Rezonance v kvantových grafech

Save this PDF as:

Rozměr: px
Začít zobrazení ze stránky:

Download "Rezonance v kvantových grafech"

Transkript

1 Rezonance v kvantových grafech Jiří Lipovský Katedra fyziky, Přírodovědecká fakulta, Univerzita Hradec Králové, Rokitanského 62, Hradec Králové Úvod a zavedení problému Kvantové grafy sou úspěšným modelem, který se rozvíí hlavně poslední tři desetiletí. Myšlenka umístit kvantovou částici na graf e však eště starší. Poprvé byla použita Paulingem v roce 1936 [1] pro výpočet diamagnetických vlastností aromatických molekul a Ruedenbergem a Scherrem v roce 1953 [2] pro popis π-elektronů v těchto molekulách. Model, který bere nekonečně tenké kvantové dráty a vytvoří z nich graf, není en matematickou hříčkou. Měření eich spektrálních a rezonančních vlastností lze provést například pomocí mikrovln, provádí e např. varšavská skupina [3]. Z matematického pohledu e model kvantových grafů poměrně ednoduchý. Jedná se o systém obyčených diferenciálních rovnic spoených vazebnými podmínkami ve vrcholech. Základem e metrický graf Γ, skládaící se z N vnitřních hran o délkách l a M vněších (nekonečných) hran polopřímek. Hilbertův prostor systému se skládá z kvadraticky integrovatelných funkcí na všech hranách N 2 M 2 H i 1L ((0, li )) i 1 ((0, )). (1) = = = L 2 d Systém e popsán hamiltoniánem, který působí ako + V ( x), kde V(x) e potenciál 2 dx s nosičem pouze na vnitřních hranách grafu. Tento vztah odpovídá hamiltoniánu kvantové částice v soustavě ednotek, kde ħ = 1, m = 1/2. Definiční obor tohoto hamiltoniánu e Sobolevův prostor W 2,2 (Γ), t. ortogonální suma Sobolevových prostorů na ednotlivých hranách. Sobolevův prostor W k,p e množina všech funkcí, eichž všechny slabé parciální derivace do řádu k včetně leží v L p na daném intervalu. Zároveň museí tyto funkce splňovat vazebné podmínky v každém vrcholu ( U I ) Ψ + i( U + I) Ψ ' = 0, (2) kde Ψ e vektor limit funkčních hodnot v -tém vrcholu při blížení se z ednotlivých hran vycházeících z tohoto vrcholu, Ψ e vektor derivací vycházeících z tohoto vrcholu, U e d d unitární matice (d e počet sousedů daného vrcholu), I ednotková matice steného rozměru a i e komplexní ednotka. Tyto vazebné podmínky pro kvantové grafy poprvé na sobě nezávisle popsali Harmer [4] a Kostrykin se Schraderem [5], myšlenka byla ovšem už dříve známá v teorii samosdružených rozšíření. Existue také ednoduchý způsob, ak vazebné podmínky ve všech vrcholech grafu popsat ednou velkou unitární maticí. Všechny vrcholy grafu se spoí do ednoho a zavede se unitární matice U, která e po přeházení určitých sloupců a řádků blokově diagonální s bloky odpovídaícími původním vrcholovým vazebným maticím. Tato velká unitární matice U tak popisue neen vazebné podmínky, ale i topologii celého grafu. Kdybychom matici U nezvolili v určité bázi blokově diagonální, popisovala by i situaci, kdy částice přeskakue mezi ednotlivými vrcholy. Dále se nám bude hodit zavést efektivní energeticky závislé vazebné matice, které popisuí vazbu na vnitřní části grafu (po odpoení všech polopřímek). Nechť se matice U skládá z bloků U1, U2, U3, U4, kde U1 odpovídá vazbě mezi vnitřními hranami grafu, U4 vazbě mezi polopřímkami a U2 a U3 vazbám mezi vnitřními hranami a polopřímkami. Pro M vnitřních hran a N polopřímek nakonec dostáváme efektivní vazebnou matici 1 U ( k) = U I (1 k) U [(1 k) U (1 + k) I U, (3) ef 1 2N 2 4 M ] 3

