3. cvičení 4ST201 - řešení

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "3. cvičení 4ST201 - řešení"

Transkript

1 cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty Ig. Jaa Feclová Přílad 3..: V meze jme ledoval dva toly, u terých edělo hodě6 trávíů. Sledoval jme počet ědeých ovocých edlíů. U prvího tolu jme zjtl hodoty:,,,,8,8. U druhého tolu jme zjtl hodoty,,,,,. Co byte řel o obou tolech? Průměrý počet ězeých edlíůje u obou tolůhodý. Ale lšíe mmálía mamálíhodoty ědeých edlíů. Lšíe tedy odchyly od průměru. Můžeme říc, že e oba toly hodují v poloze, ale lší e ve varabltě. Uveďte ja e od ebe lšímíry polohy a míry varablty? Proču datových ouborů ledujeme tyto míry, jaéám udávajíformace? Ilutrujte a předchozím příladě. Míry polohy charaterzujítypcou hodotu v ouboru. Varablta ám uazuje, ja moc e jedotlvéhodoty od ebe odlšují. Tuto odlšot ledujeme vzdáleotíjedotlvých hodot od průměru. Tuto vzdáleot můžeme pouzovat více metodam. Pro á ejdůležtějšíje průměrávadratcáodchyla ledovaých hodot od průměru, teráje záladem rozptylu. Rozptyl hodot je záladímírou varablty.

2 VŠE urz 4ST0 Míry varablty Ig. Jaa Feclová Najděte ve vzorcích áledující tatty: Vše alezete a 3 VŠE urz 4ST0 Míry varablty Abolutí míry varablty Ig. Jaa Feclová. Varačírozpětí: R ma m. Rozptyl: ( ) 3. Směrodatáodchyla: Relatví míry varablty 4. Varačíoefcet: V 4

3 VŠE urz 4ST0 Ig. Jaa Feclová Míry varablty záladí přílad Přílad 3..:Sledoval jme dva tudety Adama a Evu. Oba e přpravoval a.tet ze tatty celem dí. Zajímalo á, ol hod deě e a tet přpravoval. U Adama jme zjtl áledující hody:,,,,0 a u Evy,4,3,4,. Poute e popat přípravu a tet Adama a Evy. Pro aždého počítejte áledující míry :. Průměr. Medá 3. Rozptyl 4. Varačí rozpětí. Varačí oefcet Z výledůpopšte, ja e Adam a Eva přpravujía tet. Zute využít vše, co jte vypočítal. VŠE urz 4ST0 Řešeípříladu 3..: ~ [ ], 4 ( ) ( 3) + ( 3) + ( 3) + ( 3) + ( 0 3) R ma m 0 9 V 3,, 3 Ig. Jaa Feclová Adam máprůměrou deípřípravu 3 hody, přeto vdíme, že jeho rozptyl je,4. Je vdět, že e eučítablěa píše echáváučvo a jede de. Adam V ~ [ ] 0, 8 ( ) ( 3) + ( 3) + ( 3 3) + ( 4 3) + ( 4 3) R ma m 4 0,89 0,3 3 Eva je plátudeta, taée učítř hody deě. Ale vdíme, že jejíroztpyl je pouze 0,8. Je vdět, že e učí pravdělěa tablě. Eva 6

4 VŠE urz 4ST0 Ig. Jaa Feclová Rozptyl 7 ( ) ( ) ( ) p * p p Záladí tvar Výpočtový tvar Z eetříděých dat Ze etříděých dat pomocí abolutích četotí Ze etříděých dat pomocí relatvích četotí Podívejte e do vzorců! VŠE urz 4ST0 Ig. Jaa Feclová Rozptyl - přílad 8 Přílad 3.3.: Opět budeme počítat rozptyl hod, teré věuje přípravě e tudu Adam. Použjte jý tvar rozptylu ežte, terý jme užíval př prvím výpočtu. Vyjdou rozptyly tejě? Vypočítejte rozptyl v SASu. Přílad 3.4.: V teretovéavárějme ledoval dobu, po terou etrval ávštěvíc a teretu v průběhu jedoho de. Zjtl jme, že ze všech podělích záazíů byla: / záazíů a teretu hodu / záazíů a teretu hody /4 záazíů a teretu 4 hody Zbyte záazíůbyl a teretu 30 mut. Jaá je měrodatá odchyla hod, teré tráví záazíc a teretu?

