SHRNUTÍ LÁTKY 7. ROČNÍKU Mgr. Iva Strolená

Rozměr: px
Začít zobrazení ze stránky:

Download "SHRNUTÍ LÁTKY 7. ROČNÍKU Mgr. Iva Strolená"

Transkript

1 ARITMETIKA ZLOMKY A RACIONÁLNÍ ČÍSLA Jestliže něc (celek) rzdělíme na něklik stejných dílů, nazývá se každá část celku zlmkem. Zlmek tři čtvrtiny (tři lmen čtyřmi) zlmek Čitatel sděluje, klik těcht částí zlmek bsahuje Zlmkvá čára Jmenvatel udává, na klik stejných částí je celek rzdělen Vyjádření celku Celek = čitatel = jmenvatel Zlmek nemá smysl -Ve jmenvateli zlmku nemůže být nula Zlmek 0 Zlmek, který má stejnéh jmenvatele a čitatele je rven jedné -> Každé přirzené čísl můžeme zapsat jak zlmek se jmenvatelem 5 ROZŠIŘOVÁNÍ A KRÁCENÍ ZLOMKŮ ROZŠIŘOVÁNÍ ZLOMKŮ Zlmek rzšíříme, když čitatele i jmenvatele zlmku vynásbíme stejným číslem různým d nuly. Hdnta zlmku se při rzšiřvání nemění Zlmek rzšiřujeme třemi KRÁCENÍ ZLOMKŮ Zlmek zkrátíme, když čitatele i jmenvatele zlmku dělíme beze zbytku číslem různým d nuly. Hdnta zlmku se při krácení nezmění. Zlmek krátíme pěti ZÁKLADNÍ TVAR ZLOMKU Zlmek v jehž čitateli a jmenvateli jsu nesudělná čísla (nemají žádnéh splečnéh dělitele) Zkrať zlmek na základní tvar Hledáme vlastně největšíh splečnéh dělitele čitatele a jmenvatele zlmku

2 ZLOMEK JAKO DESETINNÉ ČÍSLO 0,5 - zlmkvá čára je naznačené dělení : 6 = DESETINNÉ ZLOMKY Zlmky v jejichž jmenvatelích jsu čísla 0,00, , 0, PERIODICKÁ ČÍSLA Všechny zlmky nelze zapsat ve tvaru desetinnéh zlmku. Některá mají p dělení neknečný desetinný rzvj. V jejich zápise se číslice pakují. 0,666 0,6 0,888 0, 8 POROVNÁVÁNÍ ZLOMKŮ Prvnávání zlmků se stejnými jmenvateli Prvnáváme-li kladné zlmky se stejným jmenvatelem, je větší ten zlmek, který má většíh čitatele. kladný a záprný zlmek, je větší ten zlmek, který je kladný. záprné zlmky, je větší ten jehž čitatel má menší abslutní hdntu.? Prvnávání zlmků s různými jmenvateli Prvnáváme-li Zlmky s různými jmenvateli, převedeme je na splečnéh jmenvatele a tím si je převedeme na první případ. Splečnéh jmenvatele najdeme tak, že zlmky vhdně rzšíříme (najdeme nejmenší splečný násbek čísel ve jmenvatelích) rzšíříme na ; pak prvnáváme zlmky se stejnými jmenvateli prt POROVNÁVÁNÍ ZLOMKU S ČÍSLEM JEDNA Zlmek je větší než jedna, pkud je čitatel > než jmenvatel

3 SMÍŠENÁ ČÍSLA Napište zlmky, které jsu větší než všechny tyt zlmky lze převézt na smíšené zlmky Převd na smíšená čísla Všechny zlmky větší než lze vyjádřit ve tvaru celku a zlmku - čteme jedna a dvě čtvrtiny 6 5 SČÍTÁNÍ A ODČÍTÁNÍ ZLOMKŮ Př. Sčítání a dčítání zlmků Sčítání (dčítání) zlmků se stejnými jmenvateli sečteme (dečteme) čitatele a jmenvatele píšeme Sčítání (dčítání) zlmků s různými jmenvateli Převedeme zlmky na splečnéh jmenvatele a pak je sečteme jak zlmky se stejným jmenvatelem Určení splečnéh jmenvatel Výsledek p sčítání je vždy dbré zkrátit na ZT. Nejmenší splečný jmenvatel Určíme nejmenší splečný násbek jmenvatelů Rzšíříme zlmky tak, aby se jejich jmenvatelé rvnali nejmenšímu splečnému násbku jmenvatelů Dstali jsme zlmky se stejnými jmenvateli, sečteme (dečteme) už puze jejich čitatele Splečný jmenvatel Vždy lze využít mžnsti vynásbení jmenvatelů zlmků, nevýhdu jsu velká čísla

4 NÁSOBENÍ ZLOMKU PŘIROZENÝM ČÍSLEM Zlmek násbíme přirzeným číslem tak, že přirzeným číslem vynásbíme čitatele a jmenvatele píšeme = NÁSOBENÍ ZLOMKU ZLOMKEM Zlmek vynásbíme zlmkem tak, že vynásbíme čitatele čitatelem a jmenvatele jmenvatelem Při násbení smíme krátit Pčítáš sučin zlmků? = KRAŤ zlmky už před násbením DĚLENÍ ZLOMKŮ Převrácený zlmek Zlmek převrácený zlmek Převrácený zlmek ke zlmku dstaneme tak, že zaměníme ve zlmku čitatele a jmenvatele. Dělení zlmků Čísl dělíme zlmkem tak, že je násbíme převráceným zlmkem Nulu dělit nelze, zlmkem, který má čitatele nulu, dělit nemůžeme. 6 SLOŽENÉ ZLOMKY zlmkvá čára je naznačené dělení (pkud se v čitateli a jmenvateli vyskytnu sučty, rzdíly, zlmků, prvedeme nejprve tyt perace. Slženéh zlmku se zbavujeme až ve chvíli, kdy máme v čitateli i jmenvateli jednduchý zlmek) ČÍSELNÁ OSA DESETINNÁ ČÍSLA A ZLOMKY Když chci vyjádřit zlmek desetinným číslem, tak vydělím čitatele zlmku jmenvatelem ,75-0,5 -, ,75-0,5-0,5 0,5 0,5 0,75,5,5,75 0

