Statistická termodynamika (mechanika)

Rozměr: px
Začít zobrazení ze stránky:

Download "Statistická termodynamika (mechanika)"

Transkript

1 Statistická termodynamika (mechanika) 1/16 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic

2 Tlak ideálního plynu z kinetické teorie 1 [tchem/simplyn.sh] 2/16 Molekula = hmotný bod L N molekul o hmotnosti m i v krychli o hranì L Rychlost molekuly i je v i = (v i,x, v i,y, v i,z ) Po odrazu: v i,x v i,x Podruhé narazí do stìny za τ = 2L/v i,x Síla = zmìna hybnosti za jednotku èasu Hybnost P = m v Zmìna hybnosti = P x = 2m i v i,x Prùmìrná síla zpùsobená nárazy jedné molekuly: y x F i,x = P x τ = 2m iv i,x = m iv 2 i,x 2L/v i,x L Tlak je síla ode v¹ech N molekul dìlená plochou Ni=1 F i,x p = L 2 = Kinetická energie jedné molekuly je Ni=1 m i v 2 i,x L m i v i m iv 2 i = 1 2 m i(v 2 i,x + v2 i,y + v2 i,z )

3 Tlak ideálního plynu z kinetické teorie 2 Kinetická energie plynu = vnitøní energie (pro jednoatomový plyn) 3/16 E kin = 1 2 N m i v 2 i = 3 2 i=1 N m i v 2 i,x i=1 Jinak napsáno p = Ni=1 m i v 2 i,x L 3 = 2 E kin 3 V Pøedpoklady: pv = 2 3 E kin! = nrt Teplota je mírou kinetické energie Tlak je výsledkem zprùmìrovaných nárazù molekul Potøebovali jsme klasickou mechaniku Je¹tì jinak: n = N N A, k B = R N A U E kin = 3n 2 RT = 3N 2 k BT, C V,m = 3 2 R

4 Boltzmannova konstanta 4/16 pv = nrt = Nk B T N = nn A k B = R N A = J K 1 Ludwig Eduard Boltzmann (1844{1906) credit: scienceworld.wolfram.com/biography/boltzmann.html

5 Mikrostav, makrostav, soubor 5/16 mikrostav (stav, kongurace) = okam¾itý stav v daném okam¾iku kvantovì: vlnová funkce, ozn. ψ klasicky: polohy a rychlosti v¹ech èástic v daném okam¾iku, ψ = ( r 1,..., r N, v 1..., v N ) (pøesnìji ne rychlosti, ale hybnosti) makrostav = zprùmìrované mikrostavy soubor = mno¾ina mikrostavù s pravdìpodobnostmi π(ψ), se kterými se vyskytují mikrostav makrostav soubor

6 [tchem/simolant1+2.sh] 6/16 Mikrokanonický soubor a ergodická hypotéza Mikrokanonický soubor = soubor mikrostavù v izolovaném systému Ozn. NVE (N = const, V = const, E = const) Ergodická hypotéza (kvantová): π(ψ i ) = const = 1 W (W = poèet v¹ech stavù) Ergodická hypotéza (klasická): trajektorie procházejí prostorem þstejnì hustìÿ pøesnìji: fázovým prostorem Jinými slovy: Èasová støední hodnota = t 1 X t = lim X(t) dt t t 0 = souborová støední hodnota = X = 1 X(ψ) W pro velièinu X = X(ψ), kde ψ = ψ(t)... ale s T = const se líp poèítá ψ

7 Kanonický soubor { þodvozeníÿ è. 1 7/16 je soubor s konstantní teplotou Ozn. NVT (N = const, V = const, T = const) Ergodická hypotéza: π(ψ) = π(e(ψ)) E 1 + E 2 = E 1+2 (malé ovlivnìní) π(e) = pravdìpodobnost kteréhokoliv stavu o energii E π(e 1 ) π(e 2 ) = π(e 1+2 ) = π(e 1 + E 2 ) π(e) = const E = exp(α i βe) 0. vìta β je empirická teplota α i je normalizaèní konst., aby ψ π(ψ) = 1, závisí na systému Urèení β: jednoatomový ideální plyn, na 1 atom U 1 = 3 2 k BT ψ U 1 = E(ψ)π(E(ψ)) 12 m v 2 π( 1 ψ π(e(ψ)) = 2 m v2 ) d v π( 1 2 m v2 ) d v Po výpoètu: U 1 = β β = 1 k B T

