy, sypké materiály Materiál jako kontinuum: parciální diferenciální rovnice gravitace: prostoroèas multiscale modeling: QM/MM,... 1/44 pøíp. pomocná centra / vìt¹í skupiny (-CH3 )

2 (Hyper)plocha potenciální energie [plot/rcoord.sh] 2/44 Jádra jsou mnohem tì¾¹í ne¾ elektrony elektronové pohyby jsou mnohem rychlej¹í (tzv. Bornova{Oppenheimerova aproximace) potential energy surface (PES) energie jako funkce souøadnic poloh v¹ech atomových jader Reakce probíhá cestou nejmen¹ího odporu = pøes sedlový bod (pøesnìji: v jeho blízkosti) = tranzitní stav E pot ( r 1, r 2,..., r N ) credits: ucecmst/publications.html,

3 Jak získám PES? 3/44 z kvantových výpoètù (Schrödingerova rovnice; ab initio metody, DFT; Car{Parrinello) aproximujeme vzorcem (þsilové poleÿ, þpotenciálÿ, þmodelÿ): silové pole: (force eld) E pot = souèet mnoha èlenù, èlen = funkèní tvar + parametry pro rùzné atomy/skupiny kombinace { QM/MM metody PES a modelování v chemii pou¾iju klasickou mechaniku: na statické výpoèty (minimum energie, potenciál v okolí aj.) na výpoèet vývoje systému v èase (molekulová dynamika) na výpoèet termodynamických velièin vzorkováním (Monte Carlo, MD) pou¾iju kvantovou mechaniku: metoda dráhového integrálu (PI MC, PI MD) pou¾iju klasickou mechaniku s kvantovými korekcemi kombinace silové pole + klasická mechanika = þmolekulová mechanikaÿ (MM); v u¾¹ím smyslu nezahrnuje MC a MD

4 Modelování v chemii: dìlba práce 4/44 jádra elektrony kvantová mechanika kvantová mechanika (kvantové simulace) molekulový model statistická mechanika makroskopické vlastnosti kinetická teorie simulace

5 Pøed r /44 molekulový model statistická mechanika makroskopické vlastnosti kinetická teorie

6 Molekulová mechanika { statický pohled Energie jako funkce souøadnic (hyperplocha potenciální energie, PES). Aproximujeme funkcí zvanou silové pole (FF). Minimalizace energie (T = 0), þoptimalizace strukturyÿ Renement { zpøesnìní struktury (z rozptylových experimentù) 6/44 Biochemie: tvar molekul (klíè + zámek), síly (hydrolní/hydrofobní...)... ale co pohyb?

7 Co je to pohyb? þskuteènýÿ pohyb molekul (tekutiny,... ) v èase Soubor v¹ech mo¾ných kongurací (molekul) zprùmìrovaný v èase: 7/44 Statistická termodynamika se systematicky zabývá výpoètem velièin (napø. anita ligandu k receptoru) na základì pøedstavy (makro)stavu systému jako þprùmìruÿ v¹ech mo¾ných kongurací

8 Molekulové simulace molekulová dynamika (MD) èasový vývoj systému slo¾eného z mnoha molekul pohyb ka¾dého atomu je urèen silami, které na nìj v ka¾dém okam¾iku pùsobí metoda Monte Carlo (MC); pøesnìji Metropolisova metoda a varianty posloupnost kongurací systému se generuje pomocí náhodných èísel provedeme náhodný pohyb molekuly a rozhodneme se, zda jej pøijmeme { tak, aby pravdìpodobnosti výskytu kongurací molekul byly stejné jako v realitì kinetické Monte Carlo simulovaný dìj je rozdìlen na elementární události (napø. adsorpce atomu na rostoucím krystalu, reakce na katalyzátoru) událost, ke které dojde, vybíráme podle známé pravdìpodobnosti kvantové simulace { MD, MC 8/44

9 Co studujeme Kapaliny: vliv struktury na vlastnosti (anomálie vody), roztoky fázové rovnováhy, rozpustnost povrchy a rozhraní, surfaktanty Pevné látky: struktura krystalù, materiály (poruchy) adsorpce (zeolity) Biochemie: proteiny, nukleové kyseliny, iontové kanály, lipidické membrány Nanoobjekty: micely, polymery, samoskladba (coarse-grained modely, møí¾ky) Podobnými metodami lze studovat: sypké materiály, rùzné minimalizace (MC), ¹íøení epidemií 9/44

10 [uvodsim/blend.sh] Optimalizace struktury (molekulová mechanika) 10/44 chair ¾idlièka experiment: 28 kj/mol model: 26 kj/mol twist (skew) boat zkøí¾ená vanièka experiment: 45 kj/mol model: 53 kj/mol

11 [cd /home/jiri/tex/talks/letniskola; cytox.sh] Pøíklad { elektrosprej Cytochromu C 11/44 Yi Mao, J. Woenckhaus, J. Kolafa, M.A. Ratner, M.F. Jarrold Elektrosprej: rozpra¹ování nabitých èástic Mìøí se úèinný prùøez