5 POMĚR Pměrem rzumíme prvnávání dvu hdnt. Pkud se například v jedné místnsti nacházejí tři dívky a sm chlapců, je pměr pčtu dívek vůči pčtu chlapců tři ku smi. Zapisujeme : 8 Prvnáváme délky, bsahy, bjemy, hmtnsti, pčty lidí, strmů, částky peněz Oba členvé pměru jsu kladná čísla Při stanvení pměru musíme bě mnžství vyjádřit ve stejných jedntkách Převrácený pměr Pměr : 5 převrácený pměr 5 : Rvnst pměrů : 8 : Výsledek dělení čísla číslem 8 je stejný jak výsledek dělení čísla číslem. : 8 = 0,5 : = 0,5 Říkáme, že pměry : 8 a : mají stejnu hdntu, neb že se rvnají. ROZŠIŘOVÁNÍ A KRÁCENÍ POMĚRU Pměr rzšíříme tak, že první i druhý člen pměru vynásbíme stejným kladným číslem : 8 = ( 5) : (8 5) = 5 : 0 : 0,5 = ( ) : (0,5 ) = : Pměr zkrátíme tak, že první i druhý člen pměru vydělíme stejným kladným číslem 5 : 9 = (5 : ) : (9 : ) = 5 :,5 : 6 = (,5 :,5) : (6 :,5) = : Při rzšiřvání ani při krácení pměru se jeh hdnta nezmění POMĚR V ZÁKLADNÍM TVARU Je pměr, pr který platí: první i druhý člen jsu přirzená čísla a jejich největší splečný dělitel je čísl. : 7 : Členy pměru v základním tvaru jsu nesudělná čísla POČÍTÁME S POMĚRY Změnit čísl v pměru Změnit čísl v pměru 7 : znamená vynásbit tt čísl zlmkem Změň čísl v pměru 7 : => = Když změníme čísl v pměru, ve kterém je první člen větší než druhý člen, čísl se zvětší Když změníme čísl v pměru, ve kterém je první člen menší než druhý člen, čísl se zmenší Rzděl čísl v pměru Rzděl čísl v pměru : => :( + ) = představuje jeden díl ( ) :( ) = : 8 POSTUPNÝ POMĚR Pstupným pměrem prvnáváme tři a více údajů (výhry, hmtnsti, délky, bjemy ) a : b : c MĚŘÍTKO PLÁNU A MAPY Měřítk : 00 vyjadřuje, že cm na mapě vyjadřuje 00 cm ve skutečnsti. 5

6 PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST Jestliže jsu dvě hdnty na sbě natlik závislé, že změna jedné z nich vyvlá změnu té druhé, říkáme, že jsu úměrné. PŘÍMÁ ÚMĚRNOST Je takvá závislst prměnné y na prměnné x, pr kteru platí: Klikrát se zvětší hdnta x, tlikrát se zvětší hdnta y. Klikrát se zmenší hdnta x, tlikrát se zmenší hdnta y. Hdnty y a hdnty x se mění ve stejném pměru Říkáme, že prměnná y je přím úměrná prměnné x GRAFEM přímé úměrnsti je přímka (neb její část, případně izlvané bdy ležící na přímce) X y 6 Lze vyjádřit vztahem y = kx x nezávisle prměnná y závisle prměnná (její hdnta závisí na prměnné x) k. keficient přímé úměrnsti Všechny bdy grafu přímé úměrnsti leží na přímce, která prchází pčátkem O pravúhlé sustavy suřadnic. : : y = x x y GRAF PŘÍMÉ ÚMĚRNOSTI y = x TROJČLENKA Př. Caravan, nvý typ autmbile Astra Cmbi, má průměrnu sptřebu 6 litrů nafty na 00 km. Klik kilmetrů lze s naplněnu 5 litrvu nádrží ujet? Ověření, jaký typ úměry se jedná: čím více kilmetrů, tím více litrů nafty 6 l..00 km 5 l. x km Obě šipky vedu zdla nahru. x : 00 = 5 : 6 x 5 00 = 6 / 00 5 x = 00 = Plná nádrž vystačí přibližně na 867 km 6

7 NEPŘÍMÁ ÚMĚRNOST Je takvá závislst y na prměnné x, pr kteru platí: Klikrát se zvětší hdnta x, tlikrát se zmenší hdnta y. Klikrát se zmenší hdnta x, tlikrát se zvětší hdnta y. Hdnty y a hdnty x se mění v převrácených pměrech. Říkáme, že prměnná y je nepřím úměrná prměnné x. k se dá vyjádřit vzrcem y = x kladné čísl se nazývá keficient nepřímé úměrnsti. Všechny bdy grafu nepřímé úměrnsti v pravúhlé sustavě suřadnic O xy leží na křivce, která se jmenuje hyperbla. GRAF NEPŘÍMÉ ÚMĚRNOSTI y= /x,5,5,5,5 0, ,5,5,5,5,5 x 0, 0, 0,5,5 y,5 0,5 0, 0, TROJČLENKA Př Když d prázdnéh bazénu začne přitékat vda rychlstí hektlitry za minutu, bazén se naplní za 5 hdin. Za jak dluh by se bazén naplnil výknnějším čerpadlem, které přivádí d bazénu 750 litrů za minutu? Ověření jaký typ úměry jde: Klikrát se zvětší rychlst přitékané vdy, tlikrát se zmenší dba ptřebná k naplnění bazénu. Rychlst a čas se mění v převrácených pměrech, jde nepřímu úměrnst. 00 l za min h 750 l za min x h x : 5 = 00 : 750 x 00 5 = x = 5 = 750 / 5 Šipka veducí vzhůru začíná u neznámé, šipka na druhé straně vede pačným směrem. Výknějším čerpadlem se naplní za hdiny. 7