8 Boltzmannova pravdìpodobnost 8/16... aneb první polovina statistické termodynamiky. Pravdìpodobnost nalezení stavu s energií E je úmìrná [ π(e) = const exp E(ψ) ] ( = const exp E ) m k B T RT Pøíklady: ( ) bariéru (aktivaèní energii) E pøekoná exp RT E Arrheniùv vztah ) k = A exp ( E RT molekul energie potøebná k pøenesení molekuly z kapaliny do páry je výp H, ( ) pravdìpodobnost nalezení molekuly v páøe je úmìrná exp Clausiova-Clapeyronova rovnice (integrovaný tvar) [ p = p 0 exp ( výph 1 R T 1 )] = const exp T 0 ( ) výph RT výph RT

9 [tchem/simplyn.sh] 9/16 Boltzmannova pravdìpodobnost èástice v poli... aneb je¹tì jednou jinak. Potenciální energie molekuly v homogenním tíhovém poli U pot = mgh. Pravdìpodobnost nalezení molekuly ve vý¹ce h: ( π exp U ) ( pot = exp mgh ) ( = exp Mgh ) k B T k B T RT Pravdìpodobnost hustota tlak: p = p 0 exp ( Mgh ) RT Stejný vzorec dostaneme i z podmínky mechanické rovnováhy + stavové rovnice ideálního plynu: dp = dhρg, ρ = Mp RT Z èeho¾ lze þodvoditÿ Boltzmannovu pravdìpodobnost

10 [cd tchem/molekuly; blend -g butane] 10/16 Boltzmannova pravdìpodobnost Pøíklad. Energie gauche konformace butanu je o E = 0.9 kcal/mol vy¹¹í ne¾ anti. Odhadnìte, kolik % molekul je v gauche konformaci za teploty K (bod varu). (1 cal = J) Øe¹ení: π(gauche) : π(anti) = exp[ E/RT] = Nezapomeòte, ¾e gauche stavy jsou dva, zatímco anti jen jeden: 2 π(gauche) + π(anti) = 1 π = 2 exp[ E/RT] 2 exp[ E/RT] + 1 = = Pøedpokládali jsme, ¾e obì minima jsou dobøe separována a jejich tvar je stejný. Pøi pøesnìj¹ím výpoètu nutno místo E uva¾ovat zmìnu Gibbsovy energie, G. Ta v sobì ji¾ zahrnuje jak faktor 2 tak rozdílné vibrace obou stavù. Dostaneme vlastnì rovnováhu anti gauche, K = exp[ G/RT]

11 Termodynamika 11/16 Vnitøní energie U = ψ E(ψ)π(ψ) Malá zmìna této velièiny je du = ψ π(ψ) de(ψ) + ψ dπ(ψ) E(ψ) de(ψ): zmìnila se energetická hladina dπ(ψ): zmìnila se pravdìpodobnost výskytu stavu ψ Termodynamika: du = p dv + TdS p dv þpístÿ o plo¹e A posuneme o dx. Zmìna energie = de(ψ) = mechanická práce = Fdx = F/A d(ax) = p(ψ) dv p(ψ) = þtlak stavu ψÿ, tlak = p = ψ π(ψ)p(ψ). TdS Zmìna π(ψ) [V] = zmìna zastoupení stavù s rùznou energií = teplo

12 [jkv -gb BoltzmannTomb-s.jpg] 12/16 Boltzmannova rovnice pro entropii π(e) = exp(α i βe) dπ(ψ)e(ψ) = ψ ψ Porovnáním s TdS:... aneb druhá polovina statistické termodynamiky E(ψ) = k B T[α i ln π(ψ)], dπ(ψ) = 0 β=1/k B T dπ(ψ)k B T[α i ln π(ψ)] = k B T ψ = k B T d ψ π(ψ) ln π(ψ) S = k B π(ψ) ln π(ψ) ψ ψ dπ(ψ) ln π(ψ) { credit: schneider.ncifcrf.gov/images/ 1/W pro E = E(ψ) boltzmann/boltzmann-tomb-8.html Mikrokanonický soubor: π(ψ) = 0 pro E E(ψ) Uva¾ujeme-li pøechody Boltzmannova rovnice: S = k B ln W mezi stavy, lze odvodit i ds dt 0 (H-teorém) Vlastnost: S 1+2 = S 1 + S 2 = k B ln(w 1 W 2 ) = k B ln(w 1+2 )

