Pracovní list č. 3: Pracujeme s kategorizovanými daty

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Pracovní list č. 3: Pracujeme s kategorizovanými daty"

Transkript

1 Pracovní lt č. 3: Pracujeme kategorzovaným daty Cíl cvčení: Tento pracovní lt je určen pro cvčení ke 3. a. přednášce předmětu Kvanttatvní metody B (.1 Třídění tattckých dat a. Číelné charaktertky tattckých dat). Procvčování e orentuje na zobrazení tattckých dat, tejně jako na výpočty číelných charaktertk. Během tohoto cvčení budete počítat kalkulačkou programem MS Ecel. Cílem cvčení je především čít a vytvářet tattky vznklé je dno tupňovým tříděním, pracovat tabulkam rozdělení četnotí, včetně rozdělení ntervalového a počítat číelně charaktertky tattckého ouboru (znaku). Předpoklady ke zvládnutí: Na tomto cvčení využjete tejně tak kalkulačku jako předem přpravené oubory v Ecelu. Opět nezapomeňte ještě před začátkem cvčení táhnout přílušný oubor a uložt na pracovní dk. Poté nantalujte Analytcké nátroje. 1.1 Pracujeme tabulkam četnotí Řešené příklady: 1

2 1. Neúplná tabulka četnotí popuje rozdělení počtu dětí pracovníků jedné počítačové frmy. b) Určete, kolk procent rodn zamětnanců frmy má mez a 3 dětm. Spočítejte průměrný počet dětí c) Vyjádřete varabltu pomocí měrodatné odchylky a varačního koefcentu. d) Porovnejte průměrný počet dětí, medán a modu. O čem to vypovídá? DĚTI četnot kumul. četnot 0 5% CELKEM ad a) Tabulku doplníme o chybějící údaje: DĚTI četnot kumul. četnot 0 6 5,0% 6 5,0% ,3% 1 58,3% 7 9,% 1 87,5% 3 8,3% 3 95,8% 1,% 100,0% CELKEM 100.0% X X ad b) Z tabulky lze přímo vyčít, že počet dětí mez a 3 má 9,% + 8,3% 37,5% pracovníků frmy. ad c) Průměrný počet dětí vypočteme jako vážený artmetcký průměr: ,33 Obdobně vypočteme rozptyl a měrodatnou odchylku: ( ,198 1, Nyní můžeme počítat varační koefcent: + 1 ) 1,33 70,536 1,198 3 V 1,09 0,8 8% 1,33 Vyoká hodnota varačního koefcentu značí značnou rozptýlenot počtu dětí. Střední hodnota (průměr) tedy není výtžným ukazatelem polohy znaku na číelné oe. ad d) průměr 1,33 medán modu 1 medán leží mez 1. a 13. prvkem, modu je nejčetnější obměna lze očekávat rozdělení mírně eškmené doprava ->převažují rodny malým počtem dětí Řešte na cvčení:. Neúplná tabulka četnotí popuje rozdělení známek ze tattky u tudentů. ročníku ekonomcké fakulty.

3 ZNÁMKA četnot kumul. četnot CELKEM b) Spočítejte průměrnou známku ze tattky a vyjádřete varabltu tohoto znaku pomocí měrodatné odchylky a varačního koefcentu. c) Porovnejte průměrnou známku, medán a modu. O čem to vypovídá? 3. Neúplná tabulka četnotí popuje rozdělení platů 00 pracovníků jednoho zemědělkého podnku. PLAT četnot kumul. četnot % % % % % % % % CELKEM b) Určete, kolk procent zamětnanců podnku má plat mez 0 a 30 tíc. c) Spočítejte průměrný plat a vyjádřete varabltu pomocí měrodatné odchylky a varačního koefcentu. d) Porovnejte průměrný plat zamětnance, medán a modu. O čem to vypovídá? Procvčte doma:. Byla vypracována tude vývoje tělené váhy mužů a žen ve věku 1 až let. Ze tude byly uveřejněny náledující výledky: věk muž ženy n n 1 ll 7,1 7, ,0 8, , 8,6 1 60,0 7, ,8 8, , 7, 88 7,0 8, ,8 7,8 Potvrďte č vyvraťte domněnku, že váha žen má menší relatvní varabltu než váha mužů. K výpočtu abolutní varablty využjte analýzu rozptylu. 3