8 PROCENTA Prcenta umžňuj vyjádřit zlmky neb desetinná čísla jak části celku veliksti 00. Per cent znamená v každém stu. Jedn prcent % celku = celku = 0,0 celku 00 Jedn prcent je setina z danéh celku. Celek se nazývá základ, představuje 00%. Př. Určete % ze základu 500 Kč. Řešení Prtže % je jedna setina celku, platí: % z 500 Kč = z 500 Kč = 500 Kč= 5 Kč Vypčti Základ z = 00% % z 700 = 700 = 7 00 Pčet prcent - p Prcentvá část - č Př. Vypčti 6% z % z 500 = = 0 00 Př. Vyjádři v prcentech tyt části celku = = 5% = = 50% = = 75% = = 0% Výpčet prcentvé části Př. Obchdník nakupil ve velkbchděsprtvní trička p 5 Kč. Při prdeji připčítává k velkbchdní ceně 8%. Za klik krun trička prdává? Trjčlenku přes jedn prcent 00% 5 Kč 00% 5Kč 08% x Kč %..5: 00 =,5 Kč 08%.08,5 = 5 Kč 08 :00 = x :5 08 x = x = 5 00 x = 5,08 x = 5Kč 8

9 Výpčet základu Př Maminka ptřebuje d cukrví 0 gramů jader lískvých říšků. Jádra lískvých říšků tvří přibližně 80% hmtnsti říšků, zbytek jsu skřápky. Klik gramů nevylupaných říšků musí maminka kupit, když dma žádné nemá? Trjčlenku přes jedn prcent 80%..0 g 80% 0 g 00%...x g % 0: 80 =,5 00%.,5 00 = 50 g 00 : 80 = x :0 00 x = x = 0 80 x = 50g Maminka musí kupit 50 gramů lískvých říšků. Výpčet pčtu prcent Př. V sedmých třídách prbíhá vlba starstů tříd. V 7.a, kde je celkem 5 žáků, vyhrál Adam, který získal 0 hlasů. Klik prcent hlasů získal? Trjčlenku přes jedn prcent 5.00% 00%.5 0..x% %...5 : 00 = 0,5 X%..0: 0,5 = 57,% 0 : 5 = x :00 0 x = x = 00 5 x = 57,% Adam získal 57,% hlasů. PROMILE Jedn prmile z danéh základu je jedna tisícina z tht základu. Jedn prmile značíme ze základu je 000 ze základu čili 0,00 ze základu. Jedn prmile je jedna desetina prcenta. Jedn prcent je deset prmile. 9

4a) Racionální čísla a početní operace s nimi

4a) Racionální čísla a početní operace s nimi Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Středšklská matematika Nadace Geneze Vývj (Stručná histrie matematiky) - na levé straně je svislý nápis VÝVOJ stisk hrníh V vyvlá zbrazení časvé sy - stisk ikny se stránku (vprav nahře na brazvce časvé

Více

5 čitatel zlomková čára 13 jmenovatel

5 čitatel zlomková čára 13 jmenovatel Aritmetika sekunda 1 Zlomky Celek a jeho část Zlomek je speciální zápis čísla v podílovém tvaru. Zlomek obsahuje čitatele a jmenovatele, kteří jsou od sebe odděleni zlomkovou čarou. Zlomek pět třináctin

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí.

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí. Instrukce: Vytiskněte si tenhle přehled, vybarvěte důležité části (zvýrazňovačkou, pastelkami) tak, aby jste se rychle orientovali. Při počítání příkladů jej mějte před sebou! a dívejte se do něj. Možná

Více

Střední průmyslová škola strojní a elektrotechnická. Resslova 5, Ústí nad Labem. Fázory a komplexní čísla v elektrotechnice. - Im

Střední průmyslová škola strojní a elektrotechnická. Resslova 5, Ústí nad Labem. Fázory a komplexní čísla v elektrotechnice. - Im Střední průmyslvá škla strjní a elektrtechnická Resslva 5, Ústí nad Labem Fázry a kmplexní čísla v elektrtechnice A Re + m 2 2 j 1 + m - m A A ϕ ϕ A A* Re ng. Jarmír Tyrbach Leden 1999 (2/06) Fázry a kmplexní

Více

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR ÚHEL

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČR ÚHEL ÚHEL = část rviny hraničená dvěma plpřímkami (VA, VB) se splečným pčátkem (V) úhel AVB: V vrchl úhlu VA, VB ramena úhlu Pznámka: Dvě plpřímky se splečným pčátkem rzdělí rvinu na dva úhly úhel knvexní,

Více

Cíl kapitoly: Cílem této č{sti je naučit se při debutov{ní číst hexadecim{lní hodnoty odpovídající z{znamu celých a re{lných čísel.