13 Ideální roztok Stejná energie sousedù { = { = { (energie v¹ech uspoøádání je stejná). 13/16 Smícháme N 1 molekul látky 1 a N 2 molekul látky 2: ( ) N W = = N! N 1 N 1!N 2! ( S = k B ln W k B N 1 ln N 1 N + N 2 ln N ) 2 N S m = R (x 1 ln x 1 + x 2 ln x 2 ) Srov. s S = k B ψ π(ψ) ln π(ψ) Pou¾ili jsme tzv. Stirlingùv vzorec, lnn! N ln N N. Odvození: ln N! = N ln i i=1 N 0 ln x dx per partes = [ x ln x x ] N 0 = N ln N N Pøesnìji: lnn! asympt. = N ln N N + ln 2πN N 1 360N N 5 +

14 Reziduální entropie krystalù za T 0 [traj/ice.sh] 14/16 Krystal: 1 stav S = k B ln 1 = 0 (tøetí vìta) Naru¹ení 3. vìty: CO, N 2 O, H 2 O. Pøísnì vzato není v rovnováze, ale energetické bariéry jsou pøíli¹ velké { stav þzamrzneÿ Pøíklad: Entropie krystalu CO za 0 K S m = k B ln 2 N A = R ln 2 Pøíklad: Entropie ledu za 0 K S m = k B ln N A = 3.41 J K 1 mol 1 Paulingovo pøibli¾né odvození: 6 = ( 4 2 ) orientací molekuly ale pak je vazba s pravdìp. 1 2 ¹patnì v molu je 2N A vazeb ( ) S m = k B ln 6 N A = 3.37 J K 1 mol 1 2 2N A

15 Informaèní entropie DNA 15/16 Za pøedpokladu zcela náhodného uspoøádání párù bází. Na jeden pár bází: k B ln 4, na 1 mol párù bází: R ln 4. Odpovídající Gibbsova energie (pøi 37 C): G = RT ln 4 = 3.6 kj mol 1 Pro srovnání: ATP ADP { standardní: r G m = 31 kj mol 1 { za bì¾ných podmínek v buòce: r G m = 57 kj mol 1 Zachování øádu (informace) nìco stojí Landauerùv princip: Jakákoliv logicky nevratná operace, jako vymazání bitu, je doprovázena zvý¹ením entropie minimálnì o k B T ln 2 na bit v tìch stupních volnosti systému (zaøízení zpracovávajícím informace nebo okolí), které nenesou informaci. credit:

16 Termodynamika { dokonèení + 16/16 α =? S = k B ψ π(ψ)[α βe(ψ)] = ( k B α U T ) a tedy α = U TS k B T Helmholtzova (volná) energie = F k B T F = k B T ln ψ e βe(ψ) [...] = kanonická partièní funkce = statistická suma (Q nebo Z) V¹e umíme z F (df = pdv SdT): p = F V S = F T U = F + TS H = U + pv G = F + pv

Statistická termodynamika (mechanika)

Statistická termodynamika (mechanika) Statistická termodynamika (mechanika) 1/18 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [simolant -I0] 2/18 Molekula = hmotný bod

Více

Statistická termodynamika (mechanika) Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic

Statistická termodynamika (mechanika) Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Statistická termodynamika (mechanika) 1/23 Makroskopické velièiny jsou výsledkem zprùmìrovaného chování mnoha èástic Tlak ideálního plynu z kinetické teorie 1 [simolant -I0] 2/23 Molekula = hmotný bod

Více

Termodynamika. Vnitøní energie. Malá zmìna této velièiny je

Termodynamika. Vnitøní energie. Malá zmìna této velièiny je Termodynamika 1/19 Vnitøní energie U = ψ E(ψ)π(ψ) Malá zmìna této velièiny je du = ψ π(ψ) de(ψ) + ψ dπ(ψ) E(ψ) de(ψ): zmìnila se energetická hladina dπ(ψ): zmìnila se pravdìpodobnost výskytu stavu ψ Termodynamika:

Více

Pravdìpodobnostní popis

Pravdìpodobnostní popis Pravdìpodobnostní popis 1/19 klasická mechanika { stav = { r 1,..., r N, p 1,..., p N } stavù je { hustota pravdìpodobnosti stavù ρ( r 1,..., r N, p 1,..., p N ) kvantové mechaniky { stav = stavù je koneènì