2 kde I značí ednotkovou matici a dolní index udává eí velikost, k e odmocnina z energie. Vazebná podmínka e pak dána rovnicí (2), kde místo U e Uef. Rezonance Rezonance budeme chápat ako čísla v komplexní rovině. Kdybychom uvažovali časově závislý případ, částice by se při průchodu grafem zdržela v eho vnitřní části déle pro energie, které odpovídaí reálným částem těchto komplexních čísel. Doba života částice ve vnitřní části grafu by byla tím vyšší, čím sou tyto rezonance blíže reálné ose. Existuí dvě hlavní definice rezonancí póly rezolventy a póly matice rozptylu. Rezolventní 1 rezonance sou póly analytického prodloužení tzv. rezolventy, t. operátoru ( H λ id), kde H e hamiltonián a id identický operátor. V případě kvantových grafů e komplexní energie E = k 2 rezolventní rezonancí, estliže existue řešení nečasové Schrödingerovy rovnice s asymptotikou typu e ikx na všech polopřímkách. Elegantním způsobem, ak naít rezolventní rezonance e metoda vněšího komplexního škálování známá díky Augilarovi, Baslevovi a Combesovi [6, 7] iž od 70. let minulého století. Hlavní myšlenka e přeškálovat vněší hrany grafu transformací θ / 2 θ Uθ g( x) = e g( e x) (4) a vnitřní hrany ponechat beze změny. Tato transformace e pro reálné θ unitární, zaímavé vlastnosti má ale pro θ s netriviální imaginární částí. Funkce e ikx pro k se zápornou imaginární částí zevně nesou kvadraticky integrabilní. Po transformaci při dostatečně velké imaginární části θ se kvadraticky integrabilními stanou. Přeškálovaný hamiltonián UθHU-θ, který e nesamosdružený operátor, má vlastní čísla na místech rezonancí původního hamiltoniánu. Rezolventní rezonance tedy můžeme naít ako vlastní čísla tohoto nesamosdruženého operátoru. Druhou možností definice rezonancí sou tzv. rozptylové rezonance. Jsou to póly matice rozptylu, kterou můžeme definovat ako matici zobrazuící vektor amplitud vcházeících vln na vektor amplitud vycházeících vln. Jeí prvky diverguí pro komplexní energie, které odpovídaí rozptylovým rezonancím. Lze dokázat, že obě rodiny rezonancí si odpovídaí [8]. Přesněi řečeno, množina rezolventních rezonancí e rovna sednocení množiny rozptylových rezonancí a množiny vlastních hodnot (vnořených do spoitého spektra) původního hamiltoniánu s vlastními funkcemi, které maí nosič pouze na vnitřní části grafu. Je logické, že tyto hodnoty nepatří do rodiny rozptylových rezonancí, protože eich vlastní funkce sou identicky nulové na polopřímkách, tato řešení tedy neodpovídaí rozptylovým stavům. Matice rozptylu e tedy nemůže uvidět. Rezonance vycházeící z racionálních poměrů hran Uvažume kvantový graf bez potenciálu s tzv. delta-podmínkami ve vrcholech. Jsou to takové vazebné podmínky, u kterých e vlnová funkce v každém vrcholu spoitá a pro součet derivací vycházeících z každého vrcholu ve směru ednotlivých hran platí N = 1 f '( v) = αf ( v), (5) t. eich suma e rovna násobku funkční hodnoty. Nechť vnitřní část grafu obsahue smyčku hran, eichž délky sou násobky hodnoty l0. Protože vlastní funkce pro negativní druhou derivaci sou kombinací sinu a kosinu, e pro tento případ vlastní funkcí hamiltoniánu funkce, eíž komponenty na ednotlivých hranách sou siny, které maí nuly ve vrcholech smyčky (viz obr. 1), a sou triviálně nulové mimo smyčku. Proto sou vlastními čísly hamiltoniánu πn 2 /l0 2.