4 Nápověda a výledky:. a) Doplněná tabulka četnot: ZNÁMKA četnot kumul. četnot ,3% 38 1,3% 76,5% 11 36,8% 3 1 5,8% 56 8,6% 5 17,% ,0% CELKEM ,0% X X b) Průměrná známka ze tattky je,68 e měrodatnou odchylkou 0,90; varační koefcent je 33,6%. c) Průměrná známka je,68, medán a modu je roven známce 3. Vztah mez tředním hodnotam navědčuje, že rozdělení je eškmené doleva, tj. v ouboru převažují tudent horším známkam. 3. a) Doplněná tabulka četnot: PLAT četnot kumul. četnot % 10 5% % 6 31% % 10 5% % 13 67% % % % 18 91% % 19 97% % % CELKEM % X X b) Mez 0 a 30 tíc má plat 8% pracovníků. c) Průměrný plat je Kč, měrodatná odchylka 8996 Kč, varační koefcent je,1%. Jde o odhady, v případě varablty podhodnocené. d) Odhad modu je Kč, odhad medánu je Kč. Oba ukazatele jou nžší než artmetcký průměr, což navědčuje rozdělení eškmenému doprava. V ouboru tedy převažují pracovníc nžším platy. Varační koefcent pro znak váha mužů je 11,%, pro znak váha žen 13,1%. Váha žen má tedy o něco málo vyšší relatvní varabltu než váha mužů. Původní předpoklad e nepotvrdl. 1. Analyzujte tabulky četnotí v Ecelu Procvčte doma: 5. V tabulce na ltu PLATY jou údaje o měíčních platech zamětnanců jedné frmy. a) Setrojte htogram rozdělení a pouďte základní vlatnot rozdělení. b) Určete průměrný plat, měrodatnou odchylku, medán a modu. K výpočtům tattk použjte odhady a nterpolační vzorce. Porovnejte e kutečnotí: průměr 385, měr. odchylka 995, medán 1650, modu V tabulce na ltu ZÁVODY jou údaje o koncernu, který e dělí na podnky a závody. a) Spočítejte pro všechny řádky tabulky počty a průměrné platy žen. b) Určete pro všechny ukazatele ouhrny za jednotlvé podnky a za celý koncern. c) Vezměte jako výchozí tabulku podnků a znovu počítejte ouhrnné ukazatele za celý koncern. Porovnejte!

5 1.3 Od číelných charaktertk k bo plotu (opět v Ecelu) V tabulce na ltu STUDENTI najdete databáz e známkam tudentů z matematky a tattky. a) Spočítejte průměrnou známku z matematky a tattky a odhadněte, která zkouška je na první pohled těžší. b) Spočítejte a porovnejte varabltu obou známek. O čem to vypovídá? c) Setrojte pro oba předměty bo plot a popšte, co vdíte. d) Rozdělte tabulku podle typu třední školy a počítejte třední hodnotu a varabltu obou známek pro jednotlvé typy škol. Poté z těchto vypočtených údajů počítejte ouhrnné údaje a porovnejte výledky ad a) a b). 5

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl ČVUT FEL X16FIM Fnanční Management Semestrální projekt Téma: Optmalzace zásobování teplem Vypracoval: Marek Handl Datum: květen 2008 Formulace úlohy Pro novou výstavbu 100 bytových jednotek je třeba zvolt

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Doporučené aplikace stanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb.

Doporučené aplikace stanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb. Doporučené aplikace tanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb. 1 Metodické pokyny pro určení množtví elektřiny z vyokoúčinné

Více

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA

5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA 5 ST ADATEL, FONDOVATEL, ZÁSOBITEL, NESTEJNÉ PENùÎNÍ PROUDY, REÁLNÁ ÚROKOVÁ MÍRA Střadatel se používá pro výpočet úroku na konc období, kdy jste pravdelně ukládal stejnou částku, ve stejný okamžk, po určté

Více

Zpráva o stavu a rozvoji modelu pro předvídání vzdělanostních potřeb ROA - CERGE v roce 2004

Zpráva o stavu a rozvoji modelu pro předvídání vzdělanostních potřeb ROA - CERGE v roce 2004 Zpráva o tavu a rozvoji modelu pro předvídání vzdělanotních potřeb ROA - CERGE v roce 2004 vypracováno pro čát grantového projektu Společnot vědění - nároky na kvalifikaci lidkých zdrojů a na další vzdělávání

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Základy finanční matematiky

Základy finanční matematiky Hodna 38 Strana 1/10 Gymnázum Budějovcká Voltelný předmět Ekonome - jednoletý BLOK ČÍSLO 6 Základy fnanční matematky ředpokládaný počet : 5 hodn oužtá lteratura : Frantšek Freberg Fnanční teore a fnancování

