Klasická termodynamika (aneb pøehled FCH I)
|
|
- Oldřich Macháček
- před 6 lety
- Počet zobrazení:
Transkript
1 Klasická termodynamika (aneb pøehled FCH I) 1/16 0. zákon 1. zákon id. plyn: pv = nrt pv κ = konst (id., ad.) id. plyn: U = U(T) }{{} Carnotùv cyklus dq T = 0 2. zákon rg, K,... lim S = 0 T 0 S, ds = dq T 3. zákon
2 Je¹tì o entropii Uva¾ujme vratné adiabatické dìje (dq = 0) Ve vhodných promìnných (tøeba T, V, p) se systém pohybuje po (nad)plo¹e Pøidání tepla vede ke zmìnì nadplochy, ubrání [pic/entropy.sh] + 2/16 Disipace energie (nevratný proces práce teplo) vede ke zmìnì nadplochy Plochy jsou plochami konstantní entropie Entropie vzrùstá ve smìru pøidání tepla èi disipace Dal¹í formulace 2. vìty (Carathéodory): credit: (Carathéodory) Wikipedia V ka¾dém okolí stavu systému existují stavy adiabaticky nedosa¾itelné. existuje funkce empirické teploty taková, ¾e fdq je úplný diferenciál; pak 1/f T
3 Helmholtzova a Gibbsova energie Vnitøní energie U(S, V) koná se jen objemová práce Gibbsova rovnice du = TdS p dv 3/16 Entalpie H(S, p) = U + pv = U ( ) U V dh = TdS + Vdp V Helmholtzova energie (Helmholtzova funkce, volná energie) F(T, V) = U TS pozn: èasto se znaèí A = U ( U S ) S df = SdT p dv Gibbsova energie (Gibbsova funkce, volná energie/entalpie) G(T, p) = H TS Nebo také: G = F + pv = F ( ) H = H S dg = SdT + Vdp S ( ) F V V credit: (Helmholtz, Gibbs) Wikipedia
4 Tu¹ení souvislosti + 4/16 tam H = U + pv = U ( ) U V V zpìt U = H Vp = H ( ) H p p smernice = V H(p) U(V) H(p) smernice = p U(V) 0 V transformace je jednoznaèná, je-li U(V) konvexní H(p) je pak konkávní a existuje zpìtná transformace (matematici tomu øíkají Legendreova transformace) 0 p
5 Výpoèet G 5/16 Pøíklad { jeden fázový pøechod. H(T 2, p) = H(T 1, p) + Tfp T 1 C p dt + fp H + T2 T fp C p dt G = H TS S(T 2, p) = S(T 1, p) + nízké T : S(T 1, p) = Tfp T 1 C p T dt + T2 fph C p + T fp T fp T dt 15 K 0 G(T, p 1 ) = G(T, p 2 ) + H(T, p 2 ) = H(T, p 1 ) + p2 p 1 S(T, p 1 ) = S(T, p 2 ) [ const T 3 T p2 V T p2 p 1 p 1 V dp ( V T ( V T ) p dt + ) p dp ] dp
6 F, G a práce { vratné dìje 6/16 du = TdS + dw df = SdT + dw df = dw [T] Vratné dìje: Zmìna Helmholtzovy energie za konst. T je rovna práci dw = p dv + dw jiná ne¾ objemová dg = SdT + Vdp + dw jiná ne¾ objemová dg = dw jiná ne¾ objemová [T, p] Vratné dìje: Zmìna Gibbsovy energie za konst. T, p je rovna práci jiné ne¾ objemové Interpretace èlenù F = U TS (G = H TS): nízká teplota vliv energie (entalpie) je vìt¹í ne¾ entropie vysoká teplota vliv entropie je vìt¹í energie (entalpie)
7 Nevratné dìje a extenzivní podmínky rovnováhy ohøívání: dq > 0 7/16 disipace energie na teplo tøením: T > T in ds dq T in > dq T uva¾ujeme jen objemovou práci ochlazování: dq < 0, T < T in ds dq T in > dq T dw = p in ( dv) + dq dis v¾dy dq dis > 0 (ztráta) ds > dq T ds dq dis T > 0 du = dq + dw < TdS p dv (nevr.) du < 0 ([S, V], nevr.) dg < SdT + Vdp dg < 0 (nevr.) ([T, p], nevr.) Gibbsova energie uzavøeného systému pøi nerovnová¾ných dìjích za konstantní teploty a konstantního tlaku klesá; v rovnováze nabývá minima.