12 Pøíklad { elektrosprej Cytochromu C 12/44

13 Pøíklad { voda [cd /home/jiri/tex/talks/letniskola; showvid.sh] 13/ molekul 300 K periodické ve smìrech x,y adhezivní podlo¾ka neadhezivní poklièka

14 SIMOLANT Vlastnosti: Jevy: 2D þatomyÿ (potenciál Lennard-Jonesova typu) odpudivé/pøita¾livé stìny, gravitace MC i MD konstantní energie i termostat kondenzace plynu zmrznutí kapky poruchy krystalu kapilární deprese a elevace plyn v gravitaèním poli nukleace [simolant -g T.1] 14/44 Chcete si sami nainstalovat? Staèí Google SIMOLANT...

15 [show/janus.sh] Self-assembly (samoskladba) 15/44 skládání molekul pomocí (zpravidla) nekovalentních sil (van der Waals, vodíkové vazby) do strukturovaných celkù Ukázka: dvoufunkèní èástice v roztoku Janus particles Supramolekulární chemie: Janus Janus Iapetus credit: wikipedie, pages/cassini Ukázka: + ètyøfunkèní èástice credit: Atwood et al., Science 309, 2037 (2005)

16 Jak dostat minimum energie [uvodsim/min.sh] 16/44 Na 10 Cl 10 rychlé chlazení pomalé chlazení

17 [uvodsim/salesman.sh] Simulované ¾íhání (simulated annealing) 17/44 Hledáme globální minimum funkce (þenergieÿ) s mnoha lokálními minimy Zaèneme nìjakou ¹patnou kongurací (napø. náhodnou) Navrhneme vhodné zmìny kongurace A i A j Aplikujeme Metropolisovu metodu za sni¾ující se þteplotyÿ T Pøíklad: Problém obchodního cestujícího (traveling salesman) 50 mìst náhodnì ve ètverci 1 1 Kongurace = poøadí mìst þenergieÿ = délka cesty Zmìna kongurace = zámìna 2 náhodnì zvolených mìst T = l = 5.37 T = 0 l = 7.93

18 Genetické algoritmy + 18/44 Hledáme maximum funkce zvané zde þtnessÿ kongurace jedinec genom = chromozom = seznam alel (þsloupec èíselÿ) Zvolíme (napø. náhodnou) poèáteèní populaci Generování následující generace: { vyhodíme nejhor¹í èást populace { èást jedincù zkopírujeme s mutací { (nejvìt¹í) èást jedincù získáme køí¾ením (crossing over) ze dvou rodièù Èísla se kódují Grayovým kódem (po sobì jdoucí pøirozená èísla se li¹í v jenom bitu) Aplikace: { logistika, ekonomie, øízení prùmyslových procesù { biochemie { protein folding aj. { elektronika { návrh obvodù, tvar antény { vývoj algoritmù

19 (Plateauova-)Rayleighova nestabilita [../simul/rayleigh/show.sh] 19/44 Èúrek vody se rozpadá na kapky. Nestabilita pro kr < 1 (pro poruchu sin(kz)), max. nestabilita pro kr = ln 2.

20 Nukleace pøi supersonické expanzi [show/supexp.sh] 20/44 Vodní pára o tlaku cca 5 bar se pou¹tí velmi úzkým otvorem pøes trysku do vakua a adiabaticky se ochlazuje pod bod mrazu. Lze tak studovat napø. chem. reakce ve stratosféøe. Otázka: Jaký je tvar, velikost a struktura klastrù ledu? credit: M. Fárník

21 Tání nanoèástic kroupa z 600 molekul vody (led Ih) ohøívání èas simulace = 5 ns tento model vody taje pøi 253 K nanoèástice taje pøi ni¾¹í teplotì [show/kroupa.sh] 21/44

22 Síly mezi molekulami 22/44 Londonovy (disperzní) síly pro vìt¹í vzdálenosti: model uktuující dipól{ {indukovaný dipól elst. pole E 1/r 3 indukovaný dipól µ ind E energie u(r) µe 1/r 6 (v¾dy záporná) Odpuzování na krat¹ích vzdálenostech: u(r) e const r Celkem: u(r) = Ae Br C/r 6 Aproximace odpudivých sil: Ae Br A /r 12 Lennard-Jonesùv potenciál: [ (σ ) 12 ( σ ) ] u(r) = 4ɛ r r r / nm Tyto síly jsou souèástí interakcí mezi v¹emi atomy a molekulami E / (kj mol -1 ) 2 0 Ar...Ar

23 Elektrické síly náboj{náboj (ionty) U = 1 4πɛ 0 q i q j r ij 23/44 parciální náboje: takové náboje na atomových jádrech, aby se to chovalo stejnì jako skuteèné nábojové rozlo¾ení dipólový moment µ = i q i r i polarizovatelnost (el. pole indukuje dipól) µ ind = α E