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

Hodnocení účinnosti údržby

Hodnocení účinnosti údržby Hodnocení účnnost ekonomka, pojmy, základní nástroje a hodnocení Náklady na údržbu jsou nutné k obnovení funkce výrobního zařízení Je potřeba se zabývat ekonomckou efektvností a hodnocením Je třeba řešt

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Číslo pojistné události ÚDAJE O POJIŠTĚNÉM. Název pojištění: Číslo pojistné smlouvy: Příjmení a jméno: Místo narození: Pohlaví: Muž Žena

Číslo pojistné události ÚDAJE O POJIŠTĚNÉM. Název pojištění: Číslo pojistné smlouvy: Příjmení a jméno: Místo narození: Pohlaví: Muž Žena Čílo pojitné událoti Prezentační razítko Oznámení pojitné událoti Pracovní nechopnot Pokyny pro vyplnění formuláře: 1. Vyplňte formulář ve všech bodech. zapomeňte vyplnit čílo pojitné mlouvy. 2. U políček

Více

Zápočtové úkoly Statistika II PAEK, LS 2014 2015

Zápočtové úkoly Statistika II PAEK, LS 2014 2015 Zápočtové úkoly Statistika II PAEK, LS 2014 2015 Pokyny Každý student odevzdává domácí úkol sám za sebe. Odevzdání proběhne přes systém moodle v předmětu Statistika II PaEK (ESE74E) přes odkaz Zápočtový

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

David Prušvic 1 Jiří Přibyl 2. VÚPSV Praha 2006

David Prušvic 1 Jiří Přibyl 2. VÚPSV Praha 2006 Komparace zatížení pracovních příjmů reprezentativních typů domácnotí zamětnanců v Čeké a Slovenké republice oobní důchodovou daní a přípěvky na ociální zabezpečení David Prušvic 1 Jiří Přibyl 2 VÚPSV

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Veletrh nápadů učitelů fyziky Souprava pro pokusy z : optiky opliky Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Seznam součástí číslo kusů název obr.č. 1 1 kyveta 1 2

Více

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR

aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické dostupnosti bydlení v ČR 1 aktivita A0705 Metodická a faktografická příprava řešení regionálních disparit ve fyzické

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu

Více

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Pracovní list - Žárovka a zářivka

Pracovní list - Žárovka a zářivka Pracovní list - Žárovka a zářivka Než začnete měřit, nejděte důležité údaje na žárovce a zářivce Zářivka Napětí: U = V Příkon: P 0 = W Žárovka Napětí: U = V Příkon: P 0 = W Odhadněte, které osvětlení je

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

Matlab & Simulink. studijní materiály pro předmět Základy kybernetiky. Libor Kupka

Matlab & Simulink. studijní materiály pro předmět Základy kybernetiky. Libor Kupka Matlab & Simulink tudijní materiály pro předmět Základy kybernetiky Libor Kupka Obah Předmluva... 5 Úvod... 7 Základy práce v protředí MATLAB... 9. Práce v příkazovém řádku...3. Proměnné v MATLABu...5.3

Více

6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU

6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU 6. ZÁSOBOVÁÍ 6.1. Bilance materiálu 6.2. Propočty potřeby materiálu 6.3. Řízení záob (plánování záob) Záobování patří mezi velmi ůležité ponikové aktivity. Při řízení záob e jená v potatě o řešení tří

Více

Znamená vyšší korupce dražší dálnice? Evidence z dat Eurostatu. Michal Dvořák *

Znamená vyšší korupce dražší dálnice? Evidence z dat Eurostatu. Michal Dvořák * Znamená vyšší korupce dražší dálnce? Evdence z dat Eurostatu Mchal Dvořák * Článek je pozměněnou verzí práce Analýza vztahu mez mírou korupce a cenovou úrovní nfrastrukturních staveb, kterou autor zakončl

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné.

