1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004."

Transkript

1 Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004.

2 Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která může abývat růzých reálých čísel v závislosti a áhodě. Na tomto místě si připomeňme, že lze rozlišovat áhodou veličiu diskrétí a spojitou. Je-li áhodá veličia X spojitá, pak může abývat všech hodot z koečého ebo ekoečého itervalu. Naopak, áhodou veličiu X považujeme za diskrétí, abývá-li koečého ebo spočetého počtu hodot. Náhodou veličiu X lze tedy chápat jako reálou fukci prvků prostoru elemetárích jevů. Pravděpodobost toho, že áhodá veličia X dosáhla hodoty x i začíme takto P (X = x i. ( Umíme-li pro každé reálé x určit pravděpodobost, že áhodá veličia X abyde hodoty meší ebo rové x, pak záme tzv. rozděleí pravděpodobosti áhodé veličiy X. Způsob popisu áhodých veliči Prvím způsobem je zápis prostředictvím tabulky rozděleí pravděpodobostí viz tabulka. Tabulka : Tabulka rozděleí pravděpodobostí hod ideálí kostkou x i P (X = x i Druhou možostí je pomocí polygou rozděleí pravděpodobostí. Další možostí popisu rozděleí pravděpodobosti je prostředictvím distribučí fukce. Ta je defiováa vztahem: F (x = P (X x i. ( Distribučí fukce je defiováa a předem daém itervalu. Její základí vlastosti jsou: 0 F (x F (x i F (x j pro každou dvojici čísel x i < x j lim x F (x = F ( = 0 (3 lim x + F (x = F (+ = P (a < X b = F (b F (a

3 Distribučí fukce F (x je zprava spojitá a má ejvýš spočetě bodů espojitosti. Grafu distribučí fukce odpovídá v popisé statistice graf kumulativích relativích četostí. Distribučí fukce diskrétí áhodé veličiy je espojitá. Pro diskrétí áhodou veličiu platí: F (x i = P (X x i = j i p j (4 Pro spojitou áhodou veličiu, abývající všech hodot z itervalu x [a; b] F (x = P (X x i = x a f(tdt (5 Dalším důležitým pojmem je hustota pravděpodobosti (ěkdy také frekvečí fukce. Jde o fukci která je defiováa vztahem f(x = df (x dx Základí vlastosti hustoty pravděpodobosti jsou: b a f(x 0 lim x f(xdx = 0 lim x + f(xdx = 0 f(xdx = pro x [a; b] P (a < X b = = F (x ( b a f(xdx Velmi důležitým pojmem ve spojitosti s popisem áhodých veliči je pojem kvatilu. α-kvatilem ebo α 00%-ím kvatilem áhodé veličiy X, která má jisté spojité rozděleí áhodé veličiy s distribučí fukcí F (x a hustotu pravděpodobosti f(x, je číslo x α pro které platí F (x α = P (X x α = x α (7 f(xdx = α (8 Některé kvatily mají speciálí ázvy apř.: mediá, dolí kvartil, horí kvartil, prví decil, osmý percetil, atd... Některá rozděleí diskrétích a spojitých áhodých veliči Beroulliho rozděleí Někdy také Alterativí rozděleí. Pomocí tohoto rozděleí lze popsat ty situace, ve kterých může áhodá proměá abývat pouze dvou možých hodot.