24 Elektrické síly náboj{náboj (ionty) U = 1 4πɛ 0 q i q j r ij 24/44 parciální náboje: takové náboje na atomových jádrech, aby se to chovalo stejnì jako skuteèné nábojové rozlo¾ení dipólový moment µ = i q i r i polarizovatelnost (el. pole indukuje dipól) µ ind = α E

25 Silové pole 25/44 Molekulový model èi silové pole (force eld) je matematický zápis energie molekuly nebo souboru molekul jako funkce souøadnic atomù, r i, i = 1,..., N. malé: tuhá tìlesa { rotace (voda 25 C: vibruje 0.05 % molekul) velké: mnoho èlenù vazebné síly: vibrace vazeb (1{2): U = K(r r 0 ) 2 lze nahradit pevnou vazbou vibrace úhlù torze (1{4) a torzní potenciál: n K n cos(nφ) \improper torsion" (dr¾í >C=O v rovinì) nevazebné síly (èást. 1{4, 1{dále): Lennard-Jones, náboje A v¹echny pøíspìvky seèteme To je aproximace párové aditivity... no, ideálnì pøesná není φ

26 Molekulová dynamika tuhé koule ap. { nárazy þklasickáÿ MD { integrace pohybových rovnic Brownovská (stochastická) dynamika { MD + náhodné síly 26/44 Teorie, kterou teprve usly¹íte: Síla = gradient (rychlost zmìny) potenciální energie: f i = U( rn ) r i i = 1,..., N Newtonovy pohybové rovnice: d 2 r i dt 2 = f i m i, i = 1,..., N... nepropadejte panice, zkusíme to je¹tì jednodu¹eji

27 Metoda leap-frog 27/44 rychlost = dráha (zmìna polohy) za jednotku èasu (h) v(t + h/2) = r(t + h) r(t) h zrychlení = zmìna rychlosti za jednotku èasu a(t) = v(t + h/2) r(t + h) v(t + h/2) v(t h/2) h = v(t h/2) + ah = r(t) + v(t + h/2)h = f m opakujeme s t := t + h credit: Tahle metoda se skuteènì pou¾ívá!

28 Pøíklad: dráha planety [uvodsim/verlet.sh] 28/44 WWW verze:

29 Teplota 29/44 V mechanickém systému se zachovává U + E kin. Ale kde je teplota? Teorie, kterou teprve usly¹íte: Ekvipartièní princip Ka¾dý stupeò volnosti odpovídající kvadratické funkci ve výrazu pro celkovou energii (pot.+kin.) pøispívá 2 1k BT k prùmìrné hodnotì. (k B = R/N A = J K 1 = Boltzmannova konstanta.) Napø. plynný argon má U m = N 3 A2 k B T = 3 2RT, proto¾e ka¾dá slo¾ka rychlosti je kvadratická funkce a celkem jich je v molu 3N A Ve MD simulaci proto teplotu mìøíme: f = 3N f zachování 3N T = E kin 1 2 kf Ale u¾iteènìj¹í je mít konstantní teplotu: = T kin pøe¹kálování rychlostí: _ ri,new = _ ri (T/T kin ) 1/2 o nìco lep¹í (Berendsen): _ ri,new = _ ri (T/T kin ) q, q < 1/2 Jsou i lep¹í metody (náhodné ¹»ouchance, spec. dif. rovnice... )

30 Monte Carlo integrace (naivní Monte Carlo) Pøíklad: Výpoèet èísla π metodou MC [xpi] 30/ záøí 2016 INTEGER n celkový poèet bodù INTEGER i INTEGER nu poèet bodù v kruhu REAL x,y souøadnice bodu ve ètverci REAL rnd(-1,1) funkce vracející náhodné èíslo v intervalu ( 1, 1) nu := 0 FOR i := 1 TO n DO x := rnd(-1,1) y := rnd(-1,1) IF x*x+y*y < 1 THEN nu := nu + 1 PRINT "pi=", 4*nu/n plocha ètverce = 4 PRINT "chyba=", 4*sqrt((1-nu/n)*(nu/n)/(n-1))

31 Boltzmannova pravdìpodobnost 31/44 Teorie, kterou teprve usly¹íte: Boltzmannova pravdìpodobnost Pravdìpodobnost stavu s energií E je úmìrná Pøíklady: e E/k BT Barometrická rovnice pro tlak ve vý¹ce h: Potenciální energie molekuly je E = hmg, a proto pro tlak (který je úmìrný hustotì) proto¾e R = N A k a M = N A k. p = p 0 e hmg/k BT = p 0 e hmg/rt Rychlost reakce r (èasto) závisí na teplotì podle vztahu r = r 0 e E A/RT kde E A je molární aktivaèní energie { potøebná pro to, aby reakce mohla zaèít probíhat.