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné. Měření rizika Podnikatelské riziko představuje možnost, že dosažené výsledky podnikání se budou kladně či záporně odchylovat od předpokládaných výsledků. Toto riziko vzniká např. při zavádění nových výrobků

Více

pracovní list BIOMECHANIKA 1 Běhy do schodů Potřebné vybavení: stopky (na mobilu), kalkulačka

pracovní list BIOMECHANIKA 1 Běhy do schodů Potřebné vybavení: stopky (na mobilu), kalkulačka BIOMECHANIKA 1 Běhy do schodů pracovní list Potřebné vybavení: stopky (na mobilu), kalkulačka 1. Vyberte ze skupiny nejtěžšího a nejlehčího žáka a zapište si jejich hmotnost. 2. Stopněte oběma čas, za

Více

Softwarová podpora matematických metod v ekonomice a řízení

Softwarová podpora matematických metod v ekonomice a řízení Softwarová podpora matematckých metod v ekonomce a řízení Petr Sed a Opava 2013 Hrazeno z prostředků proektu OPVK CZ.1.07/2.2.00/15.0174 Inovace bakalářských studních oborů se zaměřením na spoluprác s

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

- 1 - Zdeněk Havel, Jan Hnízdil. Cvičení z Antropomotoriky. Obsah:

- 1 - Zdeněk Havel, Jan Hnízdil. Cvičení z Antropomotoriky. Obsah: - - Zdeněk Havel, Jan Hnízdl Cvčení z Antropomotorky Obsah: Úvod... S Základní charakterstky statstckých souborů...3 S Charakterstka základních výběrových technk a teoretcká rozložení četností...9 S 3

Více

Indexy, analýza HDP, neaditivnost

Indexy, analýza HDP, neaditivnost Indexy, analýza HDP, neaditivnost 1.) ŘETĚZOVÉ A BAZICKÉ INDEXY 1999 2000 2001 2002 Objem vkladů (mld. Kč) 80,8 83,7 91,5 79,4 a) určete bazické indexy objemu vkladů (1999=100) Rok 1999=100 báze. Pro rok

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201

[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201 6.. Gonometrcký tvar kompleních čísel I Předpoklad: 07, 09, 60 Pedagogcká poznámka: Gonometrcký tvar kompleních čísel není pro student njak obtížný. Velm obtížné je pro student s po roce vzpomenout na

Více

Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám. Práce se standardním aplikačním programovým vybavením tabulkový procesor

Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám. Práce se standardním aplikačním programovým vybavením tabulkový procesor Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Číslo projektu: CZ.1.07/1.5.00/34.0883 Název projektu: Rozvoj vzdělanosti Číslo šablony: III/2 Datum vytvoření: 4. 4. 2013 Autor: Určeno

Více

Tiskové sestavy. Zdroj záznamu pro tiskovou sestavu. Průvodce sestavou. Použití databází

Tiskové sestavy. Zdroj záznamu pro tiskovou sestavu. Průvodce sestavou. Použití databází Tiskové sestavy Tiskové sestavy se v aplikaci Access používají na finální tisk informací z databáze. Tisknout se dají všechny objekty, které jsme si vytvořili, ale tiskové sestavy slouží k tisku záznamů

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 TS Matematika pro 2. stupeň ZŠ Terasoft Celá čísla Celý program pohádkový příběh Království Matematikán se závěrečným vyhodnocením Zobrazení čísel na ose Zápis čísel zobrazených na ose Opačná čísla na

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz Počítáme v Excelu v rekordním čase Druhé, aktualizované vydání Vladimír Bříza Vydala Grada Publishing, a.s. U Průhonu 22, Praha 7 jako svou 2787.

Více

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách ROZKLAD ROZPTYLU ROZKLAD ROZPTYLU Rozptyl se dá rozložit na vnitroskupinový a meziskupinový rozptyl. Celkový rozptyl je potom součet meziskupinového a vnitroskupinového Užívá se k výpočtu rozptylu, jestliže

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Autor Mgr. Lenka Střelcová Tematický celek Trojúhelníky Cílová skupina 2.ročník SŠ Anotace Materiál má podobu pracovního listu s ukázkovými úlohami, pomocí nichž si žáci procvičí své znalosti o základních

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST MAIZD15C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

OSTRAVSKÁ UNIVERZITA P ř írodově decká fakulta. Biostatistika I. Pavel Drozd

OSTRAVSKÁ UNIVERZITA P ř írodově decká fakulta. Biostatistika I. Pavel Drozd OSTRAVSKÁ UIVERZITA P ř írodově decká fakulta Bostatstka I. Pavel Drozd OSTRAVA 003 OBSAH Úvod...5 Orentace v tetu...6 Bostatstka a její význam...7 Co to je bostatstka?...7 Stručná hstore statstky...9