4 Příkladem může být hod ideálí micí. Dalším možým příkladem může být hlasováí jedé ze dvou stra bez možosti zdržet se hlasováí. Bez ztráty obecosti lze uvažovat o dvou možých výsledcích 0 ezdar a zdar. Beroulliho rozděleí je defiováo pomocí parametru p. Teto parametr lze iterpretovat jako pravděpodobost zdaru. Pravděpodobostí fukce Beroulliho rozděleí je defiováa takto f(x; p = { ( p pokud x = 0 p pokud x =. (9 Pravděpodobostí fukci pro Beroulliho rozděleí lze zapsat ekvivaletě jako: P (X = x = p x ( p ( x. (0 Distribučí fukci tohoto rozděleí pak zapíšeme jako { ( p pokud x = 0 F (x; p = pokud x =. ( Středí hodota Beroulliho rozděleí je dáa hodotou p, rozptyl pak hodotou p( p. Symbolickým zápisem X Ber(p ebo A(p. Biomické rozděleí Pokud budeme opakovat -krát určitý pokus při dodržeí stejých podmíek, přičemž v každém pokusu bude moci astat áhodý jev A, se stejou pravděpodobostí p a aopak eastat s pravděpodobostí p, pak takové schéma pokusů azýváme Beroulliho schéma. Počet realizací jevu A v ezávislých pokusech Beroulliho schématu je zřejmě diskrétí áhodou veličiou s defiičím oborem {0,,..., }. Vzhledem k tomu, že jsou tyto pokusy avzájem ezávislé lze psát: ( P (X = x = p x ( p x. ( x Náhodou veličiu X mající biomické rozděleí lze vyjádřit jako součet ezávislých áhodých veliči, které mají alterativí rozděleí se stejým parametrem p : X = X + X X. (3 Středí hodotu lze pak určit jako: Pro rozptyl pak E(X = E(X + E(X E(X = p. D(X = D(X + D(X D(X = p( p. 3

5 Například předpokládejme, že počet x vadých výrobků mezi ezávisle vyrobeými výrobky má biomické rozděleí Bi(, p, kde p udává pravděpodobost, že při výrobím procesu bude vyrobe zmetek. Pro = 40 a p = 0, 05 získáme ásledující graf pravděpodobostí fukce viz graf. Obrázek : Pravděpodobostí fukce pro X Bi(40; 0.05 Probability Bi(40, x Poissoovo rozděleí V ěkterých případech eí počet dat výsledkem předem staoveého počtu zkoušek. Například pokud y představuje počet úmrtí při automobilových ehodách v ČR během ásledujícího týde, pak teoreticky eí staovea horí hraice pro y. Vhodý pravděpodobostí model pak představuje Poissoovo rozděleí. Poissoovo rozděleí má pouze jede jediý parametr. Tím je λ. Teto parametr udává jak středí hodotu tak rozptyl. Skutečost, že se středí hodota Poissoova rozděleí musí být shodá s rozptylem je velice důležitá, zvláště při modelováí ěkterých typů dat. Poissoova pravděpodobostí fukce je defiováa takto f(x; λ = e λ λ x. (4 x! 4

6 Distribučí fukce pak jako x e λ λ z F (x; λ = z! z=0. (5 Pokud áhodá veličia X sleduje Poissoovo rozděleí s parametrem λ pak píšeme X P o(λ. Jedou z cest jak defiovat Poissoovo rozděleí je pomocí aproximace biomickým rozděleím, a to za předpokladu, že je extrémě vysoké a π je blízko ule. Přesěji pokud, π 0, a π λ, pak biomické rozděleí s parametry a π aproximuje Poissoovo rozděleí s parametrem λ. Nebot lze biomickou pravděpodobostí fukci zapsat jako ( x π x ( π x! = ( x! πx ( π x A platí Dále platí a tedy = ( ( x+ x! π x ( π x ( = ( ( x+ x! x ( π = ( ( x + x! π ( x x ( π π ( ( x ( = ( ( x + x! (πx π = ( ( x+ x ( ( π x (π x x! π. π ( x π ( lim ( ( x + x = (7 lim π 0 ( π x =. (8 ( limπ π = e λ, (9 π λ (π x lim π λ = λx. (0 x! x! Čímž je dokázáo to, že pokud, π 0 a π λ, pak je pravděpodobostí fukce biomického rozděleí rova e λ λ x což je právě pravděpodobostí fukce Poissoova rozděleí. x!, x 5