Více

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W = Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv

Více

Klasická termodynamika (aneb pøehled FCH I)

Klasická termodynamika (aneb pøehled FCH I) Klasická termodynamika (aneb pøehled FCH I) 1/16 0. zákon 1. zákon id. plyn: pv = nrt pv κ = konst (id., ad.) id. plyn: U = U(T) }{{} Carnotùv cyklus dq T = 0 2. zákon rg, K,... lim S = 0 T 0 S, ds = dq

Více

Viriálová stavová rovnice 1 + s.1

Viriálová stavová rovnice 1 + s.1 Viriálová stavová rovnice 1 + s.1 (Mírnì nestandardní odvození Prùmìrná energie molekul okolo vybrané molekuly (β = 1/(k B T : 0 u(r e βu(r 4πr 2 dr Energie souboru N molekul: U = f 2 k B T + N 2 2V Tlak

Více

Lekce 4 Statistická termodynamika

Lekce 4 Statistická termodynamika Lekce 4 Statistická termodynamika Osnova 1. Co je statistická termodynamika 2. Mikrostav, makrostav a Gibbsův soubor 3. Příklady Gibbsových souborů 4. Souborové střední hodnoty 5. Časové střední hodnoty

Více

Molekulové modelování a simulace

Molekulové modelování a simulace Molekulové modelování a simulace c Jiří Kolafa (13. března 2017) mujweb.cz/kolafa Ústav Fyzikální chemie, VŠCHT Praha Tato skripta jsou určena pro následující předměty vyučované na VŠCHT Praha: Počítačová

Více

Molekulové modelování a simulace

Molekulové modelování a simulace Molekulové modelování a simulace c Jiří Kolafa (24. srpna 2018) mujweb.cz/kolafa Ústav Fyzikální chemie, VŠCHT Praha Tato skripta jsou určena pro následující předměty vyučované na VŠCHT Praha: Počítačová

Více

Molekulové modelování a simulace

Molekulové modelování a simulace Molekulové modelování a simulace c Jiří Kolafa (3. května 2018) mujweb.cz/kolafa Ústav Fyzikální chemie, VŠCHT Praha Tato skripta jsou určena pro následující předměty vyučované na VŠCHT Praha: Počítačová

Více

Fluktuace termodynamických veličin

Fluktuace termodynamických veličin Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních

Více

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) 1 Statistická fyzika Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Cíl statistické fyziky: vysvětlit makroskopické vlastnosti látky na základě mikroskopických vlastností jejích elementů,

Více

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie

Více

Exponenciální rozdìlení

Exponenciální rozdìlení Exponenciální rozdìlení Ing. Michael Rost, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích Katedra aplikované matematiky a informatiky Exponenciální rozdìlení Exp(A, λ) "Rozdìlení bez pamìti" Exponenciální

Více

Opakování: Standardní stav þ ÿ

Opakování: Standardní stav þ ÿ Opakování: Standardní stav þ ÿ s.1 12. øíjna 215 Standardní stav þ ÿ = èistá slo¾ka ve stavu ideálního plynu za teploty soustavy T a standardního tlaku = 1 kpa, døíve 11,325 kpa. Èistá látka: Pøibli¾nì:

Více

Statistická termodynamika

Statistická termodynamika Statistická termodynamika Jan Řezáč UOCHB AV ČR 24. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Statistická termodynamika 24. listopadu 2016 1 / 38 Úvod Umíme popsat jednotlivé molekuly (případně jejich interakce)

Více

Termodynamika a živé systémy. Helena Uhrová

Termodynamika a živé systémy. Helena Uhrová Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor

Více

Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně.

Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně. Statistická fyzika - cvičení RNDr. Filip Moučka, Ph.D., filip.moucka@ujep.cz Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně. Cílem tohoto textu

Více

Molekulové modelování a simulace

Molekulové modelování a simulace Molekulové modelování a simulace c Ji í Kolafa (24. února 2019) https://web.vscht.cz/~kolafaj Ústav Fyzikální chemie, V CHT Praha Tato skripta jsou ur ena pro následující p edm ty vyu ované na V CHT Praha:

Více

Molekulové modelování a simulace

Molekulové modelování a simulace Molekulové modelování a simulace c Ji í Kolafa (24. února 2019) https://web.vscht.cz/~kolafaj Ústav Fyzikální chemie, V CHT Praha Tato skripta jsou ur ena pro následující p edm ty vyu ované na V CHT Praha:

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Obsah. Chyby a nedostatky hlaste prosím autorovi. 1 Úvod 3

Obsah. Chyby a nedostatky hlaste prosím autorovi. 1 Úvod 3 Molekulové modelování a simulace c Jiří Kolafa (jiri.kolafa@vscht.cz), 23. září 214, Ústav Fyzikální chemie, VŠCHT Praha Tento text obsahuje m.j. upravené části skript Skripta Fyzikální chemie bakalářský

Více

Řešené úlohy ze statistické fyziky a termodynamiky

Řešené úlohy ze statistické fyziky a termodynamiky Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první

Více

Termodynamika v biochemii

Termodynamika v biochemii Termodynamika v biochemii Studium energetických změn Klasická x statistická Rovnovážná x nerovnovážná lineárn rní a nelineárn rní Základní pojmy Makroskopický systém, okolí systému Termodynamický systém

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

Energie, její formy a měření

Energie, její formy a měření Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce

Více

Fázová rozhraní a mezifázová energie

Fázová rozhraní a mezifázová energie Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní s/g s/l s/s 1/14 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti okem) b) 200 nm (hranice

Více

Rovnováha kapalina{pára u binárních systémù

Rovnováha kapalina{pára u binárních systémù Rovnováha kapalina{pára u binárních systémù 1 Pøedpoklad: 1 kapalná fáze Oznaèení: molární zlomky v kapalné fázi: x i molární zlomky v plynné fázi: y i Poèet stupòù volnosti: v = k f + 2 = 2 stav smìsi

Více

Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji

Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji Molekulová dynamika Síly: tuhé koule ap. { nárazy þklasickáÿ MD { integrace pohybových rovnic 1/20 Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly Pøíklad: f i =

Více

PŘEDMLUVA. Praha, prosinec Anatol Malijevský

PŘEDMLUVA. Praha, prosinec Anatol Malijevský PŘEDMLUVA Tento učební text vznikl z přednášek pro studenty magisterského a doktorského studia specializace fyzikální chemie na fakultě chemicko-inženýrské Vysoké školy chemicko-technologické v Praze.

Více

8 Elasticita kaučukových sítí

8 Elasticita kaučukových sítí 8 Elasticita kaučukových sítí Elastomerní polymerní látky (např. kaučuky) tvoří ze / chemické příčné vazby a / fyzikální uzly. Vyznačují se schopností deformovat se již malou silou nejméně o 00 % své původní

Více

III. STRUKTURA A VLASTNOSTI PLYNŮ

III. STRUKTURA A VLASTNOSTI PLYNŮ III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel

Více

Cvičení z termodynamiky a statistické fyziky

Cvičení z termodynamiky a statistické fyziky Cvičení termodynamiky a statistické fyiky 1Nechť F(x, y=xe y Spočtěte F/ x, F/, 2 F/ x 2, 2 F/ x, 2 F/ x, 2 F/ x 2 2 Bud dω = A(x, ydx+b(x, ydy libovolná diferenciální forma(pfaffián Ukažte, ževpřípadě,žedωjeúplnýdiferenciál(existujefunkce

Více

Matematika II Urèitý integrál

Matematika II Urèitý integrál Matematika II Urèitý integrál RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Motivace Je dána funkce f(x) = 2 + x2 x 4. Urèete co

Více

Fenomenologická termodynamika

Fenomenologická termodynamika Atkins 1 Fenomenologická termodynamika Popisuje makroskopický stav Neuvažuje vnitřní stavbu hmoty okolí termodynamická soustava (systém) okolí Vnitřní parametry teplota T vnitřní energie U tlak p látková

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Matematika II Aplikace derivací

Matematika II Aplikace derivací Matematika II Aplikace derivací RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Derivace slo¾ené funkce Vìta o derivaci slo¾ené funkce.