5 VŠE urz 4ST0 Řešeípříladu 3.3.: Ig. Jaa Feclová Co to je? 07,4 9,4 Řešeípříladu 3.4.: p p [ / + / + 4 / /0] [ / + / + 4 / /0],837(,07),8374,3,3,3,4 9 VŠE urz 4ST0 Rozlad rozptylu Ig. Jaa Feclová Máme-l datový oubor, terý je rozděle a upy a jou-l zadaéupovéčetot, upovéprůměry a upovérozptyly, počítáme celový rozptyl pomocírozladu rozptylu a mezupovou a vtroupovou varabltu. A B Mezupová AB,,,, -,0,,0, Vtroupová A Vtroupová C Mezupová AC C,,,, Mezupová CB Vtroupová B 0

6 VŠE urz 4ST0 Rozlad rozptylu - vzorec Ig. Jaa Feclová Poud máme tattcý oubor o jedote rozděle do dílčích podouborů, de záme dílčírozptyly, dílčíprůměry a dílčíčetot, potom rozptyl celého ouboru je dá oučtem rozptylu upových průměrů a průměru ze upových rozptylů. Podívejte e do vzorců! j j ( ) + ( ) ˆ * * VŠE urz 4ST0 Ig. Jaa Feclová Rozlad rozptylu záladí přílad Přílad 3..: Sledujeme dvěcuráry, terévyrábějítejý záue, terý e jmeuje Dooalépotěšeí. Curára Na růžu vyrábí ročě 000 těchto záuů, průměrá cea za ro je Kč, cea máměrodatou odchylu. Curára U Jauba vyrábí ročě 00 těchto záuů, průměrá cea za ro Kč, cea máměrodatou odchylu. Spočítejte varačíoefcet cey záuu Dooalépotěšeí za obědvěcuráry, terý bude vyjadřovat, ja varablta cey záuu olíáběhem celého rou.

7 VŠE urz 4ST0 Řešeí příladu 3..: Curára Na Růžu : 000 Curára U Jauba : 00 ( ) * + + * Celový rozptyl rozptyl upových průměrů+ průměr upových rozptylů * uto dopočítat celový průměr ze upových průměrů Ig. Jaa Feclová ( ) * ( 3,3) * 000 ( 3,3) + ˆ * * , * *000 + * , , +,3 4, 4,, * V,, 3,3 0,6 Relatvívarablta cey vyjádřeávaračím oefcetem je 6%. V průběhu rou olíácea Dooalého potěšeí blízo průměrécey. 3 VŠE urz 4ST0 Rozlad rozptylu těžší přílad Ig. Jaa Feclová Přílad. 3.6.:Byla vypracováa tude vývoje těleéváhy mužůa že ve věu -4 let. Ze tude byly uveřejěy áledujícívýledy. Potvrďte č vyvraťte předtavu autorůo tom, že váha že mámeší relatvívarabltuežváha mužů. Nápověda: Relatví varabltu určujeme varačím oefcetem jao podíl celové měrodaté odchyly a celového průměru. Jou l data zadáa jao v tomto příladě(tj. průměry a měrodaté odchyly v jedotlvých upách) muíme použít výpočtu celový rozptyl, terý ložíme ze dvou čátí (vtroupovou a mezupovou). Křešeívyužjte rozlad rozptylu a vtroupový a mezupový. 4

8 VŠE urz 4ST0 Řešeí příladu 3.6.: Ig. Jaa Feclová Potup řešeí je detcý jao v příladu 3.. Náledový potup je zpracová v ecelu (oubor je ulože a webu). Relatvívarablta těleéváhy je u mužůžšíežu že. VŠE urz 4ST0 Výpočet změy rozptylu Ig. Jaa Feclová Přílad 3.7.: Zeptal jme e 0 ldí, ol utratía váte vatého Valetýa za dáry pro védrahépolovčy. Zjtl jme průměrou ceu 0 Kča měrodatáodchyla cey 00 Kč. Vypočítejte:. Zjtl jme u dvou ldí špatě zapaou ceu. Míto cey 00Kč měla být zazameáa cea 40 míto cey 300 mělo být zapáo 400. Ja e změíledovaý průměr a rozptyl?. Poud e zeptáme avíc ještětříldí, teříodpověděl 00 Kč, 0 Kča 00 Kč. Ja e tetorát změíprůměr a cea? 6