3 0br. 1: Ilustrace vlastní funkce Ve článku [9] sme se zabývali rezonancemi, které vznikou, když tento racionální poměr délek hran porušíme. Potom se totiž původní vlastní hodnota v k-rovině odsune do spodní komplexní poloroviny. Lze dokázat, že celkové množství rezolventních rezonancí se započítáním násobnosti (rezolventními rezonancemi sou ak vlastní hodnoty, tak čisté rezonance) se nezmění. Ukažme si vše na příkladu grafu tvaru kříže s vnitřními hranami, eichž délka závisí na parametru λ. Skládá se ze dvou vnitřních hran o délkách l1 = l (1 - λ) a l2 = l (1 + λ) a dvou polopřímek. Všechny čtyři hrany sou spoeny v ednom bodě. Ve středním vrcholu uvažueme delta-podmínku a v kraních vrcholech obou vnitřních hran tzv. Dirichletovu podmínku f1(l1) = 0 = f2(l2). Chování rezonancí e zobrazeno na obr. 2 a 3. Barvou e znázorněna změna koeficientu λ, který se mění od červené λ = 0 po modrou λ = 1. Obr. 2: Traektorie rezonance, která začíná v k0 = 2π pro α = 10.

4 Obr. 3: Traektorie rezonance pro α = 1. Rezonance se pro určité racionální hodnoty parametru λ vrací k reálné ose, protože pro tyto hodnoty opět existue vlastní hodnota s vlastní funkcí s nosičem na obou vnitřních hranách grafu a nulou v eho středním vrcholu. Na obr. 4 můžeme pozorovat křížení rezonancí. Dvě rezonance pro hodnotu λ = 2,596 se k sobě přiblíží a po chvíli se zase rozedou. Pokud zvýšíme koeficient na hodnotu λ = 2,598, obě rezonance si prohodí druhou část traektorie. Obr. 4: Křížení rezonancí pro α = 2,596. Asymptotika počtu rezonancí v kvantových grafech Dalším problémem, který můžeme u rezonancí sledovat, e eich počet. Kdybychom odpoili všechny polopřímky od vnitřní části grafu, byly by všechny rezolventní rezonance vlastními hodnotami. Asymptotické chování počtu vlastních hodnot pro Laplaceův-Beltramiho operátor na d-dimenzionální varietu e dáno Weylovým zákonem. Uvažume tento operátor na d- dimenzionální kompaktní riemannovské varietě o ploše Ω. Počet vlastních hodnot s absolutní hodnotou menší než λ e

5 ωd Ω d ωd 1 Ω d 1 d 1 N( λ ) = λ ± λ + o( λ ), (6) d d 1 (2π ) 4(2π ) kde ωd značí obem d-dimenzionální koule o poloměru 1. Pro ednodimenzionální případ, kvantový graf o součtu délek vnitřních hran V, očekáváme tedy asymptotiku V N ( λ ) = λ + O(1). Studueme-li problém v k-rovině (tedy vynášíme-li odmocninu z energie), π musíme předchozí výraz zdvonásobit, protože každou vlastní hodnotu započteme dvakrát, neboť k 2 = -k 2. Nyní budeme sledovat počet rezolventních rezonancí v kruhu o poloměru R v k-rovině. 2V Očekávali bychom stený výsledek ako v případě vlastních hodnot, tedy N ( R) = R + O(1) π. Tato asymptotika platí u většiny grafů, pro některé z nich e však překvapivě konstanta v prvním členu asymptotiky menší. Takové grafy nazýváme neweylovskými. Příkladem může být graf, ehož eden z vrcholů spoue ednu vnitřní hranu s ednou polopřímkou a v tomto vrcholu e tzv. standardní (Kirchhoffova) vazebná podmínka. Tato podmínka e deltapodmínkou se silou α = 0, což pro výše uvedený vrchol znamená, že ak funkční hodnota, tak derivace e v tomto bodě spoitá. Proto v tomto bodě není žádná interakce, takže můžeme efektivně polopřímku s touto vnitřní hranou nahradit ednou velkou polopřímkou. Velikost vnitřní části grafu se tedy sníží a konstanta v prvním členu asymptotiky e menší. Davies a Pushnitski [10] studovali asymptotiku rezonancí pro standardní (Kirchhoffovy) podmínky. Zistili, že graf e neweylovský, právě když obsahue vyvážený vrchol (vrchol spouící stený počet vnitřních a vněších hran). V článku [11] sme tento výsledek zobecnili na všechny vazebné podmínky. Graf e 1 k 1 + k neweylovský, když efektivní vazebná matice Uef (k) má vlastní hodnotu buď, nebo 1 + k 1 k. Dále sme zistili, že případ, který zvolili Davies s Pushnitskim, e výimečný. Z celé podtřídy vazebných podmínek, které sou permutačně symetrické, existuí pouze dva případy, u nichž se mohou vyskytnout neweylovské grafy standardní (Kirchhoffova) vazba a eí protiklad anti- Kirchhoffova vazba. Pro ostatní vazebné podmínky sou všechny grafy weylovské. Zatímco o tom, zda e graf weylovský nebo neweylovský, rozhoduí eho lokální vlastnosti (efektivní vazebná matice ve vrcholu), pokud nás zaímá efektivní velikost grafu (tedy konstanta v prvním členu asymptotiky), musíme použít globální vlastnosti grafu. Ukazue to následuící příklad. Uvažume graf typu pravidelného mnohoúhelníku s dvěma polopřímkami připoenými v každém bodě (obr. 5).