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Matematika II Lineární diferenciální rovnice

Matematika II Lineární diferenciální rovnice Matematika II Lineární diferenciální rovnice RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Lineární diferenciální rovnice Denice

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

Cvičení z NOFY / Termodynamika. 1 Cvičení Totální diferenciál. 1.1 Totální diferenciál Teplota a tlak pro ideální plyn

Cvičení z NOFY / Termodynamika. 1 Cvičení Totální diferenciál. 1.1 Totální diferenciál Teplota a tlak pro ideální plyn Cvičení z NOFY031 2009/2010 1 Termodynamika 1 Cvičení 1.10.2008 Totální diferenciál 1.1 Totální diferenciál 1. Jsou zadány dva výrazy: df 1 (x, y) = 6xy 3 dx + 9x 2 y 2 dy, df 2 (x, y) = 6xy 2 dx + 9x

Více

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

2. Statistický popis plazmatu

2. Statistický popis plazmatu Statistický popis plazmatu 60 Statistický popis plazmatu Při popisu typického plazmatu je technicky nemožné popsat trajektorie všech částic Jen v řídkém plazmatu mezihvězdného prostoru nalezneme miliony

Více

Potenciální energie atom{atom

Potenciální energie atom{atom Potenciální energie atom{atom 1/16 Londonovy (disperzní) síly: na del¹ích vzdálenostech, v¾dy pøita¾livé Model uktuující dipól { uktuující dipól elst. pole E 1/r 3 indukovaný dipól µ ind E energie u(r)

Více

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.

metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme. Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

Úvodní info. Studium

Úvodní info.   Studium [mozilla le:/home/jiri/www/fch/cz/pomucky/kolafa/n4316.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální chemie V CHT Praha budova A, místnost 325 (zadním vchodem) jiri.kolafa@vscht.cz 2244 4257 Web pøedmìtu:

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

A až E, s těmito váhami 6, 30, 15, 60, 15, což znamená, že distribuce D dominuje.

A až E, s těmito váhami 6, 30, 15, 60, 15, což znamená, že distribuce D dominuje. Příklad 1 Vypočtěte počet způsobů rozdělení 18 identických objektů do 6 boxů s obsahem 1,0,3,5,8,1 objektů a srovnejte tuto váhu s konfigurací, kdy je každý box obsazen třemi objekty. Která konfigurace

Více

Transportní jevy. J = konst F

Transportní jevy. J = konst F Transportní jevy 1/23 Transportní (kinetické) jevy: difuze, elektrická vodivost, viskozita (vnitøní tøení), vedení tepla... Tok (ux) (té¾ zobecnìný tok) hmoty, náboje, hybnosti, tepla... : J = mno¾ství

Více

Fáze a fázové přechody

Fáze a fázové přechody Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Fáze a fázové přechody Pojem fáze je zobecněním pojmu skupenství, označuje homogenní část makroskopického tělesa. Jednotlivé fáze v

Více

Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika

Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika Kapitoly z fyzikální chemie KFC/KFCH II. Termodynamika Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Termodynamika therme - teplo a dunamis - síla popis jak systémy

Více

Stavové chování kapalin a plynů. 4. března 2010

Stavové chování kapalin a plynů. 4. března 2010 Stavové chování kapalin a plynů 4. března 2010 Studium plynů Plyn JE tekutina Studium plynů Studium plynů Létání v balónu aneb... Jak se vzepřít gravitaci? Studium plynů Studium plynů Létání v balónu aneb...

Více

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný

Více

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter. CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické

Více

Příklady ke zkoušce ze statistické fyziky

Příklady ke zkoušce ze statistické fyziky Příklady ke zkoušce ze statistické fyziky Tomáš Záležák. Uvažujte dvoučásticovou soustavu se třemi kvantovými stavy s energiemi E {, ε a ε}. Teplotu T soustavy udržuje termostat. a) Zapište výraz pro stavovou

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

Fázová rozhraní a mezifázová energie

Fázová rozhraní a mezifázová energie Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní 1/15 s/g s/l s/s povrch koule = 4πr 2 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

Aplikovaná fyzikální chemie. Magda Škvorová KFCH CN463 tel. 3302

Aplikovaná fyzikální chemie. Magda Škvorová KFCH CN463 tel. 3302 Aplikovaná fyzikální chemie Aplikovaná fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 1. září 2014 Aplikovaná fyzikální chemie Bylo nebylo... Bylo nebylo... Nejvzácnějšímu

Více

4 Term ika. D ůsledky zavedení tep lo ty a tep la Stavová r o v n i c e Stavová rovnice termická a kalorická

4 Term ika. D ůsledky zavedení tep lo ty a tep la Stavová r o v n i c e Stavová rovnice termická a kalorická Obsah Předm luva И 1 Výchozí představy term odynam iky 13 1.1 Předmět zkoumání termodynamiky... 13 1.1.1 Celkový r á m e c... 13 1.1.2 Teplo, teplota, e n tr o p ie... 14 1.1.3 Vymezení term o d y n am