8 Chemický potenciál 8/16 id. plyn/smìs: slo¾ky se neovlivòují G = H TS sm S m = R i x i ln x i, sm H m = 0 µ id i = ( ) G n i T,p,n j i = µ i + RT ln x i Chemický potenciál µ i slo¾ky i (vzhledem ke standardnímu stavu) = vratná práce k pøenesení 1 mol látky (ze standardního stavu) do daného stavu = þschopnost vykonat tuto práciÿ Pøíklad. Kolik energie je minimálnì potøeba k získání 1 m 3 sladké vody z moøské vody (3.5 hm.% NaCl, 300 K)? 3.1 MJ = 0.85 kwh
9 Aktivita a chemický potenciál Obecná denice: 9/16 µ i = µ i + RT ln a i pro látku i ve standardním stavu platí a i = 1 Pøehled standardních stavù: a i = p i p stγ = x ip p stγ p i 0 a i = x i γ i x i 1 a [x] i = x i γ [x] i x i 0 a [c] i = a [m] i = c i c stγ[c] i c i 0 m i m stγ[m] i m i 0 V dané limitì γ = 1 γ se nazývá fugacitní koecient a znaèí se obv. ϕ (pøíp. ν)
10 Chemická rovnováha { látková bilance Pro obecný zápis reakce: Bilance v látkovém mno¾ství: 0 = k ν i R i i=1 n i = n i,0 + ν i ξ na zaèátku 10/16 ξ = rozsah reakce; rozmìr [ξ] = mol (extent of reaction, extenze reakce, nepøesnì reakèní obrat) Obdobnì bilance v koncentracích (pokud V = konst)... Nech» 1 je klíèová slo¾ka = první vymizí (n 1 = 0) pøi prùbìhu reakce zleva doprava ( ξ = ξ max ). Stupeò pøemìny (konverze/disociace; degree of conversion/dissociation...): α = n 1,0 n 1 n 1,0 = ν 1ξ n 1,0 = ξ ξ max
11 Rovnováha a G Pro [T, p] hledáme minimum funkce 11/16 kde G(n 1,..., n k ) = k n i µ i i=1 n 1 = n 1,0 + ν 1 ξ,..., n k = n k,0 + ν k ξ na intervalu ξ [ξ min, ξ max ] (zjednodu¹ení: ne v krajních bodech) Pozor: µ i = µ i (n 1,..., n k ) Minimum nastane pro: ( ) G ξ p,t = k ν i µ i r G m = 0 i=1 r G m = reakèní Gibbsova energie smìr název r G m reakce reakce < 0 exergonická = 0 rovnováha isoergonická > 0 endergonická Obecnì exergie (exergy, availability, available energy) = maximální práce, kterou mù¾e systém vykonat pøechodem do rovnováhy
12 Pøíklad G(ξ) 12/16 N H 2 2 NH 3 (600 K, MPa) Poèáteèní slo¾ení: n N2,0 = 1 mol, n H2,0 = 3 mol, n NH3,0 = 0 mol G(ξ) = n NH3 µ NH3 + n H2 µ H2 + n N2 µ N2 = 2ξµ NH3 + (3 3ξ)µ H2 + (1 ξ)µ N G(ξ)/J ξ
13 Pøíklad rgm(ξ) 13/16 N H 2 2 NH 3 (600 K, MPa) Poèáteèní slo¾ení: n N2,0 = 1 mol, n H2,0 = 3 mol, n NH3,0 = 0 mol r G m (ξ) = ν NH3 µ NH3 + ν H2 µ H2 + ν N2 µ N2 = 2µ NH3 3µ H2 µ N r G m (ξ)/j mol ξ
14 Rovnová¾ná konstanta 14/16 r G m = r G m + RT ln Denice rovnová¾né konstanty: µ i = µ i + RT ln a i K = exp k i=1 a ν i i ( ) rg m RT v rovnováze = 0 rovnová¾ná podmínka: K = k i=1 a ν i i ( produkty ) výchozí látky vìt¹í K: více produktù ( ) men¹í K: více výchozích látek ( )