7 Hypergeometrické rozděleí Náhodá veličia X má hypergeometrické rozděleí s parametry N, M,, jestliže má defiovaou pravděpodobostí fukci ásledujícím způsobem: P (X = x = { ( M x ( N M x ( N pokud x max(0, M N + ; mi(m, 0 jiak. ( Přičemž N, M, a x jsou přirozeá čísla, pro která platí M N a N. Uvědomte si, že faktoriál je defiová pouze pro ulu a přirozeá čísla. Výzam jedotlivých symbolů lze vysvětlit takto: Mějme N objektů, z ichž M má jistou sledovaou vlastost. Z takového souboru vybereme áhodě objektů, přičemž každá -tice vytvořeá z těchto N objektů má stejou pravděpodobost že bude vybráa. Pro malá /N přibližě pro /N 0, lze hypergeometrické rozděleí aproximovat biomickým rozděleím s parametrem p = M/N. V případě, že je /N a M/N malé a velké, řekěme /N 0,, M/N 0, a > 30, lze hypergeometrické rozděleí aproximovat tzv. Poissoovým rozděleím s parametrem λ = M/N. Uved me si jede příklad. Jaká je pravděpodobost, že správě zaškrteme a lístku SAZKY 3 čísla ze šesti, tj. výhry pátého místa ve sportce? Postupujme selským rozumem. Jev uhodutí 3 ze vyhrávajících astae tehdy, pokud ( se budou shodovat 3 čísla z vyhrávajících. Takových možých trojic je 3. Ostatí čísla, pak musí být čísla které evyhrávají, těch je 49 = 43. Takovýchto evýtězých trojic je tedy ( Nebot každá výtězá trojice může být ( zkombiováa s evyhrávající, pak počet všech vyhovujících výsledků je ( Celkový počet šestic které lze vytvořit z 49 čísel která jsou v osudí je. Pravděpodobost hledaé výhry je tedy: ( 49 ( ( P (X = 3 = ( 49. Připomíá Vám ěco teto výsledek? Měl by, ebot : ( M ( N M ( ( x x P (X = 3 = ( N = Normálí rozděleí V souvislosti s tímto rozděleím se lze setkat i s ázvem Laplace Gaussovo rozděleí. Patří mezi ejdůležitější spojitá rozděleí áhodých veliči a má zásadí výzam jak v statistické teorii, tak i v aplikacích. Lze říci, že tímto rozděleím lze popsat jevy, a jejichž kolísáí má vliv velký počet epatrých a vzájemě ezávislých vlivů. ( 49

8 Normálí rozděleí, jak bylo již výše zmíěo patří mezi ejužívaější pravděpodobostí modely. Tvar distribučí fukce odvodil a základě velkého počtu pokusů hodu micí fracouzský matematik Moivre již v roce 733. Zovu byla tato křivka objevea a základě chyb měřeí v astroomii a začátku 9. století, a byla pojmeováa po zámém ěmeckém matematikovi Carlu Friedrichovi Gaussovi ( Pojmeováí Normálí rozděleí, pak poprvé zavedl fracouzský matematik Quételet. Hustota pravděpodobosti tohoto rozděleí je dáa fukcí f(x = σ (x i µ π e σ pro x i (,. ( Jak je z výrazu patré, má toto rozděleí dva parametry µ a σ Normálí rozděleí s těmito parametry se zpravidla začí N(µ, σ, kde prví parametr je středí hodotou a druhý je rozptylem áhodé veličiy. Normálí rozděleí je symetrické kolem své středí hodoty, která je současě mediáem i modem. Pokud bychom hodoty áhodé veličiy X s ormálím rozděleím vhodě trasformovali resp. zormovali, pak bychom získali áhodou veličiu jejíž rozděleí bylo opět ormálí s jedotkovým rozptylem a ulovou středí hodotu. Tomuto rozděleí se říká ormovaé ormálí rozděleí a začíme jej N(0,. Distribučí fukce je stejě jako hustota pravděpodobosti tabelováa právě pro ormovaé ormálí rozděleí, ebot každé ormálí rozděleí lze trasformovat a ormálí ormovaé rozděleí. Tabulky hustoty pravděpodobosti spolu s distribučí fukcí jsou sestavey většiou pro ezáporé hodoty ormovaé veličiy U. Kde hodotu u i ormovaé veličiy U získáme trasformací u i = x i µ σ. (3 Hustotu ormovaého ormálího rozděleí důsledě ozačujeme symbolem ϕ(x. Distribučí fukci rozděleí N(0, důsledě ozačujeme prostředictvím symbolu φ(x. Hodoty pro x 0 plyou ze vztahů Dalším velmi důležitým vztahem je předpis Chi kvadrát rozděleí ϕ( x = ϕ(x, (4 φ( x = φ(x. (5 u α = u α. ( Uvažujme avzájem ezávislých áhodých veliči U, U,, U, z ichž každá má ormovaé ormálí rozděleí. Potom rozděleí součtu čtverců těchto áhodých veliči má χ rozděleí. Tedy χ = Ui. (7 i= 7