Více

FYZIKÁLNÍ CHEMIE I: 2. ČÁST

FYZIKÁLNÍ CHEMIE I: 2. ČÁST Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie

Více

Fyzika základního kurzu I (hypertextově) seznam důležitých skutečností

Fyzika základního kurzu I (hypertextově) seznam důležitých skutečností Fyzika základního kurzu I (hypertextově) seznam důležitých skutečností kolektiv ÚFI FSI Copyright c 005, ÚFI FSI VUT v Brně Tento text obsahuje rovnice, které jsou barevně vyznačeny v textu Fyzika. Kliknutím

Více

Matematika II Limita a spojitost funkce, derivace

Matematika II Limita a spojitost funkce, derivace Matematika II Limita a spojitost funkce, derivace RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Prstencové a kruhové okolí bodu

Více

Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.

Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu. Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

6. Stavy hmoty - Plyny

6. Stavy hmoty - Plyny skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité

Více

VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. (f(x) g(x)) dx.

VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. (f(x) g(x)) dx. VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. Výpo et obsahu rovinných ploch a) Plocha ohrani ená k ivkami zadanými v kartézských sou adnicích. Obsah S rovinné plochy ohrani ené dv ma spojitými

Více

Spontánní procesy. Probíhají bez zásahu z vnějšku Spontánní proces může být rychlý nebo pomalý

Spontánní procesy. Probíhají bez zásahu z vnějšku Spontánní proces může být rychlý nebo pomalý Spontánní procesy Probíhají bez zásahu z vnějšku Spontánní proces může být rychlý nebo pomalý Termodynamika možnost, spontánnost, směr reakce výchozí a konečný stav Stavová funkce S - entropie Změna entropie

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty

Více

Molekulová fyzika a termodynamika

Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a

Více

❷ s é 2s é í t é Pr 3 t str í. á rá. t r t í str t r 3. 2 r á rs ý í rá á 2 í P

❷ s é 2s é í t é Pr 3 t str í. á rá. t r t í str t r 3. 2 r á rs ý í rá á 2 í P ❷ s é 2s é í t é Pr 3 t str í Úst 2 t t t r 2 2 á rá t r t í str t r 3 tí t 2 2 r á rs ý í rá á 2 í P ZADÁNÍ DIPLOMOVÉ PRÁCE I. OSOBNÍ A STUDIJNÍ ÚDAJE Příjmení: Hurský Jméno: Tomáš Fakulta/ústav: Fakulta

Více

Úvodní info. Studium

Úvodní info.   Studium [mozilla le:///home/jiri/www/fh/z/pomuky/kolafa/n4341.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální hemie V CHT Praha budova A, místnost 325 (zadním vhodem) jiri.kolafa@vsht.z 2244 4257 Web pøedmìtu:

Více

Termomechanika. Doc. Dr. RNDr. Miroslav HOLEČEK

Termomechanika. Doc. Dr. RNDr. Miroslav HOLEČEK ermomechanika. přednáška Doc. Dr. RNDr. Miroslav HOLEČEK Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

z ruštiny, Kvasnicova monografie Statistická fyzika [7] z roku 1983, která je sice skvělým zdrojem

z ruštiny, Kvasnicova monografie Statistická fyzika [7] z roku 1983, která je sice skvělým zdrojem Předmluva Tato skripta vznikla z potřeby pokrýt českým textem výuku statistické fyziky na PřF UJEP v Ústí nad Labem. Pokud je autorovi známo existují v česky psané literatuře tři monografie věnované statistické

Více

Magnetokalorický jev MCE

Magnetokalorický jev MCE Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka

Více

Termodynamická soustava Vnitřní energie a její změna První termodynamický zákon Řešení úloh Prof. RNDr. Emanuel Svoboda, CSc.

Termodynamická soustava Vnitřní energie a její změna První termodynamický zákon Řešení úloh Prof. RNDr. Emanuel Svoboda, CSc. Vnitřní energie a její zěna erodynaická soustava Vnitřní energie a její zěna První terodynaický zákon Řešení úloh Prof. RNDr. Eanuel Svoboda, CSc. erodynaická soustava a její stav erodynaická soustava

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s

Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s Pavel Nevøiva ANALÝZA SIGNÁLÙ A SOUSTAV Praha 2000 Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics spol.

Více