Více

Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN RESEARCH / DATA

Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN RESEARCH / DATA Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN RESEARCH / DATA Modul FADN RESEARCH je určen pro odborníky z oblasti zemědělské ekonomiky. Modul neomezuje uživatele pouze na předpřipravené

Více

194/2007 Sb. Vyhláška

194/2007 Sb. Vyhláška 194/2007 Sb. Vyhláška ze dne 17. července 2007, kterou se stanoví pravdla pro vytápění a dodávku teplé vody, měrné ukazatele spotřeby tepelné energe pro vytápění a pro přípravu teplé vody a požadavky na

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Assessment of the Sensitivity of the Regulatory Requirement for Credit Risk. Posouzení citlivosti regulatorního kapitálu na kreditní riziko

Assessment of the Sensitivity of the Regulatory Requirement for Credit Risk. Posouzení citlivosti regulatorního kapitálu na kreditní riziko Assessment of the Senstvty of the Regulatory Requrement for Credt Rsk Posouzení ctlvost regulatorního kaptálu na kredtní rzko Josef Novotný 1 Abstract The paper s devodet to concept of Captal adequacy

Více

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR Vlastimil Kratochvíl * Příspěvek obsahuje popis vlastností některých postupů, využitelných pro transformaci souřadnic mezi geodetickými systémy

Více

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok

IES FSV UK. Domácí úkol Pravděpodobnost a statistika I. Cyklistův rok IES FSV UK Domácí úkol Pravděpodobnost a statistika I Cyklistův rok Radovan Fišer rfiser@gmail.com XII.26 Úvod Jako statistický soubor jsem si vybral počet ujetých kilometrů za posledních 1 dnů v mé vlastní

Více

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 Regresní analýza 1. Byla zjištěna výška otců a výška jejich nejstarších synů [v cm]. otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 c) Odhadněte

Více

Rozpracovaná verze testu z makroekonomie s částí řešení

Rozpracovaná verze testu z makroekonomie s částí řešení Rozpracovaná verze testu z makroekonomie s částí řešení Schéma čtyřsektorového modelu ekonomiky Obrázek 1: Do přiloženého schématu čtyřsektorového modelu ekonomiky doplňte chybějící toky: YD (disponibilní

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Metody volby financování investičních projektů

Metody volby financování investičních projektů 7. meznárodní konference Fnanční řízení podnků a fnančních nsttucí Ostrava VŠB-T Ostrava konomcká fakulta katedra Fnancí 8. 9. září 00 Metody volby fnancování nvestčních projektů Dana Dluhošová Dagmar

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 ILUSTRAČNÍ MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 POČET TESTOVÝCH POLOŽEK: 16 MAXIMÁLNÍ POČET BODŮ: 50 (100%) ČASOVÝ LIMIT PRO ŘEŠENÍ TESTU: 60 minut POVOLENÉ POMŮCKY ŘEŠITELE: psací

Více

Standardní dokumenty Stanovení referenční spotřeby energie

Standardní dokumenty Stanovení referenční spotřeby energie Standardní dokumenty Stanovení referenční spotřeby energie European Energy Service Initiative EESI IEE/08/581/SI2.528408 Duben 2011 Výpočet referenční spotřeby Výpočet referenčních hodnot spotřeby energie

Více

Gymnázium, Ostrava-Poruba, Čs. exilu 669

Gymnázium, Ostrava-Poruba, Čs. exilu 669 Gynáziu, Otrava-Poruba, Č. exilu 669 STUDIJNÍ OPORA DISTANČNÍHO VZDĚLÁVÁNÍ ŘEŠENÍ FYZIKÁLNÍCH ÚLOH ANTONÍN BALNAR Otrava 005 Recenze: prof. RNDr. Erika Mechlová, CSc. Publikace byla vytvořena v ráci projektu

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav stavební mechanky Doc. Ing. Zdeněk Kala, Ph.D. MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES TEZE

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Mida Set ODNÍMATELNÉ, VYSOCE PŘESNÉ MĚŘÍCÍ RAMENO PRO ZAMĚŘENÍ A KONTROLU NÁSTROJŮ NA SOUSTRUZÍCH. Výhody. Dotykové sondy.