Cíl kapitoly: Cílem této č{sti je naučit se při debutov{ní číst hexadecim{lní hodnoty odpovídající z{znamu celých a re{lných čísel. Zbrazení dat Část 2 zbrazení čísel Cíl kapitly: Cílem tét č{sti je naučit se při debutv{ní číst hexadecim{lní hdnty dpvídající z{znamu celých a re{lných čísel. Zápis čísel Uvědmte si, že všechna čísla

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální.

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální. . Racionální čísla. ročník -. Racionální čísla.. Vymezení pojmu Kaţdé číslo které lze vyjádřit jako podíl dvou celých čísel je číslo racionální. Při podílu dvou celých čísel a a b mohou nastat tyto situace

Více

Téma č. 6 Mzdy, zákonné odvody a daně. Mzdy a zákonné odvody

Téma č. 6 Mzdy, zákonné odvody a daně. Mzdy a zákonné odvody Mzdy a záknné dvdy MZDA pracvně-právní vztah = vztah mezi zaměstnancem a zaměstnavatelem pracvně-právní vztah se řídí zákníkem práce, kde je uveden, že zaměstnanci za vyknanu práci náleží MZDA je t částka,

Více

5.2. VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE

5.2. VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Šklní vzdělávací prgram Škla, základ živta Základní škla a mateřská škla Měčín p.. platný d 1.9.2007 5.2. VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE 5.2.1. PŘEDMĚT MATEMATIKA 1. stupeň R. Mašát, E. Tušvá

Více

Početní operace se zlomky

Početní operace se zlomky Početní operace se zlomky 1. Sčítání a. zlomků - upravíme zlomky na stejného jmenovatele (rozšiřováním, v některých případech krácením) hledáme společný násobek všech jmenovatelů (nejlépe nejmenší společný

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Předmět matematika je úzce spjat s ostatními předměty viz. mezipředmětové vztahy.

Předmět matematika je úzce spjat s ostatními předměty viz. mezipředmětové vztahy. MATEMATIKA Charakteristika vyučvacíh předmětu Matematika se vyučuje ve všech rčnících. Hdinvá dtace je 4 4 4 4. V každém rčníku jsu žáci na jednu hdinu týdně rzděleni d dvu skupin, hdina je pak věnvána

Více

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník

Více

1.2.3 Racionální čísla I

1.2.3 Racionální čísla I .2. Racionální čísla I Předpoklady: 002 Racionální jsou všechna čísla, která můžeme zapsat ve tvaru zlomku p q, kde p Z, q N. Například 2 ; ; 2 ; 6 ; umožňují počítat s částmi celků (třeba polovina dortu),

Více

v mechanice Využití mikrofonu k

v mechanice Využití mikrofonu k Využití mikrfnu k měřením v mechanice Vladimír Vícha Antace Mikrfn pfipjený zvukvu kartu pčítače ve spjení s jednduchým sftware (pf. AUDACITY) může služit k pměrně pfesnému měření krátkých časů. Pčítač

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 7. - 1 - Průřezová témata. Poznám ky. Výstup

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 7. - 1 - Průřezová témata. Poznám ky. Výstup - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 7. Výstup - modeluje a zapisuje zlomkem část celku - převádí zlom na des. čísla a naopak - porovnává zlom - zlomek

Více

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,

Více

{ 4} 2.2.7 Krácení a rozšiřování zlomků. Předpoklady: 010217. Zlomky 1 2 ; 2 4 ; 3 6 ; 4 8 ; 5. představují stejné číslo.

{ 4} 2.2.7 Krácení a rozšiřování zlomků. Předpoklady: 010217. Zlomky 1 2 ; 2 4 ; 3 6 ; 4 8 ; 5. představují stejné číslo. ..7 Krácení a rozšiřování zlomků Předpoklady: 007 Zlomky ; ; ; 8 ; 0 ; 7 ; zlomky ; ; ; 8 ; zlomky ; ; ; 8 ; 0 ; představují stejné číslo. Říkáme: 0 ; 7 ; mají stejnou hodnotu, 7 ; se rovnají. Proč je

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. úpravy a převádění zlomků

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. úpravy a převádění zlomků METODICKÝ LIST DA Název tématu: Autor: Předmět: Zlomky smíšené číslo, složené zlomky a převod na desetinná čísla Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky:

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

Návod k použití vědeckého kalkulátoru HP10s

Návod k použití vědeckého kalkulátoru HP10s 2. 1. Návd k pužití vědeckéh kalkulátru HP10s Obsah 1. Pužití chrannéh krytu... 1 2. Bezpečnstní upzrnění... 1 3. Další upzrnění... 1 4. Dvuřádkvý displej... 2 5. Příprava kalkulátru... 2 - Módy... 2 -

Více

M - Lomené algebraické výrazy pro učební obory

M - Lomené algebraické výrazy pro učební obory M - Lomené algebraické výrazy pro učební obory Určeno jako studijní materiál pro třídy učebních oborů. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

Obecnou rovnici musíme upravit na středovou. 2 2 2 2 2 2 2 2. leží na kružnici musí vyhovovat její rovnici dosadíme ho do ní.