32 Monte Carlo { Metropolisova metoda 32/44 naivní MC importance sampling Zvolíme èástici i, kterou se bude hýbat r zkus i = náhodná poloha vybrané èástice U = U( r zkus i ) U( r i ) { je-li U 0, pohyb pøijmeme v¾dy { je-li U > 0, pohyb pøijmeme s pravdìpodobostí e U/kT odmítneme s pravdìpodobostí 1 e U/kT Opakujeme...

33 Okrajové podmínky vakuové, volné (kapka, protein ve vakuu aj.) pevné stìny velké povrchové jevy periodické (to je ale divná baòka!) [simolant -N5] 33/44 B D C A póry, vrstva (slab),... E

34 Struktura tekutin { korelaèní funkce 34/44 náhodnì rozmístìné molekuly kapalina (ideální plyn) g(r) = párová korelaèní funkce = radiální distribuèní funkce

35 Struktura tekutin { korelaèní funkce 35/44

36 Jak získám strukturu { experiment 36/44 Mìøím (neutrony, elektrony, rtg.) þstrukturní faktorÿ

37 Jak získám strukturu? 37/44 (Funguje i jemná tkanina, napø. látkový kapesníèek)

38 Korelaèní funkce ze strukturního faktoru 38/44 inverzní Fourierova transformace Teorie, kterou teprve usly¹íte: Fourierova transformace V podstatì to je to, co dìlá va¹e ucho, kdy¾ rozeznává tóny

39 Argon a voda 39/44 Struktura jednoduché tekutiny (kapalný argon) je organizovaná po slupkách Struktura vody je ovlivnìna tetraedrickou geometrií vodíkových vazeb Ve vzdálenosti nìkolika molekulových prùmìrù jsou ji¾ molekuly nekorelované { pohybují se nezávisle

40 Poèítaèový experiment (pseudoexperiment) 40/44 Stavba aparatury (z èástí) Nakup chemikálie, syntetizuj, co není ke koupi Pøiprav experiment Proveï experiment, pozornì sleduj, co se dìje Analyzuj a poèítej Ukliï laboratoø Stáhni/kup/napi¹ poèítaèový program, slo¾ bloky kódu Stáhni silové pole, natuj parametry, které nejsou dostupné Pøiprav poèáteèní konguraci ap. Spus» program, sleduj èasovou závislost velièin vè. kontrolních Stanov støední hodnoty (s odhady chyb) Zapi¹ zálohy, vyma¾ nepotøebné soubory

41 Realizace pseudoexperimentu Start: krystal, náhodná kongurace, známá kongurace Zrovnová¾nìní Mìøení vè. odhadu chyb: prùmìrná hodnota velièiny v èase 41/44 míchání mìøení

42 [start /home/jiri/vyuka/simul/nacl/nacl.avi] Ukázka: þzonální tavbaÿ krystalu NaCl 42/44 pøíprava krystalku Na 108 Cl 108 simulace krystalku za dané teploty a tlaku pøíprava trojnásobného krystalku (hranol) roztavení poloviny krystalku del¹í rozmìr se mù¾e mìnit = konst. tlak simulace v rovnováze: krystal roste: T < T tání krystal taje: T > T tání

43 Møí¾kové modely: Isingùv model 43/ Jako model feromagnetu: U = J <i,j> s i s j + h i s i, Jako møí¾kový plyn: U = ɛ <i,j> n i n j + µ i n i, Jako model binární slitiny: U = <i,j> ɛ ki k j + i µ ki, s i { 1, +1} = {, } n i {0, 1} = {, } J = interakèní konstanta: ɛ = velikost pøita¾livých sil J > 0: feromagnet, µ = chemický potenciál J < 0: antiferomagnet Ekvivalence: h = intenzita magn. pole n Kritický (Curieùv) bod: h c = i = (1 + s i )/2 0; 2D: T c /J = 2/ ln(1 + 2) k i {, } ɛ,, ɛ,, ɛ, = interakce sousedních atomù µ, µ = chem. pot. atomù Ekviv.: n i = 0 k i = n i = 1 k i =.

44 Isingùv model rychle ochlazená slitina: kritický (Curieùv) bod: [tchem/showisi.sh] 44/44

Základní prvky modelování

Základní prvky modelování Základní prvky modelování? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony: QED { pøesná spektroskopie...

Více

Molekulová mechanika { statický pohled. Základní prvky modelování. (Hyper)plocha potenciální energie. Co je to pohyb? Modelování v chemii: dìlba práce

Molekulová mechanika { statický pohled. Základní prvky modelování. (Hyper)plocha potenciální energie. Co je to pohyb? Modelování v chemii: dìlba práce Základní prvky modelování? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony: QED { pøesná spektroskopie...

Více

Základní prvky modelování ve fyzice a chemii

Základní prvky modelování ve fyzice a chemii Základní prvky modelování ve fyzice a chemii 1/40? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony +

Více

Základní prvky modelování. Pøed r (Hyper)plocha potenciální energie. Molekulová mechanika { statický pohled. Co je to pohyb? Jak získám PES?