15 Smìr reakce 15/16 r G m = r G m + RT ln r G m záporné nula kladné k i=1 a ν i i smìr reakce rovnová¾ný stav Pøíklad. Rovnová¾ná konstanta reakce Sn (l) + H 2 O (g) SnO (s) + H 2 (g) je pøi T = 928 K rovna Urèete, zda bude probíhat oxidace èi redukce cínu, jestli¾e nad obìma samostatnými kondenzovanými fázemi je plynná smìs H 2 O + H 2 obsahující 65 mol. % vodní páry. rgm RT = redukce
16 Závislost K na teplotì 16/16 ( ) (G/T) T p (van 't Ho) = H T 2 d( rg m/t) dt = rh m T 2 d ln K dt = rh m RT 2 r H m pro vy¹¹í T se K rovnováha se posune záporné zmen¹í kladné zvìt¹í Le Chatelierùv(-Braunùv) princip: Soustava ve (stabilní termodynamické) rovnováze se sna¾í kompenzovat úèinky vychýlení z rovnováhy. (Stav se zmìní tak, ¾e kdyby se zmìnil stejným zpùsobem bez pøedchozího vychýlení, zpùsobil by odchylku od rovnováhy opaèného smìru.) credit: (La Chatelier, Braun) wikipedia
Opakování: Standardní stav þ ÿ
Opakování: Standardní stav þ ÿ s.1 12. øíjna 215 Standardní stav þ ÿ = èistá slo¾ka ve stavu ideálního plynu za teploty soustavy T a standardního tlaku = 1 kpa, døíve 11,325 kpa. Èistá látka: Pøibli¾nì:
Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =
Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv
Termodynamika a živé systémy. Helena Uhrová
Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor
Viriálová stavová rovnice 1 + s.1
Viriálová stavová rovnice 1 + s.1 (Mírnì nestandardní odvození Prùmìrná energie molekul okolo vybrané molekuly (β = 1/(k B T : 0 u(r e βu(r 4πr 2 dr Energie souboru N molekul: U = f 2 k B T + N 2 2V Tlak
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost
Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.
Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3
Rovnováha kapalina{pára u binárních systémù
Rovnováha kapalina{pára u binárních systémù 1 Pøedpoklad: 1 kapalná fáze Oznaèení: molární zlomky v kapalné fázi: x i molární zlomky v plynné fázi: y i Poèet stupòù volnosti: v = k f + 2 = 2 stav smìsi
Magnetokalorický jev MCE
Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka
FYZIKÁLNÍ CHEMIE I: 2. ČÁST
Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie
Matematika II Limita a spojitost funkce, derivace
Matematika II Limita a spojitost funkce, derivace RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Prstencové a kruhové okolí bodu
Elektroenergetika 1. Termodynamika
Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika
Kapitoly z fyzikální chemie KFC/KFCH II. Termodynamika Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Termodynamika therme - teplo a dunamis - síla popis jak systémy
CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.
CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické
Termomechanika 4. přednáška
ermomechanika 4. přednáška Miroslav Holeček Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných zdrojů
Úvodní info. Studium
[mozilla le:/home/jiri/www/fch/cz/pomucky/kolafa/n4316.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální chemie V CHT Praha budova A, místnost 325 (zadním vchodem) jiri.kolafa@vscht.cz 2244 4257 Web pøedmìtu:
Elektroenergetika 1. Termodynamika a termodynamické oběhy
Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Statistická termodynamika (mechanika)
Statistická termodynamika (mechanika) 1/16 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [tchem/simplyn.sh] 2/16 Molekula = hmotný
Cvičení z termodynamiky a statistické fyziky
Cvičení termodynamiky a statistické fyiky 1Nechť F(x, y=xe y Spočtěte F/ x, F/, 2 F/ x 2, 2 F/ x, 2 F/ x, 2 F/ x 2 2 Bud dω = A(x, ydx+b(x, ydy libovolná diferenciální forma(pfaffián Ukažte, ževpřípadě,žedωjeúplnýdiferenciál(existujefunkce
FYZIKÁLNÍ CHEMIE chemická termodynamika
FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky
Aplikovaná fyzikální chemie. Magda Škvorová KFCH CN463 tel. 3302
Aplikovaná fyzikální chemie Aplikovaná fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 1. září 2014 Aplikovaná fyzikální chemie Bylo nebylo... Bylo nebylo... Nejvzácnějšímu
Matematika II Aplikace derivací
Matematika II Aplikace derivací RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Derivace slo¾ené funkce Vìta o derivaci slo¾ené funkce.
Fyzikální chemie. 1.2 Termodynamika
Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický
Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika
Kapitoly z fyzikální chemie KFC/KFCH II. Termodynamika Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Termodynamika therme - teplo a dunamis - síla popis jak systémy
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Fáze a fázové přechody
Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Fáze a fázové přechody Pojem fáze je zobecněním pojmu skupenství, označuje homogenní část makroskopického tělesa. Jednotlivé fáze v
Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
Fenomenologická termodynamika
Atkins 1 Fenomenologická termodynamika Popisuje makroskopický stav Neuvažuje vnitřní stavbu hmoty okolí termodynamická soustava (systém) okolí Vnitřní parametry teplota T vnitřní energie U tlak p látková
Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce
Fázové rozhraní Fázové rozhraní - plocha,na které se vlastnosti systému mění skokem ; fáze o určité tloušťce Homogenní - kapalina/plyn - povrch;kapalina/kapalina Nehomogenní - tuhá látka/plyn - povrch;
Elektrochemie. Pøedmìt elektrochemie: disociace (roztoky elektrolytù, taveniny solí) vodivost jevy na rozhraní s/l (elektrolýza, èlánky)
Elektrochemie 1 Pøedmìt elektrochemie: disociace (roztoky elektrolytù, taveniny solí) vodivost jevy na rozhraní s/l (elektrolýza, èlánky) Vodièe: I. tøídy { vodivost zpùsobena pohybem elektronù uvnitø
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní
Poznámky k cvičením z termomechaniky Cvičení 3.
Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
Matematika II Lineární diferenciální rovnice
Matematika II Lineární diferenciální rovnice RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Lineární diferenciální rovnice Denice
nazvu obecnou PDR pro neznámou funkci
Denice. Bu n N a Ω R d otev ená, d 2. Vztah tvaru F (x, u(x), Du(x),..., D (n 1) u(x), D (n) u(x)) = 0 x Ω (1) nazvu obecnou PDR pro neznámou funkci u : Ω R d R Zde je daná funkce. F : Ω R R d R dn 1 R
Pravdìpodobnostní popis
Pravdìpodobnostní popis 1/19 klasická mechanika { stav = { r 1,..., r N, p 1,..., p N } stavù je { hustota pravdìpodobnosti stavù ρ( r 1,..., r N, p 1,..., p N ) kvantové mechaniky { stav = stavù je koneènì
8 Elasticita kaučukových sítí
8 Elasticita kaučukových sítí Elastomerní polymerní látky (např. kaučuky) tvoří ze / chemické příčné vazby a / fyzikální uzly. Vyznačují se schopností deformovat se již malou silou nejméně o 00 % své původní
Termodynamické potenciály
Kapitola 1 Termodynamické potenciály 11 Vnitřní energie a U-formulace Fyzikání význam vnitřní energie: v průběhu adiabatického děje je vykonaná práce rovna úbytku vnitřní energie Platí pro vratné i pro
Úvodní info. Studium
[mozilla le:///home/jiri/www/fh/z/pomuky/kolafa/n4341.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální hemie V CHT Praha budova A, místnost 325 (zadním vhodem) jiri.kolafa@vsht.z 2244 4257 Web pøedmìtu:
Nultá věta termodynamická
TERMODYNAMIKA Nultá věta termodynamická 2 Práce 3 Práce - příklady 4 1. věta termodynamická 5 Entalpie 6 Tepelné kapacity 7 Vnitřní energie a entalpie ideálního plynu 8 Výpočet tepla a práce 9 Adiabatický
CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.
CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické
CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY
CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY V reakční kinetice jsme si ukázali, že zvratné reakce jsou charakterizovány tím, že probíhají současně oběma směry, tj. od výchozích látek k produktům
Termodynamika v biochemii
Termodynamika v biochemii Studium energetických změn Klasická x statistická Rovnovážná x nerovnovážná lineárn rní a nelineárn rní Základní pojmy Makroskopický systém, okolí systému Termodynamický systém
Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce
Aproximace funkcí 1/13 Známe: celý prùbìh funkce Chceme þvzoreèekÿ hodnoty ve vybraných bodech, pøíp. i derivace Kvalita údajù: známe pøesnì (máme algoritmus) známe pøibli¾nì (experiment èi simulace) {
VZOROVÝ ZKOUŠKOVÝ TEST z fyzikální chemie( 1
VZOROVÝ ZKOUŠKOVÝ TEST z fyzikální chemie(www.vscht.cz/fch/zktesty/) 1 Zkouškový test z FCH I, 10. srpna 2015 Vyplňuje student: Příjmení a jméno: Kroužek: Upozornění: U úloh označených ikonou uveďte výpočet
Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů
Fázová rozhraní a mezifázová energie
Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní s/g s/l s/s 1/14 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti okem) b) 200 nm (hranice
Matematika II Extrémy funkcí více promìnných
Matematika II Extrémy funkcí více promìnných RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Parciální derivace vy¹¹ích øádù Def.
Matematika II Funkce více promìnných
Matematika II Funkce více promìnných RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Euklidovský n-rozmìrný prostor Def. Euklidovským
MAGISTERSKÝ VÝBĚR úloh ze sbírek
MAGISTERSKÝ VÝBĚR úloh ze sbírek Příklady a úlohy z fyzikální chemie I a II (VŠCHT Praha 2000 a VŠCHT Praha 2002) (http://www.vscht.cz/fch/cz/pomucky/sbfchold.html) k nimž je doplněno zanedbatelné množství
Kinetika chemických reakcí
Kinetika chemických reakcí Kinetika chemických reakcí se zabývá rychlostmi chemických reakcí, jejich závislosti na reakčních podmínkách a vysvětluje reakční mechanismus. Pro objasnění mechanismu přeměny
Termodynamika. Vnitøní energie. Malá zmìna této velièiny je
Termodynamika 1/19 Vnitøní energie U = ψ E(ψ)π(ψ) Malá zmìna této velièiny je du = ψ π(ψ) de(ψ) + ψ dπ(ψ) E(ψ) de(ψ): zmìnila se energetická hladina dπ(ψ): zmìnila se pravdìpodobnost výskytu stavu ψ Termodynamika:
Matematika I Ètvercové matice - determinanty
Matematika I Ètvercové matice - determinanty RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Co u¾ známe? vektory - základní operace
1. Fázové rozhraní 1-1
1. Fázové rozhraní 1.1 Charakteristika fázového rozhraní Velmi často se setkáváme s řadou fyzikálních či chemických procesů, které probíhají na rozhraní mezi sousedícími objemovými fázemi (fáze - určitá
přednáška č. 6 Elektrárny B1M15ENY Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D.