Obecnou rovnici musíme upravit na středovou. 2 2 2 2 2 2 2 2. leží na kružnici musí vyhovovat její rovnici dosadíme ho do ní. 75 Hledání kružnic I Předpklady: 750, kružnice z gemetrie Př : Kružnice je dána becnu rvnicí x y x y plměr Rzhdni, zda na kružnici leží bd A[ ; ] + + + 6 + = 0 Najdi její střed a Obecnu rvnici musíme upravit

Více

Lomené algebraické výrazy

Lomené algebraické výrazy Variace 1 Lomené algebraické výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Lomené algebraické výrazy

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

VY_42_INOVACE_MA3_01-36

VY_42_INOVACE_MA3_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity VY_42_INOVACE_MA3_01-36 Inovace a zkvalitnění

Více

Teplota a její měření

Teplota a její měření 1 Teplta 1.1 Celsiva teplta 1.2 Fahrenheitva teplta 1.3 Termdynamická teplta Kelvin 2 Tepltní stupnice 2.1 Mezinárdní tepltní stupnice z rku 1990 3 Tepltní rzdíl 4 Teplměr Blmetr Termgraf 5 Tepltní rztažnst

Více

Rozklad na součin vytýkáním

Rozklad na součin vytýkáním Rozklad na součin vytýkáním 1. Rozložte na součin prvočísel číslo: 165 = 210 = 546 = 2. Rozložte na součin mocnin prvočísel číslo: 96 = 432 = B. Rozklad na součin vytýkáním 1. Rozložte na součin vytýkáním:

Více

Variace. Poměr, trojčlenka

Variace. Poměr, trojčlenka Variace 1 Poměr, trojčlenka Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Poměr Poměr je matematický zápis

Více

Přehled vzdělávacích materiálů

Přehled vzdělávacích materiálů Přehled vzdělávacích materiálů Název školy Název a číslo OP Název šablony klíčové aktivity Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Anotace Základní škola Ţeliv Novými

Více

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta 1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

16. Kategorizace SW chyb, kritéria korektnosti a použitelnosti, spolehlivost SW

16. Kategorizace SW chyb, kritéria korektnosti a použitelnosti, spolehlivost SW 16. Kategrizace SW chyb, kritéria krektnsti a pužitelnsti, splehlivst SW 1. Sftwarvá chyba Prezentace th, že prgram dělá něc nepředpkládanéh Míra th, kdy prgram přestává být užitečný Je t nesuhlas mezi

Více

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku.

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku. 5. Racionální čísla 5.1. Vymezení pojmu racionální číslo Dělením dvou celých čísel nemusí vyjít vždy číslo celé, např.: 6 : 3 = 2, ale podíl 2 : 3 není celé číslo. Vznikla tedy potřeba rozšíření celých

Více

4 Datový typ, proměnné, literály, konstanty, výrazy, operátory, příkazy

4 Datový typ, proměnné, literály, konstanty, výrazy, operátory, příkazy 4 Datvý typ, prměnné, literály, knstanty, výrazy, perátry, příkazy Studijní cíl Tent studijní blk má za cíl pkračvat v základních prvcích jazyka Java. Knkrétně bude uvedena definice datvéh typu, uvedeny

Více

Tento projekt je spolufinancován. a státním rozpočtem

Tento projekt je spolufinancován. a státním rozpočtem Tent prjekt je splufinancván Evrpským sciálním fndem a státním rzpčtem Z a d á v a c í d k u m e n t a c e Odbrná publikace Management kulturníh cestvníh ruchu a návazné šklení pr prjekt OP RLZ - MMR Odbrná

Více

2.2.11 Slovní úlohy vedoucí na lineární rovnice II

2.2.11 Slovní úlohy vedoucí na lineární rovnice II 2.2.11 Slvní úlhy veucí na lineární rvnice II Přepklay: 2210 Př. 1: Otec s ceru šli na výlet. Otcův krk měří 80 cm, cera je ještě malá a jeen krk má luhý puze 50 cm. Jak luhý byl výlet, kyž cera ušla tři

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 1 Trojčlenka označuje postup při řešení úloh přímé

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

1.2. Kinematika hmotného bodu

1.2. Kinematika hmotného bodu 1.. Kinematika hmtnéh bdu P matematické přípravě už můžeme začít s první kapitlu, kinematiku. Tat část fyziky se zabývá ppisem phybu těles, aniž by se ptala prč k phybu dchází. Jak je ve fyzice častým

Více

PEXESO UŽIVATELSKÝ MANUÁL

PEXESO UŽIVATELSKÝ MANUÁL PEXESO UŽIVATELSKÝ MANUÁL Obsah 1. ÚVOD DO HRY 3 1.1. Histrie hry 3 1.2. Pravidla hry 3 1.3. Pčítačvá verze hry 3 2. INSTALACE HRY 4 2.1. Instalace z disku CD-ROM 4 2.2. Instalace hry stažené z internetu

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ.1.07/1.5.00/34.0763 Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 Autor Ing. Antonín Kučera

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly a algoritmů matematického aparátu Vyjádří a zapíše část celku. Znázorňuje zlomky na číselné ose, převádí zlomky na des. čísla a naopak. Zapisuje nepravé zlomky ve tvaru smíšeného čísla. ZLOMKY Pojem zlomku,

Více

Záznam zkušební komise Jméno a příjmení Podpis Vyhodnocení provedl INSTRUKCE

Záznam zkušební komise Jméno a příjmení Podpis Vyhodnocení provedl INSTRUKCE VYSOKÉ UČNÍ THNIKÉ V RNĚ FKULT PONIKTLSKÁ Přijímací řízení 2008 akalářské studium Obry: aňvé pradenství knmika a prcesní management Míst pr nalepení kódu Kód nalepí uchazeč Záznam zkušební kmise Jmén a

Více

Přímá a nepřímá úměrnost

Přímá a nepřímá úměrnost Přímá a ne - rovnice: y = k.x + c - graf: přímka - platí: čím víc, tím víc - př.: spotřeba benzínu motorovým vozidlem a vzdálenost, kterou vozidlo urazí při stejném výkonu ne k - rovnice: y c x - graf:

Více

Stanovisko Rekonstrukce státu ke komplexnímu pozměňovacímu návrhu novely služebního zákona

Stanovisko Rekonstrukce státu ke komplexnímu pozměňovacímu návrhu novely služebního zákona Stanvisk Reknstrukce státu ke kmplexnímu pzměňvacímu návrhu nvely služebníh zákna Pslední předlžená verze zákna (verze k 27. 8. 2014) splňuje puze 13 z 38 bdů Reknstrukce státu, z th 7 jen částečně. Z

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Příklad: 3 varianta: Př. 3 var:

Příklad: 3 varianta: Př. 3 var: říklad: varianta: ř. var: ak dluh usíe v ikrvlnné trubě hřívat za nrálních pdínek 1 litr vdy pčáteční tepltě 2 C, aby začala vřít? říkn ikrvlnné truby je 12 a její výkn 8. Hustta vdy =1, její ěrná tepelná

Více

SMART Notebook Math Tools 11

SMART Notebook Math Tools 11 SMART Ntebk Math Tls 11 Operační systémy Windws Uživatelská příručka Upzrnění chranných známkách SMART Bard, SMART Ntebk, smarttech, l SMART a všechna značení SMART jsu chranné známky neb reistrvané chranné

Více

Výsledky sledování indikátoru ECI/TIMUR A.3: Mobilita a místní přeprava cestujících V Praze - Libuši

Výsledky sledování indikátoru ECI/TIMUR A.3: Mobilita a místní přeprava cestujících V Praze - Libuši Výsledky sledvání indikátru ECI/TIMUR A.3: Mbilita a místní přeprava cestujících V Praze - Libuši Vydala: Týmvá iniciativa pr místní udržitelný rzvj Zpracval: Jsef Nvák http://www.timur.cz 2008 Úvd Indikátr

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Kapitola 3 VÝDAJE A ROVNOVÁŽNÝ PRODUKT (MODEL 45 tzn. MODEL DŮCHOD VÝDAJE)

Kapitola 3 VÝDAJE A ROVNOVÁŽNÝ PRODUKT (MODEL 45 tzn. MODEL DŮCHOD VÝDAJE) www.thunva.cz Kapitla 3 VÝDAJE A ROVNOVÁŽNÝ RODUKT (MODEL 45 tzn. MODEL DŮCHOD VÝDAJE) Mdel 45 (mdel s multiplikátrem): prvnává skutečně vytvřený prdukt (HD) a plánvané výdaje, které zamýšlejí ek. subjekty

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Průřezová témata, projekty

Více

Změkčovače vody. Testry. Náplně (pryskyřice, sůl) Jednokohoutové Dvoukohoutové Automatické ... 1... 1... 2,3 ... 2 ... 2

Změkčovače vody. Testry. Náplně (pryskyřice, sůl) Jednokohoutové Dvoukohoutové Automatické ... 1... 1... 2,3 ... 2 ... 2 Změkčvače vdy Změkčvače vdy Jednkhutvé Dvukhutvé Autmatické......... 2,3 Testry... 2 Náplně (pryskyřice, sůl)... 2 Změkčvače vdy Pkud Vám leží na srdci dluhá živtnst a bezprblémvé užívání jedntlivých zařízení,

Více

Témata v MarushkaDesignu

Témata v MarushkaDesignu 0 Témata v MarushkaDesignu OBSAH 1 CÍL PŘÍKLADU...2 2 PRÁCE S PŘÍKLADEM...2 3 UKÁZKA DIALOGOVÉHO OKNA...3 4 STRUČNÝ POPIS PŘÍKLADU V MARUSHKADESIGNU...5-1 - 1 Cíl příkladu V tmt příkladu si ukážeme práci

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7.

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Výstupy dle RVP Školní výstupy Učivo žák: v oboru celých a racionálních čísel; využívá ve výpočtech druhou mocninu

Více

01-02.5 09.04.CZ. Regulační ventily Regulační ventily s omezovačem průtoku BEE line -1-

01-02.5 09.04.CZ. Regulační ventily Regulační ventily s omezovačem průtoku BEE line -1- 0-02.5 09.04.CZ Regulační ventily Regulační ventily s mezvačem průtku BEE line A.P.O. - ELMOS v..s., Pražská 90, 509 0 Nvá Paka, Tel.: +420 49 504 26, Fax: +420 49 504 257, E-mail: ap@apelms.cz, Internet:

Více

PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST

PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST PŘÍMÁ EPŘÍMÁ ÚMĚRNOST y kx, kde k je Pro kladné veličiny x, y, které jsou přímo úměrné, platí kladné číslo, které se nazývá koeficient přímé úměrnosti. Kolikrát se zvětší x, tolikrát se zvětší y. Kolikrát

Více

Postup práce a) Připravte si 50 ml roztoku NaOH o koncentraci 1 mol.dm-3 a) Určení měrné a molární otáčivosti sacharózy ve vodném roztoku

Postup práce a) Připravte si 50 ml roztoku NaOH o koncentraci 1 mol.dm-3 a) Určení měrné a molární otáčivosti sacharózy ve vodném roztoku 1 ÚLOHA 7: Plarimetrická analýza sacharidů Příprava Prstudujte základy plarimetrie - neplarizvané a plarizvané světl, plarizace světla lmem a drazem, ptická aktivita látek a jejich interakce s plarizvaným

Více

6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA

6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 1 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA Projednáno pedagogickou radou dne: 26. 8. 2013 Schválila ředitelka