Základní prvky modelování. Pøed r (Hyper)plocha potenciální energie. Molekulová mechanika { statický pohled. Co je to pohyb? Jak získám PES? Základní prvky modelování 1/44 Pøed r. 1930 5/44? elementární èástice + gravitace: þteorie v¹ehoÿ { temná hmota... (známé) elementární èástice: standardní model { atomová jádra... jádra + elektrony + fotony:

Více

Molekulární modelování a simulace

Molekulární modelování a simulace Molekulární modelování a simulace 1/23 Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského studijního

Více

Molekulární modelování a simulace

Molekulární modelování a simulace Molekulární modelování a simulace 1/35 Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského studijního

Více

Co je to pohyb? Molekulové simulace. Pøíklad { elektrosprej Cytochromu C. Co simulujeme. Pøíklad { voda SIMOLANT

Co je to pohyb? Molekulové simulace. Pøíklad { elektrosprej Cytochromu C. Co simulujeme. Pøíklad { voda SIMOLANT Molekulární modelování a simulace Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ /35 Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského studijního

Více

Úvodní info. Ústav fyzikální chemie VŠCHT Praha, budova A, místnost 325 (zadním vchodem)

Úvodní info. Ústav fyzikální chemie VŠCHT Praha, budova A, místnost 325 (zadním vchodem) Úvodní info [mozilla file:/home/jiri/www/fch/cz/talks/mgr.html] 1/20 Jiří Kolafa Ústav fyzikální chemie VŠCHT Praha, budova A, místnost 325 (zadním vchodem) http://www.mapy.cz/s/98vc jiri.kolafa@vscht.cz

Více

Potenciální energie atom{atom

Potenciální energie atom{atom Potenciální energie atom{atom 1/16 Londonovy (disperzní) síly: na del¹ích vzdálenostech, v¾dy pøita¾livé Model uktuující dipól { uktuující dipól elst. pole E 1/r 3 indukovaný dipól µ ind E energie u(r)

Více

Monte Carlo, analýza výsledkù simulací

Monte Carlo, analýza výsledkù simulací Monte Carlo, analýza výsledkù simulací 1/26 Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii

Více

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie

Více

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Více

Viriálová stavová rovnice 1 + s.1

Viriálová stavová rovnice 1 + s.1 Viriálová stavová rovnice 1 + s.1 (Mírnì nestandardní odvození Prùmìrná energie molekul okolo vybrané molekuly (β = 1/(k B T : 0 u(r e βu(r 4πr 2 dr Energie souboru N molekul: U = f 2 k B T + N 2 2V Tlak

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

Fyzika IV Dynamika jader v molekulách

Fyzika IV Dynamika jader v molekulách Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment

Více

Klasická termodynamika (aneb pøehled FCH I)

Klasická termodynamika (aneb pøehled FCH I) Klasická termodynamika (aneb pøehled FCH I) 1/16 0. zákon 1. zákon id. plyn: pv = nrt pv κ = konst (id., ad.) id. plyn: U = U(T) }{{} Carnotùv cyklus dq T = 0 2. zákon rg, K,... lim S = 0 T 0 S, ds = dq

Více

Elementární reakce. stechiometrický zápis vystihuje mechanismus (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioak-

Elementární reakce. stechiometrický zápis vystihuje mechanismus (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioak- Elementární reakce 1/15 stechiometrický zápis vystihuje mechanismus (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioak- reakce monomolekulární (rozpad molekuly: N 2 O 4 tivní rozpad; izomerizace) reakce bimolekulární

Více

Fázová rozhraní a mezifázová energie

Fázová rozhraní a mezifázová energie Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní s/g s/l s/s 1/14 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti okem) b) 200 nm (hranice

Více

Statistická termodynamika (mechanika)

Statistická termodynamika (mechanika) Statistická termodynamika (mechanika) 1/16 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [tchem/simplyn.sh] 2/16 Molekula = hmotný

Více

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Úvod do molekulové dynamiky simulace proteinů. Eva Fadrná evaf@chemi.muni.cz

Úvod do molekulové dynamiky simulace proteinů. Eva Fadrná evaf@chemi.muni.cz Úvod do molekulové dynamiky simulace proteinů Eva Fadrná evaf@chemi.muni.cz Molekulová mechanika = metoda silového pole = force field Energie vypočtená řešením Schrodingerovy rovnice Energie vypočtená

Více

Statistická termodynamika (mechanika)

Statistická termodynamika (mechanika) Statistická termodynamika (mechanika) 1/18 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [simolant -I0] 2/18 Molekula = hmotný bod

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji

Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji Molekulová dynamika Síly: tuhé koule ap. { nárazy þklasickáÿ MD { integrace pohybových rovnic 1/20 Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly Pøíklad: f i =

Více

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W = Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv

Více

Molekulový počítačový experiment

Molekulový počítačový experiment Molekulový počítačový experiment 1/16 též pseudoexperiment REÁLNÝ EXPERIMENT Vedení laboratorního deníku POČÍTAČOVÝ EXPERIMENT Vedení laboratorního deníku Zvol metodu (přístroj, protokol) Zvol metody (MD,