6 Obr. 5: Graf tvaru pravidelného mnohoúhelníku se dvěma připoenými polopřímkami v každém vrcholu S využitím symetrie grafu lze vypočítat, že efektivní velikost e Wn = nl/2 pro n 0 mod 4 a Wn = (n-2)l/2 pro n = 0 mod 4. Větší symetrie grafu pro počet vrcholů, který e násobkem čtyř, tedy způsobue, že lze vymazat větší část vnitřku grafu. Efektivní velikost grafu tedy závisí na globální struktuře grafu, hlavně na eho symetriích. Dále sme v článku [12] zkoumali, ak se asymptotika počtu rezonancí změní,vložíme-li graf do magnetického pole. Zistili sme, že magnetickým polem nelze změnit neweylovský graf na weylovský a obráceně. Ale e možné změnit efektivní velikost grafu, který e bez magnetického pole neweylovský. Poděkování Tento článek vznikl za podpory proektu Rozvo působení postdoktorandů na Univerzitě Hradec Králové, reg. č. CZ.1.07/2.3.00/ Reference [1] Pauling, L. The diamagnetic anisotropy of aromatic molecules. J. Chem. Phys., vol. 4, pp [2] Ruedenberg, K. and Scherr, C. Free-electron network model for conugated systems, I. Theory. J. Chem. Phys., vol. 21, pp [3] Hul, O., Bauch, S., Pakoński, P., Savytskyy, N., Zyczkowski, K., and Sirko, L. Experimental simulation of quantum graphs by microwave networks. Phys Rev E Stat Nonlin Soft Matter Phys., vol. 69, p [4] Harmer, M. Hermitian symplectic geomety and extension theory. J. Phys. A: Math. Gen., vol. 33, pp [5] Kostrykin, V. and Schrader, R. Kirchhoff s rule for quantum wires. II: The inverse problem with possible applications to quantum computers. Fortschritte der Physik, vol. 48, pp [6] Aguilar, J. and Combes, J.-M. A class of analytic perturbations for one-body Schrödinger operators. Commun. Math. Phys., 1971, vol. 22, pp [7] Baslev, E. and Combes, J.-M. Spectral properties of many body Schrödinger operators with dilation analytic interactions. Commun. Math. Phys., 1971, vol. 22, pp [8] Exner P., Lipovský J., Equivalence of resolvent and scattering resonances on quantum graphs

7 in "Adventures in Mathematical Physics" (Proceedings, Cergy-Pontoise 2006), AMS "Contemporary Mathematics"Series, vol. 447, Providence, R.I., 2007; pp [9] Exner P., Lipovský J., Resonances from perturbations of quantum graphs with rationally related edges, J. Phys. A43 (2010), [10] Davies E.B., Pushnitski A., Non-Weyl Resonance Asymptotics for Quantum Graphs, Analysis & PDE, 4 no.5 (2011), [11] Davies E.B., Exner P., Lipovský J., Non-Weyl asymptotics for quantum graphs with general coupling conditions, J. Phys. A43 (2010), [12] Exner P., Lipovský J., Non-Weyl resonance asymptotics for quantum graphs in a magnetic field, Phys. Lett. A375 (2011),

Oddělení pohybu elektronů a jader

Oddělení pohybu elektronů a jader Oddělení pohybu elektronů a ader Adiabatická aproximace Born-Oppenheimerova aproximace Důležité vztahy sou 4, 5, 7, 0,,, udělal sem to zbytečně podrobně, e to samostatný okruh Separace translačního pohybu:

Více

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx

Více

ρ = 0 (nepřítomnost volných nábojů)

ρ = 0 (nepřítomnost volných nábojů) Učební text k přednášce UFY Světlo v izotropním látkovém prostředí Maxwellovy rovnice v izotropním látkovém prostředí: B rot + D rot H ( r, t) div D ρ rt, ( ) div B a materiálové vztahy D ε pro dielektrika

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 000/00 Michal Marvan 3. Matice lineárního zobrazení V této přednášce budeme používat indexy dvoího druhu:

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Matematické metody kvantové mechaniky

Matematické metody kvantové mechaniky Matematické metody kvantové mechaniky Seminář současné matematiky Ing. Tomáš Kalvoda tomas.kalvoda@fit.cvut.cz KM FJFI & KTI FIT ČVUT místnost M102, FIT 11. listopadu 2010 Kalvoda (ČVUT) Seminář současné

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

ÚVOD DO KVANTOVÉ MECHANIKY NA GRAFECH. RNDr. Jiří Lipovský, Ph.D.

ÚVOD DO KVANTOVÉ MECHANIKY NA GRAFECH. RNDr. Jiří Lipovský, Ph.D. ÚVOD DO KVANTOVÉ MECHANIKY NA GRAFECH RNDr. Jiří Lipovský, Ph.D. Hradec Králové 2017 Obsah 1 Matematický popis Sternova-Gerlachova experimentu 4 1.1 Popis experimentu.......................... 4 1.2 Sekvenční

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

Co jsme udělali: Au = f, u D(A)

Co jsme udělali: Au = f, u D(A) Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

21. Úvod do teorie parciálních diferenciálních rovnic

21. Úvod do teorie parciálních diferenciálních rovnic 21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j

Více

6 Potenciály s δ funkcemi II

6 Potenciály s δ funkcemi II 6 Potenciály s δ funkcemi II 6.1 Periodická δ funkce (Diracův hřeben) Částice o hmotnosti M se pohybuje v jednorozměrné mřížce popsané periodickým potenciálem V(x) = c δ(x na), (6.1.1) n= kde a je vzdálenost

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na

Operátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na 4 Matematická vsuvka: Operátory na Hilbertově prostoru. Popis vlastností kvantové částice. Operátory rychlosti a polohy kvantové částice. Princip korespondence. Vlastních stavy a spektra operátorů, jejich

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx 1 Příklad 1: Komutační relace [d/, x] Mějme na dva operátory: ˆ d/ a ˆ 5 D X x, například na prvek x působí takto Určeme jejich komutátor ˆ 5 d 5 4 ˆ 5 5 6 D x x 5 x, X x xx x ˆ ˆ ˆ ˆ ˆ ˆ d d [ DX, ] f

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj

Více

ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III

ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK Matematika pro fyziky III OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Tomáš Los, Michal Pavelka, Michal Pavelka, Vít Průša Termíny přednášek: čtvrtek

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )

Zdrojem většiny příkladů je sbírka úloh   1. cvičení ( ) 2. cvičení ( ) Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem

Více

Michal Zamboj. January 4, 2018

Michal Zamboj. January 4, 2018 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

Plánování projektu. 3. dubna Úvod. 2 Reprezentace projektu. 3 Neomezené zdroje. 4 Variabilní doba trvání. 5 Přidání pracovní síly

Plánování projektu. 3. dubna Úvod. 2 Reprezentace projektu. 3 Neomezené zdroje. 4 Variabilní doba trvání. 5 Přidání pracovní síly Plánování proektu 3. dubna 2018 1 Úvod 2 Reprezentace proektu 3 Neomezené zdroe 4 Variabilní doba trvání 5 Přidání pracovní síly Problémy plánování proektu Zprostředkování, instalace a testování rozsáhlého

Více

Markovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain)

Markovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain) Markovovy řetězce se soitým časem CTMC (Continuous time Markov Chain) 3 5 1 4 Markovovy rocesy X Diskrétní stavový rostor Soitý obor arametru t { } S e1, e,, en t R t 0 0 t 1 t t 3 t Proces e Markovův