Mida Set ODNÍMATELNÉ, VYSOCE PŘESNÉ MĚŘÍCÍ RAMENO PRO ZAMĚŘENÍ A KONTROLU NÁSTROJŮ NA SOUSTRUZÍCH. Výhody. Dotykové sondy. Mida et Programové vybavení Laser Ramena pro Přenosové systémy ODNÍMTELNÉ, VYOCE PŘENÉ MĚŘÍCÍ RMENO PRO ZMĚŘENÍ KONTROLU NÁTROJŮ N OUTRUZÍCH Marposs MID et TM je měřící rameno včetně spínací měřící hlavy

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko pro podporu jakosti Stanovení měr opakovatelnosti a reprodukovatelnosti při kontrole měřením a srovnáváním Ing. Jan Král Úvodní teze Zásah do procesu se děje na základě měření.

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

PŘÍKLAD NA TŘÍDĚNÍ DLE JEDNOHO SLOVNÍHO ZNAKU

PŘÍKLAD NA TŘÍDĚNÍ DLE JEDNOHO SLOVNÍHO ZNAKU PŘÍKLAD NA TŘÍDĚNÍ DLE JEDNOHO SLOVNÍHO ZNAKU Pracovník, který spravuje podnikovou databázi, exportoval do tabulkového procesoru všechny pracovníky podniku Alfa Blatná s některými sledovanými atributy

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 276/2004 Sb. kterou se mění vyhláška č. 343/2002 Sb., o postupu

Více

PSK3-4. Přístupová práva. setfacl z balíčku acl.)

PSK3-4. Přístupová práva. setfacl z balíčku acl.) PSK3-4 Název školy: Autor: Anotace: Vzdělávací oblat: Předmět: Tematická oblat: Výledky vzdělávání: Klíčová lova: Druh učebního materiálu: Vyšší odborná škola a Střední průmylová škola, Božetěchova 3 Ing.

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN BASIC

Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN BASIC Internetový přístup do databáze FADN CZ - uživatelská příručka Modul FADN BASIC Modul FADN BASIC je určen pro odbornou zemědělskou veřejnost bez větších zkušeností s internetovými aplikacemi a bez hlubších

Více

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK 1. Na základě údajů uvedených v tabulce rozhodněte, zda existuje závislost mezi roky a počtem firem ve Šluknovském výběžku, které zaměstnávaly osoby zdravotně

Více

Poměrová čísla zvolíme podle poměru spotřeby času: 1. velikost 1 min. 2. velikost 1,2 min. (1,8 / 1,5) 3. velikost 2 min.

Poměrová čísla zvolíme podle poměru spotřeby času: 1. velikost 1 min. 2. velikost 1,2 min. (1,8 / 1,5) 3. velikost 2 min. Kalkulace nákladů pokračování Kalkulace dělením s poměrovými čísly, kalkulace přirážková, ve sdružené výrobě, odečítací, rozčítací, rozdílová, normová metoda a metoda ABC 1c) Kalkulace dělením s poměrovými

Více

Příprava pro lektora

Příprava pro lektora Příprava pro lektora stanoviště aktivita pomůcky 1 typy oblačnosti podle manuálu Globe stanov typy mraků na obrázcích pokryvnost oblohy vytvoř model oblohy s 25% oblačností, použij modrý papír (obloha)

Více

VÝPOČET HLAVNÍCH ROZMĚRŮ ČTYŘTAKTNÍHO SPALOVACÍHO MOTORU

VÝPOČET HLAVNÍCH ROZMĚRŮ ČTYŘTAKTNÍHO SPALOVACÍHO MOTORU Pítový alovací troj je teelný otor, kde e čát energie vzniklá álení aliva řeění v tlakovou energii. Tato energie oocí vhodného echaniu e ění v echanickou energii. Jako nejoužívanější echaniu k řeěně tlakové

Více

Měření solventnosti pojistitelů neživotního pojištění metodou míry solventnosti a metodou rizikově váženého kapitálu

Měření solventnosti pojistitelů neživotního pojištění metodou míry solventnosti a metodou rizikově váženého kapitálu Měření solventnost pojsttelů nežvotního pojštění metodou míry solventnost a metodou rzkově váženého kaptálu Martna Borovcová 1 Abstrakt Příspěvek je zaměřen na metodku vykazování solventnost. Solventnost

Více

3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze

3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze 3. SPLAVENINY VE VODNÍCH TOCÍCH VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proce vodní eroze DRUHY A VLASTNOSTI SPLAVENIN Rozdělení plavenin: Plaveniny: do 7mm (překryv v 0,1 7,0 mm dle unášecí íly τ 0

Více

U každé úlohy je uveden maximální počet bodů.

U každé úlohy je uveden maximální počet bodů. MATEMATIKA MPZD1C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 1 Maximální bodové hodnocení: 0 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 0 minut.

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více