9 Součet čtverců vzájemě ezávislých ormovaých ormálích áhodých veliči má hustotu pravděpodobosti daou předpisem { χ f(x = Γ( e (χ, χ > 0 (8 0, χ 0 Kde fukce Γ( se azývá gama fukce, která je defiováa jako Γ( = Γ( = (! pro =, 4,, Γ( = 4 3 π pro = 3, 5, 7, (9 Parametr azýváme počtem stupňů volosti. V ašem případě mluvíme o χ rozděleí s stupi volosti, které začíme χ (. Distribučí fukce tohoto rozděleí je defiováa rovicí { χ e t F (x = Γ( t dt, χ > 0 0 (30 0, χ 0. Charakteristiky tohoto rozděleí jsou E(χ =, D(χ =. Frekvečí fukce χ rozděleí je asymetrická. Její průběh závisí a počtu stupňů volosti. S rostoucím se χ rozděleí blíží ormálímu rozděleí N(,. Pokud > 30 lze toto rozděleí aproximovat ormovaým ormálím rozděleím. Studetovo ebo také t-rozděleí Jedím z ejčastěji využívaým rozděleím je tzv. t-studetovo rozděleí. Lze jej defiovat pomocí dvou ezávislých áhodých veliči U a χ, které mají po řadě N(0, a χ ( rozděleí. Náhodá veličia t kde ta je defiováa jako má hustotu pravděpodobosti f(x; = Γ( + π Γ( t = U χ, (3 x + + ( x ( ;. (3 Rozděleí s touto hustotou pravděpodobosti se azývá t rozděleí, též Studetovo rozděleí o stupích volosti. Počet stupňů volosti veličiy χ ve jmeovateli veličiy t určuje počet stupňů volosti Studetova rozděleí. Rozděleí t při rostoucím počtu stupňů volosti rychle koverguje k ormálímu rozděleí. Pro > 30 lze ahradit Studetovo rozděleí ormálím ormovaým rozděleím. Studetovo rozděleí je symetrické jedovrcholové. Vzhledem k symetrii platí: t α ( = t α (. (33 8

10 Fisherovo Sedecorovo rozděleí Dalším hojě využívaým rozděleím je Fisherovo Sedecorovo rozděleí, zámé rověž jako F -rozděleí. Lze jej defiovat prostředictvím dvou ezávislých áhodých veliči které pocházejí z Chi-kvadrát rozděleí s m resp. stupi volosti. Náhodá veličia F je defiováa takto: F = χ m χ. (34 Rozděleí s touto hustotou pravděpodobosti se symbolicky zapisuje jako F (m,. Uvědomte si, že zde záleží a pořadí stupňů volosti m,. Nicméě platí vztah F α (m, = F α (, m. (35 Rozděleí F se při velkých počtech stupňů volosti blíží k rozděleí ormálímu, ale dosti pomalu. Toto rozděleí je asymetrické. 9

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Modely diskrétní náhodné veličiny. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Po(λ) je možné použít jako model náhodné veličiny, která nabývá hodnot 0, 1, 2,... a udává buď počet událostí,

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Přehled pravděpodobnostních rozdělení

Přehled pravděpodobnostních rozdělení NSTP097Statistika Zima009 Přehled pravděpodobnostních rozdělení Diskrétní rozdělení. Alternativní(Bernoulliovo, nula-jedničkové) rozdělení X Alt(p) p (0, ) X {0,} Hustota: P[X= j]=p j ( p) j, j {0,} Středníhodnota:

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

Teoretická rozdělení

Teoretická rozdělení Teoretická rozdělení Diskrétní rozdělení Obsah kapitoly Studijní cíle Doba potřebná ke studiu Pojmy k zapamatování Úvod Některá teoretická rozdělení diskrétních veličin: Alternativní rozdělení Binomické