Více

16. výzva IROP Energetické úspory v bytových domech

16. výzva IROP Energetické úspory v bytových domech 16. výzva IROP Energetické úspry v bytvých dmech 21.1. 2016 Hradec Králvé Ing. Michaela Bržvá Centrum pr reginální rzvj České republiky Specifický cíl 2.5 Cíl: Snížit energeticku nárčnst bytvých dmů Bytvým

Více

Souhrnná prezentace. 14. října 2015. Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze

Souhrnná prezentace. 14. října 2015. Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Souhrnná prezentace Ondřej Pártl Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze 4. října 205 Ondřej Pártl (FJFI ČVUT) Souhrnná prezentace 4. října 205 / 70 Obsah Čísla 0 20,

Více

2.5.11 Přímá úměrnost II

2.5.11 Přímá úměrnost II .5.11 Přímá úměrnost II Předpoklady: 00510 Př. 1: Jirka odebral za celý rok na zahradě pouze 300 kwh a zaplatil za 1575 Kč. Platí za kwh více nebo méně než je typická cena? Doplň pro jeho cenu za kwh tabulku.

Více

02-05.2 10.05.CZ. Regulační ventily G41...aG46... -1-

02-05.2 10.05.CZ. Regulační ventily G41...aG46... -1- 0-05. 0.05.CZ Regulační ventily G4...aG46... -- Výpčet sučinitele Kv Praktický výpčet se prvádí s přihlédnutím ke stavu regulačníh kruhu a pracvních pdmínek látky pdle vzrců níže uvedených. Regulační ventil

Více

2.5.15 Trojčlenka III

2.5.15 Trojčlenka III .5.15 Trojčlenka III Předpoklady: 0051 Př. 1: Doplň tabulku, která udává vzdálenost, kterou je možné ujít za různé doby velmi rychlou chůzi. Kolik kilometrů ujdeme touto rychlostí za 1 hodinu? doba chůze

Více

Hudební a filmové nosiče Rozmnožování a rozšiřování hudebních děl na zvukových a zvukově obrazových nosičích záznamů

Hudební a filmové nosiče Rozmnožování a rozšiřování hudebních děl na zvukových a zvukově obrazových nosičích záznamů Hudební a filmvé nsiče Rzmnžvání a rzšiřvání hudebních děl na zvukvých a zvukvě brazvých nsičích záznamů 1/6 OSA umžňuje získání licence pr rzmnžvání a rzšiřvání nsičů (dle 13 a 14 AutZ) na základě jednrázvé

Více

Základní škola Valašské Meziříčí, Vyhlídka 380, okres Vsetín, příspěvková organizace

Základní škola Valašské Meziříčí, Vyhlídka 380, okres Vsetín, příspěvková organizace Základní škla Valašské Meziříčí, Vyhlídka 380, kres Vsetín, příspěvkvá rganizace Zpráva z testvání 7.rčníků ZŠ v rámci prjektu Rzvj a pdpra kvality ve vzdělávání Termín testvání : 18.2.-20.2.2015 Pčet

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Technická specifikace předmětu plnění. VR Organizace dotazníkového šetření mobility obyvatel města Bratislavy

Technická specifikace předmětu plnění. VR Organizace dotazníkového šetření mobility obyvatel města Bratislavy Technická specifikace předmětu plnění VR Organizace dtazníkvéh šetření mbility byvatel města Bratislavy Zadavatel: Centrum dpravníh výzkumu, v. v. i. dále jen zadavatel 1 PŘEDMĚT VEŘEJNÉ ZAKÁZKY Předmětem

Více

k elektronickému výběrovému řízení na úplatné postoupení pohledávek z titulu předčasně ukončených leasingových smluv

k elektronickému výběrovému řízení na úplatné postoupení pohledávek z titulu předčasně ukončených leasingových smluv INFORMAČNÍ MEMORANDUM č. 4/3/2009/11 k elektrnickému výběrvému řízení na úplatné pstupení phledávek z titulu předčasně uknčených leasingvých smluv Praha, 30.11.2010 Infrmační memrandum č. 4/3/2009/11 1/9

Více

Rekuperace rodinného domu v Přestavlkách

Rekuperace rodinného domu v Přestavlkách Rekuperace rdinnéh dmu v Přestavlkách Pjem: Rekuperace, nebli zpětné získávání tepla je děj, při němž se přiváděný vzduch d budvy předehřívá teplým dpadním vzduchem. Teplý vzduch není tedy bez užitku dveden

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Silverline A135.009 V1/0612

Silverline A135.009 V1/0612 Silverline A135.009 V1/0612 CZ 1. Obecné infrmace 134 1.1 Infrmace týkající se návdu k bsluze 134 1.2 Vysvětlivky symblů 134 1.3 Zdpvědnst výrbce a záruka 135 1.4 Ochrana autrských práv 135 1.5 Prhlášení

Více

Socioekonomická studie mikroregionu Frýdlantsko. B.5. Analýza konkurenčního potenciálu skiareálu Smrk

Socioekonomická studie mikroregionu Frýdlantsko. B.5. Analýza konkurenčního potenciálu skiareálu Smrk Scieknmická studie mikrreginu Frýdlantsk B.5. Analýza knkurenčníh ptenciálu skiareálu Smrk Únr 2008 Studie vznikla v rámci prjektu Alternativy pr Frýdlantsk, který krdinuje Jizerskještědský hrský splek.