Více

Studium enzymatické reakce metodami výpočetní chemie

Studium enzymatické reakce metodami výpočetní chemie Studium enzymatické reakce metodami výpočetní chemie 2. kolo Petr Kulhánek, Zora Střelcová kulhanek@chemi.muni.cz CEITEC - Středoevropský technologický institut Masarykova univerzita, Kamenice 5, 625 00

Více

Molekulární dynamika vody a alkoholů

Molekulární dynamika vody a alkoholů Molekulární dynamika vody a alkoholů Pavel Petrus Katedra fyziky, Univerzita J. E. Purkyně, Ústí nad Labem 10. týden 22.4.2010 Modely vody SPC SPC/E TIP4P TIP5P Modely alkoholů OPLS TraPPE Radiální distribuční

Více

Vazby v pevných látkách

Vazby v pevných látkách Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba

Více

Rovnováha kapalina{pára u binárních systémù

Rovnováha kapalina{pára u binárních systémù Rovnováha kapalina{pára u binárních systémù 1 Pøedpoklad: 1 kapalná fáze Oznaèení: molární zlomky v kapalné fázi: x i molární zlomky v plynné fázi: y i Poèet stupòù volnosti: v = k f + 2 = 2 stav smìsi

Více

John Dalton Amadeo Avogadro

John Dalton Amadeo Avogadro Spojením atomů vznikají molekuly... John Dalton 1766 1844 Amadeo Avogadro 1776 1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904 1981 Fritz W. London 1900 1954 Teorie molekulových orbitalů

Více

Chemická vazba. John Dalton Amadeo Avogadro

Chemická vazba. John Dalton Amadeo Avogadro Chemická vazba John Dalton 1766-1844 Amadeo Avogadro 1776-1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904-1981 Fritz W. London 1900-1954 Teorie molekulových orbitalů Friedrich und 1896-1997

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová Počítačová chemie výpočetně náročné simulace chemických a biomolekulárních systémů Zora Střelcová Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Česká Republika

Více

Mezimolekulové interakce

Mezimolekulové interakce Mezimolekulové interakce Interakce molekul reaktivně vzniká či zaniká kovalentní vazba překryv elektronových oblaků, mění se vlastnosti nereaktivně vznikají molekulové komplexy slabá, nekovalentní, nechemická,

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Opakování: Standardní stav þ ÿ

Opakování: Standardní stav þ ÿ Opakování: Standardní stav þ ÿ s.1 12. øíjna 215 Standardní stav þ ÿ = èistá slo¾ka ve stavu ideálního plynu za teploty soustavy T a standardního tlaku = 1 kpa, døíve 11,325 kpa. Èistá látka: Pøibli¾nì:

Více

Exponenciální rozdìlení

Exponenciální rozdìlení Exponenciální rozdìlení Ing. Michael Rost, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích Katedra aplikované matematiky a informatiky Exponenciální rozdìlení Exp(A, λ) "Rozdìlení bez pamìti" Exponenciální

Více

Mezimolekulové interakce

Mezimolekulové interakce Mezimolekulové interakce, od teorie po interakce biomolekul s grafenem Pavel Banáš Mezimolekulové interakce slabé mezimolekulové interakce fyzikální původ mezimolekulárních interakcí poruchová teorie mezimolekulárních

Více

Statistická termodynamika (mechanika) Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic

Statistická termodynamika (mechanika) Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Statistická termodynamika (mechanika) 1/23 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [simolant -I0] 2/23 Molekula = hmotný bod

Více

02 Nevazebné interakce

02 Nevazebné interakce 02 Nevazebné interakce Nevazebné interakce Druh chemické vazby Určují 3D konfiguraci makromolekul, účastní se mnoha biologických procesů, zodpovědné za uspořádání molekul v krystalu Síla nevazebných interakcí

Více

Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118

Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Většina atomů má tendenci se spojovat do větších celků (molekul), v nichž jsou vzájemně vázané chemickou vazbou. Chemická vazba je

Více

Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s

Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s Pavel Nevøiva ANALÝZA SIGNÁLÙ A SOUSTAV Praha 2000 Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics spol.