Více

1. Pravděpodobnost a statistika (MP leden 2010)

1. Pravděpodobnost a statistika (MP leden 2010) 1. Pravděpodobnost a statistika (MP leden 2010) Pravděpodobnost pojmy 1. Diskrétní pravděpodobnostní prostor(definice, vlastnosti, příklad). Diskrétní pravděpodobnostní prostor je trojice(ω, A, P), kde

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBOST A STATISTIKA Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým rozděleím X ~D(), R má základí rostor Z = { } a ravděodobostí fukci: ( ) 1 0 Charakteristiky: středí hodota: E(X ) roztyl:

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Diskrétní rozdělení Vilém Vychodil KMI/PRAS, Přednáška 6 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 6) Diskrétní rozdělení Pravděpodobnost a

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

Prognóza poruchovosti vodovodních řadů pomocí aplikace Poissonova rozdělení náhodné veličiny

Prognóza poruchovosti vodovodních řadů pomocí aplikace Poissonova rozdělení náhodné veličiny Prognóza poruchovosti vodovodních řadů pomocí aplikace Poissonova rozdělení náhodné veličiny Ing. Jana Šenkapoulová VODÁRENSKÁ AKCIOVÁ SPOLEČNOST, a.s. Brno, Soběšická 156, 638 1 Brno ÚVOD Každé rekonstrukci

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

Tématické celky { kontrolní otázky.

Tématické celky { kontrolní otázky. Tématické celky kontrolní otázky. Základy teorie pravdìpodobnosti..pravdìpodobnostní míra základní pojmy... Vysvìtlete pojem náhody, náhodného pokusu, náhodného jevu a jeho mno- ¾inovou interpretaci. Popi¹te

Více

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení

Některé zákony rozdělení pravděpodobnosti. 1. Binomické rozdělení Přednáška 5/1 Některé zákony rozdělení pravděpodobnosti 1. Binomické rozdělení Předpoklady: (a) pst výskytu jevu A v jediném pokuse P (A) = π, (b) je uskutečněno n pokusů, (c) pokusy jsou nezávislé, tj.

Více

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Úvod do teorie pravděpodobnosti Náhoda a pravděpodobnost, náhodný jev, náhodná veličina rozdělení pravděpodobnosti

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text (srpen 2012) Miloslav Suchánek

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text (srpen 2012) Miloslav Suchánek CHEMOMETRIKA a STATISTIKA Prozatímí učebí text (srpe 01) Miloslav Sucháek 1. Základí pojmy Při hodoceí aalytických metod a výsledků ebo při formulaci fyzikálě-chemických modelů popisujících vztahy mezi

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely KABELY Pro drátové okruhy (za drát se považuje i světlovodé vláko): metalické kabely optické kabely Metalické kabely: osou veličiou je elektrické apětí ebo proud obvykle se jedá o vysokofrekvečí přeos

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF

ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Úloha číského listooše ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Uvažujme situaci, kdy exstuje ějaký výchozí uzel a další uzly spojeé hraami (může jít o cesty, ulice

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Test hypotézy o parametru π alternativního rozdělení příklad

Test hypotézy o parametru π alternativního rozdělení příklad Test hypotézy o parametru π alterativího rozděleí příklad Podik předpokládá, že o jeho ový výrobek bude mít zájem 7 % osloveých domácostí. Proběhl předběžý průzkum, v ěmž bylo osloveo 4 áhodě vybraých

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Fakulta elektrotechniky a informatiky Statistika STATISTIKA

Fakulta elektrotechniky a informatiky Statistika STATISTIKA Fakulta elektrotechky a formatky TATITIKA. ZÁKLADNÍ OJMY. Náhodý pokus a áhodý jev NÁHODNÝ OKU proces realzace souboru podmíek kde výsledek emůžeme předem ovlvt. - výsledek áhodého pokusu. - jev, který

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

Významná diskrétní rozdělení pravděpodobnosti

Významná diskrétní rozdělení pravděpodobnosti Alternativní rozdělení Příklad Střelec vystřelí do terče, pravděpodobnost zásahu je 0,8. Náhodná veličina X udává, jestli trefil: položíme X = 1, jestliže ano, a X = 0, jestliže ne. Alternativní rozdělení

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou

Více

FYZIKA 4. ROČNÍK. Optika. Základní vlastnosti světla. Optika - nauka o světle; Světlo je elmg. vlnění, které vyvolává vjem v našem oku.