Více

Úvod do kvantového počítání

Úvod do kvantového počítání 2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla Moderní technologie ve studiu aplikované fyiky CZ.1.07/..00/07.0018 4. Komplexní čísla Matematickým důvodem pro avedení komplexních čísel ( latinského complexus složený), byla potřeba rošířit množinu (obor)

Více

AVDAT Vektory a matice

AVDAT Vektory a matice AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Michal Zamboj. December 23, 2016

Michal Zamboj. December 23, 2016 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH

DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině

Více

OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ

OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ Anotace: Ing. Zbyněk Plch VOP-026 Šternberk s.p., divize VTÚPV Vyškov Zkušebna elektrické bezpečnosti a

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Kinematika a dynamika tuhého tělesa

Kinematika a dynamika tuhého tělesa K přednášce UFY08 Teoretická mechanika prozatímní učební text verze 0 9. Kinematika a dynamika tuhého tělesa Leoš Dvořák MFF UK Praha 04 Kinematika a dynamika tuhého tělesa V této kapitole se soustředíme

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fourierovské metody v teorii difrakce a ve strukturní analýze Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus Zkoušková písemná práce č. 1 z předmětu 01MAB4 pondělí 25. května 2015, 9:00 11:00 Vypočítejte integrál y d(, y), kde Ω Objekt Ω načrtněte do obrázku! Ω = { (, y) R 2 :, y 0 4 + y 4 1 ( 4 + y 4 ) 3 16

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

Kvantová mechanika - model téměř volných elektronů. model těsné vazby

Kvantová mechanika - model téměř volných elektronů. model těsné vazby Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme

Více

Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a

Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e 8 Atom vodíku Správné řešení atomu vodíku je jedním z velkých vítězství kvantové mechaniky. Podle klasické fyziky náboj, který se pohybuje se zrychlením (elektron obíhající vodíkové jádro proton), by měl

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

SBÍRKA ÚLOH I. Základní poznatky Teorie množin. Kniha Kapitola Podkapitola Opakování ze ZŠ Co se hodí si zapamatovat. Přírozená čísla.

SBÍRKA ÚLOH I. Základní poznatky Teorie množin. Kniha Kapitola Podkapitola Opakování ze ZŠ Co se hodí si zapamatovat. Přírozená čísla. Opakování ze ZŠ Co se hodí si zapamatovat Přírozená čísla Číselné obory Celá čísla Racionální čísla Reálná čísla Základní poznatky Teorie množin Výroková logika Mocniny a odmocniny Množiny Vennovy diagramy

Více

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014

Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014 F40 Kvantová fyzika atomárních soustav letní semestr 03-04 VIII. Vibrace víceatomových molekul cvičení KOTLÁŘSKÁ 3. DUBNA 04 Úvodem capsule o maticích a jejich diagonalisaci definice "vibračních módů"

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

Matematika 3. Úloha 1. Úloha 2. Úloha 3

Matematika 3. Úloha 1. Úloha 2. Úloha 3 Matematika 3 Úloha 1 Co lze říci o funkci imaginární část komplexního čísla která každému komplexnímu číslu q přiřazuje číslo Im(q)? a. Je to funkce mnohoznačná. b. Je to reálná funkce komplexní proměnné.

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Obsah. 1 Lineární prostory 2

Obsah. 1 Lineární prostory 2 Obsah 1 Lineární prostory 2 2 Úplné prostory 2 2.1 Metrické prostory.................................... 2 2.2 Banachovy prostory................................... 3 2.3 Lineární funkcionály..................................

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

6 Lineární geometrie. 6.1 Lineární variety

6 Lineární geometrie. 6.1 Lineární variety 6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Molekuly. Všeobecně známý fakt: atomy se slučujou do molekul, pokud to zrovna nejsou atomy inertních plynů v posledním sloupci periodické tabulky

Molekuly. Všeobecně známý fakt: atomy se slučujou do molekul, pokud to zrovna nejsou atomy inertních plynů v posledním sloupci periodické tabulky Molekuly Všeobecně známý fakt: atomy se slučujou do molekul, pokud to zrovna nejsou atomy inertních plynů v posledním sloupci periodické tabulky Nejjednodušší případ: molekulární iont H +, tj. dva protony

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více