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE MAGISTERSKÉ STUDIUM POČÍTAČOVÉ MODELOVÁNÍ VE VĚDĚ A TECHNICE (NAVAZUJÍCÍ STUDIUM I DOBÍHAJÍCÍ 5-LETÉ STUDIUM)

POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE MAGISTERSKÉ STUDIUM POČÍTAČOVÉ MODELOVÁNÍ VE VĚDĚ A TECHNICE (NAVAZUJÍCÍ STUDIUM I DOBÍHAJÍCÍ 5-LETÉ STUDIUM) POŽADAVKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE MAGISTERSKÉ STUDIUM POČÍTAČOVÉ MODELOVÁNÍ VE VĚDĚ A TECHNICE (NAVAZUJÍCÍ STUDIUM I DOBÍHAJÍCÍ 5-LETÉ STUDIUM) Organizace zkoušky Zkouška je ústní a má čtyři části:

Více

Struktura atomů a molekul

Struktura atomů a molekul Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů

Více

Matematika II Lineární diferenciální rovnice

Matematika II Lineární diferenciální rovnice Matematika II Lineární diferenciální rovnice RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Lineární diferenciální rovnice Denice

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

6. Stavy hmoty - Plyny

6. Stavy hmoty - Plyny skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu

Více

Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K 11 plynných prvků Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 H 2 20 He 4.4 Ne 27 Ar 87 Kr 120 Xe 165 Rn 211 N 2 77 O 2 90 F 2 85 Cl 2 238 1 Plyn

Více

Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie

Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie Základním předmětem výzkumu prováděného ústavem je chemická termodynamika a její aplikace pro popis vybraných vlastností chemických systémů

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce

Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce Aproximace funkcí 1/13 Známe: celý prùbìh funkce Chceme þvzoreèekÿ hodnoty ve vybraných bodech, pøíp. i derivace Kvalita údajù: známe pøesnì (máme algoritmus) známe pøibli¾nì (experiment èi simulace) {

Více

Cvièení { 2D Clausiova-Clapeyronova rovnice

Cvièení { 2D Clausiova-Clapeyronova rovnice Cvièení { 2D Clausiova-Clapeyronova rovnice 1/12 Evropský sociální fond þpraha & EU: Investujeme do va¹í budoucnostiÿ Inovace pøedmìtu Poèítaèová chemie je podporována projektem CHEMnote (Inovace bakaláøského

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

Molekulární krystal vazebné poměry. Bohumil Kratochvíl

Molekulární krystal vazebné poměry. Bohumil Kratochvíl Molekulární krystal vazebné poměry Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2017 Složení farmaceutických substancí - API Z celkového portfolia API tvoří asi 90 % organické sloučeniny,

Více

Chemická kinetika. Reakce 1. řádu rychlost přímo úměrná koncentraci složky

Chemická kinetika. Reakce 1. řádu rychlost přímo úměrná koncentraci složky Chemická kinetika Chemická kinetika Reakce 0. řádu reakční rychlost nezávisí na čase a probíhá konstantní rychlostí v = k (rychlost se rovná rychlostní konstantě) velmi pomalé reakce (prakticky se nemění

Více

Fyzikální chemie Úvod do studia, základní pojmy

Fyzikální chemie Úvod do studia, základní pojmy Fyzikální chemie Úvod do studia, základní pojmy HMOTA A JEJÍ VLASTNOSTI POSTAVENÍ FYZIKÁLNÍ CHEMIE V PŘÍRODNÍCH VĚDÁCH HISTORIE FYZIKÁLNÍ CHEMIE ZÁKLADNÍ POJMY DEFINICE FORMY HMOTY Formy a nositelé hmoty

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Fázová rozhraní a mezifázová energie

Fázová rozhraní a mezifázová energie Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní 1/15 s/g s/l s/s povrch koule = 4πr 2 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti

Více

Stavové rovnice. v = (zobecnìný) vylouèený objem. plyn + kapalina

Stavové rovnice. v = (zobecnìný) vylouèený objem. plyn + kapalina Stavové rovnice Stavová rovnice je vztah mezi p, T, V a n (u smìsí slo¾ením n i ), alternativnì p, T, Vm = V/n (u smìsí je¹tì x i ) èi jinými ekvivalentními velièinami. plyn ideální plyn: pvm/rt = 1 viriálová

Více

Jak se matematika poučila v biologii

Jak se matematika poučila v biologii Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika

Více

Matematika II Urèitý integrál

Matematika II Urèitý integrál Matematika II Urèitý integrál RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Motivace Je dána funkce f(x) = 2 + x2 x 4. Urèete co

Více

na stabilitu adsorbovaného komplexu

na stabilitu adsorbovaného komplexu Vliv velikosti částic aktivního kovu na stabilitu adsorbovaného komplexu Jiří Švrček Ing. Petr Kačer, Ph.D. Ing. David Karhánek Ústav organické technologie VŠCHT Praha Hydrogenace Základní proces chemického

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Chemie povrchů verze 2013

Chemie povrchů verze 2013 Chemie povrchů verze 2013 Definice povrchu složitá, protože v nanoměřítku (na úrovni velikosti atomů) je elektronový obal atomů difúzní většinou definován fyzikální adsorpcí nereaktivních plynů Vlastnosti

Více

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel

Více

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal.

Chemická vazba. Příčinou nestability atomů a jejich ochoty tvořit vazbu je jejich elektronový obal. Chemická vazba Volné atomy v přírodě jen zcela výjimečně (vzácné plyny). Atomy prvků mají snahu se navzájem slučovat a vytvářet molekuly prvků nebo sloučenin. Atomy jsou v molekulách k sobě poutány chemickou

Více

Otázky ke zkoušce z obecné chemie (Prof. RNDr. Karel Procházka, DrSc.)