Elektrárny B1M15ENY přednáška č. 6 Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D. ČVUT FEL Katedra elektroenergetiky E-mail: spetlij@fel.cvut.cz Termodynamika:
Statistická termodynamika (mechanika)
Statistická termodynamika (mechanika) 1/18 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [simolant -I0] 2/18 Molekula = hmotný bod
Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji
Molekulová dynamika Síly: tuhé koule ap. { nárazy þklasickáÿ MD { integrace pohybových rovnic 1/20 Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly Pøíklad: f i =
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství. Teplotní vlastnosti
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství Teplotní vlastnosti Student: Ondřej Rozinek květen 2009 1 Teplotní vlastnosti Vlastnosti materiálu závisí na skupenství. Skupenství
Matematika 5 FSV UK, ZS Miroslav Zelený
Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení
8. Chemické reakce Energetika - Termochemie
- Termochemie TERMOCHEMIE oddíl termodynamiky Tepelné zabarvení chemických reakcí Samovolnost chemických reakcí Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti - Termochemie TERMOCHEMIE
Matematika II Urèitý integrál
Matematika II Urèitý integrál RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Motivace Je dána funkce f(x) = 2 + x2 x 4. Urèete co
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Energie v chemických reakcích
Energie v chemických reakcích Energetická bilance reakce CH 4 + Cl 2 = CH 3 Cl + HCl rozštěpení vazeb vznik nových vazeb V chemických reakcích dochází ke změně vazeb mezi atomy. Vazebná energie uvolnění
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních
Fluktuace termodynamických veličin
Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ
TERMODYNAMICKÁ ROVNOVÁHA, PASIVNÍ A AKTIVNÍ TRANSPORT
TERMODYNAMICKÁ ROVNOVÁHA, PASIVNÍ A AKTIVNÍ TRANSPORT Termodynamická rovnováha systému je charakterizována absencí spontánních procesů. Poněvadž práce může být konána pouze systémem, který směřuje ke spontánní
Statistická termodynamika (mechanika) Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic
Statistická termodynamika (mechanika) 1/23 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [simolant -I0] 2/23 Molekula = hmotný bod
Zápo tová písemná práce. 1 z p edm tu 01RMF varianta A
Zápo tová písemná práce. 1 z p edm tu 1MF varianta A tvrtek 19. listopadu 215, 13:215:2 ➊ (5 bod ) Nech f (x), g(x) L 1 () a f (x) dx = A, x f (x) dx = µ, Vypo ítejte, emu se rovná z( f g)(z) dz. g(x)
Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program
Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí
Řešené úlohy ze statistické fyziky a termodynamiky
Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první
Termochemie. Katedra materiálového inženýrství a chemie A Ing. Martin Keppert Ph.D.
Termochemie Ing. Martin Keppert Ph.D. Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz A 329 http://tpm.fsv.cvut.cz/ Termochemie: tepelné jevy při chemických reakcích Chemická reakce: CH
PDWHULiO FS>-NJ ±. FS>NFDONJ ± ƒ& VW teur åhoh]r FtQ KOLQtN N HPtN. OHG DONRKRO ROHM FFD FFD SHWUROHM UWX YRGD Y]GXFK YRGQtSiUD KHOLXP
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Energie, její formy a měření
Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce
Fyzikální chemie Úvod do studia, základní pojmy
Fyzikální chemie Úvod do studia, základní pojmy HMOTA A JEJÍ VLASTNOSTI POSTAVENÍ FYZIKÁLNÍ CHEMIE V PŘÍRODNÍCH VĚDÁCH HISTORIE FYZIKÁLNÍ CHEMIE ZÁKLADNÍ POJMY DEFINICE FORMY HMOTY Formy a nositelé hmoty
TERMOMECHANIKA 1. Základní pojmy
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,
Fázová rozhraní a mezifázová energie
Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní 1/15 s/g s/l s/s povrch koule = 4πr 2 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti
a) Jaká je hodnota polytropického exponentu? ( 1,5257 )
Ponorka se potopí do 50 m. Na dně ponorky je výstupní tunel o průměru 70 cm a délce, m. Tunel je napojen na uzavřenou komoru o objemu 4 m. Po otevření vnějšího poklopu vnikne z části voda tunelem do komory.
Matematika I Posloupnosti
Matematika I Posloupnosti RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Posloupnost Def. Nekoneènou posloupností reálných èísel
Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.
Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,
Adsorpce. molekulární adsorpce: (g) (s), (l) (s)/(l),... iontová adsorpce Paneth{Fajans výmìnná iontová adsorpce, protionty v aluminosilikátech
Adsorpce molekulární adsorpce: (g) (s), (l) (s)/(l),... iontová adsorpce Paneth{Fajans výmìnná iontová adsorpce, protionty v aluminosilikátech 1/16 Ar na gratu adsorpce: na povrch/rozhraní absorpce: dovnitø
ZAKLADY FYZIKALNI CHEMIE HORENí, VÝBUCHU A HAŠENí
r SDRUŽENí POŽÁRNíHO A BEZPEČNOSTNíHO INžENÝRSTVí. JAROSLAV K,\LOUSEK,.,.,. ZAKLADY FYZIKALNI CHEMIE HORENí, VÝBUCHU A HAŠENí EDICESPBI SPEKTRUM OBSAH. strana 1. FyzikálnÍ chemie v požární ochranč a bezpečnosti
1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ. Základní stavové veličiny látky. Vztahy mezi stavovými veličinami ideálních plynů
1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ Základní stavové veličiny látky Vztahy mezi stavovými veličinami ideálních plynů Stavová rovnice ideálního plynu f(p, v, T)=0 Měrné tepelné kapacity, c = f (p,t)
Rovnováha Tepelná - T všude stejná
Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -
Sbírka příkladů a úloh z fyzikální chemie
Univerzita Jana Evangelisty Purkyně Přírodovědecká fakulta Sbírka příkladů a úloh z fyzikální chemie Ludmila Boublíková Magda Škvorová Ivo Nezbeda Ústí nad Labem 2014 Název: Autoři: Recenzenti: Sbírka
soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy
Soustava soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy Okolí Hraniční plocha Soustava Soustava Rozdělení podle vztahu
Přijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
Chemická kinetika. Chemická kinetika studuje Rychlost chemických reakcí Mechanismus reakcí (reakční kroky)
Chemická kinetika Chemická kinetika studuje Rychlost chemických reakcí Mechanismus reakcí (reakční kroky) Rychlé reakce výbuch, neutralizace H + +OH Pomalé reakce rezivění železa Časová závislost průběhu
Krystalizace, transformace, kongruence, frustrace a jak se to všechno spolu rýmuje
Krystalizace, transformace, kongruence, frustrace a jak se to všechno spolu rýmuje Pavel Svoboda, Silvie Mašková Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, Katedra fyziky kondenzovaných
Kapitoly z termodynamiky a statistické fyziky
Kapitoly z termodynamiky a statistické fyziky Tomáš Opatrný c 9 Obsah Obsah i 1 Úvod do termodynamiky 1 1.1 Termodynamický systém............................... 1 1. Termodynamické proměnné.............................
Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36
Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic
PŘEDMLUVA. Praha, prosinec Anatol Malijevský
PŘEDMLUVA Tento učební text vznikl z přednášek pro studenty magisterského a doktorského studia specializace fyzikální chemie na fakultě chemicko-inženýrské Vysoké školy chemicko-technologické v Praze.
Elektrické jevy na membránách
Elektrické jevy na membránách Polopropustná (semipermeabilní) membrána; frita, diafragma propou¹tí ionty, vzniká el. napìtí rùzné koncentrace iontù na obou stranách rùzná propustnost/difuzivita pro rùzné
Trocha termodynamiky ještě nikdy nikoho nezabila (s pravděpodobností
Trocha termodynamiky ještě nikdy nikoho nezabila (s pravděpodobností 95 %) Studium tohoto podpůrného textu není k vyřešení úlohy B3 potřeba, slouží spíše k obohacení vašich znalostí o rovnovážných dějích,
Termodynamika. Martin Keppert. Katedra materiálového inženýrství a chemie
Termodynamika Martin Keppert Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz http://tpm.fsv.cvut.cz/ Co to je termodynamika Nauka o energii, jejích formách a přenosu Energie schopnost systému