FYZIKA 4. ROČNÍK. Optika. Základní vlastnosti světla. Optika - nauka o světle; Světlo je elmg. vlnění, které vyvolává vjem v našem oku. Základí vlastosti světla - auka o světle; Světlo je elmg. vlěí, které vyvolává vjem v ašem oku. Přehled elmg. vlěí: - dlouhé vly - středí rozhlasové - krátké - velmi krátké - ifračerveé zářeí - viditelé

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

35! n! n k! = n k k! n k! k! = n k

35! n! n k! = n k k! n k! k! = n k Do školí jídely přišla skupia 35 žáků. Určete kolika způsoby se mohli seřadit do froty u výdeje obědů. Řešeí: Počet možostí je 1 2... 35=35! (Permutace bez opakováí) Permutací bez opakováí z -prvkové možiy

Více

Drsná matematika IV 7. přednáška Jak na statistiku?

Drsná matematika IV 7. přednáška Jak na statistiku? Drsná matematika IV 7. přednáška Jak na statistiku? Jan Slovák Masarykova univerzita Fakulta informatiky 2. 4. 2012 Obsah přednášky 1 Literatura 2 Co je statistika? 3 Popisná statistika Míry polohy statistických

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

alternativní rozdělení Statistika binomické rozdělení bi(n, π)(2)

alternativní rozdělení Statistika binomické rozdělení bi(n, π)(2) Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara 5. listopadu 2007 1(178) binomické rozdělení Poissonovo rozdělení normální rozdělení

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů 1 7 KORELACE Pro vyádřeí itezity vztahů ezi složkai ξ ξ -rozěrého áhodého vektoru 1 ξ se používá korelačích koeficietů Data tvoří áhodý výběr z -rozěrého rozděleí áhodého vektoru ξ Neuvažue se obyčeě a

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

Náhodný výběr, statistiky a bodový odhad

Náhodný výběr, statistiky a bodový odhad Lekce Náhodý výběr, statistiky a bodový odhad Parametr rozděleí pravděpodobosti je ezámá kostata, jejíž přímé určeí eí možé. Nástrojem pro odhad ezámých parametrů je áhodý výběr a jeho charakteristiky

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

Diskrétní rozdělení Náhodná veličina má diskrétní rozdělení pravděpodobnosti, jestliže existuje seznam hodnot

Diskrétní rozdělení Náhodná veličina má diskrétní rozdělení pravděpodobnosti, jestliže existuje seznam hodnot Rozdělení Náhodná veličina Náhodná veličina je vyjádření výsledku náhodného pokusu číselnou hodnotou. Jde o reálnou funkci definovanou na množině. Rozdělení náhodné veličiny udává jakých hodnot a s jakou

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

Přednáška VIII. Testování hypotéz o kvantitativních proměnných Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA Poslední aktualizace: 29. května 200 STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PŘÍKLADY Pro zdárné absolvování předmětu doporučuji věnovat pozornost zejména příkladům označenými hvězdičkou. Příklady

Více

Slovo chaos se používá nejčastěji ve třech různých souvislostech: v řecké mytologii, v běžném smyslu a ve spojení

Slovo chaos se používá nejčastěji ve třech různých souvislostech: v řecké mytologii, v běžném smyslu a ve spojení 38 Determiistický chaos Determiistický chaos plod počítačové fyziky Pavel Pokorý Ústav matematiky, VŠCHT Praha, Techická 5, 66 8 Praha 6 Vysvětlíme tři hlaví výzamy slova chaos: v běžé řeči, v řecké mytologii

Více

Teorie chyb a vyrovnávací počet. Obsah:

Teorie chyb a vyrovnávací počet. Obsah: Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

2. Definice plazmatu, základní charakteristiky plazmatu

2. Definice plazmatu, základní charakteristiky plazmatu 2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se

Více

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ ÝMĚNA ZDUCHU A INTERIÉROÁ POHODA PROSTŘEDÍ AERKA J. Fakulta architektury UT v Brě, Poříčí 5, 639 00 Bro Úvod Jedím ze základích požadavků k zabezpečeí hygieicky vyhovujícího stavu vitřího prostředí je

Více

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více