Otázky ke zkoušce z obecné chemie (Prof. RNDr. Karel Procházka, DrSc.) Otázky ke zkoušce z obecné chemie (Prof. RNDr. Karel Procházka, DrSc.) Na ústní zkoušku se může přihlásit student, který má zápočet ze cvičení a úspěšně složenou zkouškovou písemku. Na ústní zkoušku se

Více

Lekce 9 Metoda Molekulární dynamiky III. Technologie

Lekce 9 Metoda Molekulární dynamiky III. Technologie Lekce 9 Metoda molekulární dynamiky III Technologie Osnova 1. Výpočet sil. Výpočet termodynamických parametrů 3. Ekvilibrizační a simulační část MD simulace Výpočet sil Pohybové rovnice ɺɺ W mk rk = FK,

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

Úvodní info. Studium

Úvodní info.   Studium [mozilla le:/home/jiri/www/fch/cz/pomucky/kolafa/n4316.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální chemie V CHT Praha budova A, místnost 325 (zadním vchodem) jiri.kolafa@vscht.cz 2244 4257 Web pøedmìtu:

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

Energie, její formy a měření

Energie, její formy a měření Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce

Více

Metoda Monte Carlo, simulované žíhání

Metoda Monte Carlo, simulované žíhání co byste měli umět po dnešní lekci: integrovat pomocí metody Monte Carlo modelovat jednoduché mnočásticové systémy (Brownův pohyb,...) nalézt globální minimum pomocí simulovaného žíhání Určení čísla metodou

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

Pravdìpodobnostní popis

Pravdìpodobnostní popis Pravdìpodobnostní popis 1/19 klasická mechanika { stav = { r 1,..., r N, p 1,..., p N } stavù je { hustota pravdìpodobnosti stavù ρ( r 1,..., r N, p 1,..., p N ) kvantové mechaniky { stav = stavù je koneènì

Více

17 Vlastnosti molekul

17 Vlastnosti molekul 17 Vlastnosti molekul Experimentálně molekuly charakterizujeme pomocí nejrůznějších vlastností: můžeme změřit třeba NMR posuny, elektrické či magnetické parametry či třeba jejich optickou otáčivost. Tyto

Více

Statistická termodynamika

Statistická termodynamika Statistická termodynamika Jan Řezáč UOCHB AV ČR 24. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Statistická termodynamika 24. listopadu 2016 1 / 38 Úvod Umíme popsat jednotlivé molekuly (případně jejich interakce)

Více

Látkové množství n poznámky 6.A GVN

Látkové množství n poznámky 6.A GVN Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Molekulová fyzika a termodynamika

Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a

Více

v trojúhelníku P QC sestrojíme vý¹ky na základnu a jedno rameno, patu vý¹ky na rameno oznaèíme R a patu na základnu S

v trojúhelníku P QC sestrojíme vý¹ky na základnu a jedno rameno, patu vý¹ky na rameno oznaèíme R a patu na základnu S Øe¹ení 5. série IV. roèníku kategorie JUNIOR RS-IV-5-1 Pro na¹e úvahy bude vhodné upravit si na¹í rovnici do tvaru 3 jx 1 4 j+2 = 5 + 4 sin 2x: Budeme uva¾ovat o funkci na pravé stranì na¹í rovnice, tj.

Více

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie.

Chemická vazba. Molekula vodíku. Elektronová teorie. Oktetové pravidlo (Kossel, Lewis, 1916) Pevnost vazby vazebná energie. Elektronová teorie ktetové pravidlo (Kossel, Lewis, 1916) Chemická vazba sdílení 2 valenčních e - opačného spinu 2 atomy za vzniku stabilní elektronové konfigurace vzácného plynu Spojení atomů prvků v

Více

Molekuly 1 12/4/2011. Molekula definice IUPAC. Molekuly. Proč existují molekuly? Kosselův model. Představy o molekulách

Molekuly 1 12/4/2011. Molekula definice IUPAC. Molekuly. Proč existují molekuly? Kosselův model. Představy o molekulách 1/4/011 Molekuly 1 Molekula definice IUPC elektricky neutrální entita sestávající z více nežli jednoho atomu. Přesně, molekula, v níž je počet atomů větší nežli jedna, musí odpovídat snížení na ploše potenciální

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

Vojtěch Hrubý: Esej pro předmět Seminář EVF

Vojtěch Hrubý: Esej pro předmět Seminář EVF Vojtěch Hrubý: Esej pro předmět Seminář EVF Plazma Pod pojmem plazma většinou myslíme plynné prostředí, které se skládá z neutrálních částic, iontů a elektronů. Poměr množství neutrálních a nabitých částic

Více

Matematika II Limita a spojitost funkce, derivace

Matematika II Limita a spojitost funkce, derivace Matematika II Limita a spojitost funkce, derivace RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Prstencové a kruhové okolí bodu

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více