Více

C V I Č E N Í 3 1. Představení firmy Glaverbel Czech a.s. Teplice a. Vyráběný sortiment

C V I Č E N Í 3 1. Představení firmy Glaverbel Czech a.s. Teplice a. Vyráběný sortiment Technlgie skla 00/0 C V I Č E N Í. Představení firmy Glaverbel Czech a.s. [-]. Viskzitní křivka skla [,6]. Výpčet pmcí Vgel-Fulcher-Tammannvy rvnice [,6]. Výpčet z chemickéh slžení [,6]. Představení firmy

Více

Uživatelský manuál. RBroker. Asset Management Suite. RBroker. Uživatelský manuál. Datum: 21. ledna 2014. Strana 1 / 24

Uživatelský manuál. RBroker. Asset Management Suite. RBroker. Uživatelský manuál. Datum: 21. ledna 2014. Strana 1 / 24 Uživatelský manuál RBrker Asset Management Suite RBrker Uživatelský manuál Datum: 21. ledna 2014 Strana 1 / 24 Uživatelský manuál RBrker Obsah ÚVOD... 3 1 TECHNICKÉ POŽADAVKY... 3 2 PŘIHLÁŠENÍ... 3 3 ÚVOD

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní

Více

uzavřená podle 1746 odst. 2 občanského zákoníku níže uvedeného dne, měsíce a roku mezi následujícími smluvními stranami

uzavřená podle 1746 odst. 2 občanského zákoníku níže uvedeného dne, měsíce a roku mezi následujícími smluvními stranami Smluva revitalizaci, svícení, bnvě, údržbě a prvzvání distribuční sustavy elektrické energie sítě veřejnéh světlení na základě metdy Energy Perfrmance and Quality Cntracting uzavřená pdle 1746 dst. 2 bčanskéh

Více

Výzva k podání nabídek

Výzva k podání nabídek Výzva k pdání nabídek Čísl zakázky (bude dplněn MPSV při uveřejnění): Název zakázky: Předmět zakázky (služba, ddávka neb stavební práce): x Chceme se učit, abychm zůstali knkurencí Nákup služeb Datum vyhlášení

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 4. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace využívá při pamětném a písemném počítání komutativnost a asociativnost sčítání a násobení

Více

Přednášky Teorie řízení Tereza Sieberová, 2015 LS 2014/2015

Přednášky Teorie řízení Tereza Sieberová, 2015 LS 2014/2015 -černě přednášky -červeně cvičení různě přeházené, pdle th, jak jsme pakvali, datum dpvídá přednáškám PŘEDNÁŠKA 10.2. C je t řízení? Subjektivní, cílevědmá činnst lidí Objektivně nutná Pznává a využívá

Více

Mistrovství České republiky v logických úlohách

Mistrovství České republiky v logických úlohách Mistrvství České republiky v lgických úlhách Blk - Kktejl :5-5: Řešitel Stezky První větší Sendvič Dminvé dlaždice 5 Rzlžené čtverce 6 Dlaždice 7 Klik plí prjdu vedle? 8 Milenci 9 Kulečník Dmin 7x8 Cruxkrs

Více

chtít a pak už nebudeš moci. Jan Werich

chtít a pak už nebudeš moci. Jan Werich 1 9/2012 Neříkej, že nemůžeš, když nechceš. Prtže přijdu velmi brzy dny, kdy t bude dalek hrší. Budeš pr změnu Alfa Sftware, s.r.. tel.: 376 709 890 www.alfasftware.cz Pražská 22 fax: 376 709 889 e-mail:

Více

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Předmět: MATEMATIKA Ročník: 4. Časová dotace: 4 hodiny týdně Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Provádí písemné početní operace Zaokrouhluje přirozená čísla, provádí odhady a kontroluje

Více

Kotlík na polévku Party

Kotlík na polévku Party Ktlík na plévku Party 100.054 V3/0107-1 - CZ 1. Obecné infrmace 102 1.1 Infrmace týkající se návdu k bsluze 102 1.2 Vysvětlivky symblů 102 1.3 Zdpvědnst výrbce a záruka 102-103 1.4 Ochrana autrských práv

Více

(příliv kapitálu do danéé země) čím nižší je cena domácí měny, tím větší je po ní poptávka tzn. klesající tvar DCZK PCZK DCZK

(příliv kapitálu do danéé země) čím nižší je cena domácí měny, tím větší je po ní poptávka tzn. klesající tvar DCZK PCZK DCZK Kapitla 9 MĚNOVÝ KURZ Měnvý kurz vlivňuje mezinárdní směnu statků a služeb a přesuny kapitálu mezi jedntlivými státy Faktry vlivňující měnvý kurz Vývj mezinárdníh bchdu Vývj hspdářskéh cyklu Vývj reálných

Více

1.1.4 Poměry a úměrnosti I

1.1.4 Poměry a úměrnosti I 1.1.4 Poměry a úměrnosti I Předpoklady: základní početní operace Poznámka: Následující látka patří mezi nejdůležitější, probírané na základní škole. Bohužel patří také mezi ty, kde je nejvíce rozšířené

Více

KAPITOLA II ZÁKON NA OCHRANU OVZDUŠÍ ZÁKLADNÍ POVINNOSTI...13 KAPITOLA III PROVÁDĚCÍ PŘEDPISY K ZÁKONU O OVZDUŠÍ ZÁKLADNÍ POPIS...

KAPITOLA II ZÁKON NA OCHRANU OVZDUŠÍ ZÁKLADNÍ POVINNOSTI...13 KAPITOLA III PROVÁDĚCÍ PŘEDPISY K ZÁKONU O OVZDUŠÍ ZÁKLADNÍ POPIS... Zákn č. 201/2012 Sb., chraně vzduší základní pvinnsti prvzvatelů zdrjů znečišťvání vzduší ing. Zbyněk Krayzel, Pupětva 13/1383, 170 00 Praha 7 Hlešvice 266 711 179, 602 829 112 ZBYNEK.KRAYZEL@SEZNAM.CZ

Více