9 VŠE urz 4ST0 Řešeí příladu 3.7.: Ig. Jaa Feclová. * tarý ± Δ 0* ± Δ 0 tarý ový tarý ,3 (,) 00, Pro výpočet NOVÉHO rozptylu: záme NOVÉ, NOVÝ průměr, ale ezáme NOVOU SUMU Výpočet NOVÉ umy X ( 0) Staré Nové * tarý ± Δ 0* ± Δ tarý ový tarý 43 Výpočet NOVÉ ( 43) umy X ( ) 00 0 Staré Nové VŠE urz 4ST0 Ig. Jaa Feclová Rychléopaováípopétatty a doma: Př. 3.8.:U tudetůz VŠE a UK bylo zoumáo ol čau věujítýdětudu. V ouboru data_cv03_opaova.a7bdatjou uvedeázjštěádata.. Vytvořte tabulu četotí pro celý ouboru(ručě v SASu). Vytvořte tabulu četotí pro aždou vyoou šolu zvlášť(ručě v SASu) 3. Vypočítejte průměrý ča věovaý tudu za cele za jedotlvéšoly(ručě v SASu). 4. Vypočítejte celový průměrý ča pomocí průměrů v jedotlvých šolách.(ručě). Spočítejte medá, horí a dolí vartl za celý oubor.(ručě v SASu) 6. Spočítejte rozptyl a měrodatéodchyly pro aždou šolu zvlášť(ručě v SASu) a to: a) Pro VŠE počítejte z eroztříděých dat (bez použtí tabuly četotí) b) Pro UK počítejte z roztříděých dat ( použtím tabuly četotí) 7. Spočítejte varačí a vartlové rozpětí pro celý oubor. A jdeme z popé tatty a pravděpodobot. 8

10 VŠE urz 4ST0 Řešeí rychlého opaováí a doma: Výledy: do bude mít problém výpočty ebo jý dotaz, přjďte a KH. Ig. Jaa Feclová 9 VŠE urz 4ST0 Ig. Jaa Feclová Děuj za pozorot! Poud budete mít jaéolv dotazy č přpomíy, pšte m a mal ebo přjďte do ozultačích hod aždý páte 9:00-:00 JM37. 0

3. cvičení 4ST201. Míry variability

3. cvičení 4ST201. Míry variability cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Pracovní list č. 3: Pracujeme s kategorizovanými daty

Pracovní list č. 3: Pracujeme s kategorizovanými daty Pracovní lt č. 3: Pracujeme kategorzovaným daty Cíl cvčení: Tento pracovní lt je určen pro cvčení ke 3. a. přednášce předmětu Kvanttatvní metody B (.1 Třídění tattckých dat a. Číelné charaktertky tattckých

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot

Více

1 STATISTICKÁ ŠETŘENÍ

1 STATISTICKÁ ŠETŘENÍ STATISTICKÁ ŠETŘENÍ Záladem aždého tattcého zoumáí jou údaje (data). Lze je zíat v záadě dvěma způoby. Buď je převzít z ějaého zdroje ebo je am zjtt. Seudárí data údaje, teré převezmeme z růzých zdrojů;

Více

Téma 3: Popisná statistika

Téma 3: Popisná statistika Popá tatta Téma : Popá tatta Předáša 7 Záladí tattcé pojmy Pojem a úoly tatty Statta je věda, teá e zabývá zíáváím, zpacováím a aalýzou dat po potřeby ozhodováí. Zoumá tav a vývoj homadých jevů a vztahů

Více

Dvourozměrná tabulka rozdělení četností

Dvourozměrná tabulka rozdělení četností ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI Přílad 0.6 Pracoví, terý spravuje podovou databáz, eportoval do tabulového procesoru všechy pracovíy podu Alfa Blatá s ěterým sledovaým

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č.

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č. Mendelova zemědělsá a lesnicá univerzita Provozně eonomicá faulta Výpočet charateristi ze tříděných údajů Statistia I. protool č. 2 Jan Grmela, 2. roční, Eonomicá informatia Zadání 130810, supina Středa

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

Jednoduchá lineární závislost

Jednoduchá lineární závislost Jedoduchá leárí závlot Regreí fuce: ),...,, ( 0 m f Předpolad: Fuce je leárí v parametrech: ) (... ) 0 ( 0 f f m m f 0 ()... f m () regreor 0... m regreí parametr určujeme METODOU NEJMENŠÍCH ČTVERCŮ Regreí

Více

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1

0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1 ) Urči záladí veliost úhlu v radiáech, víš-li, že platí: a) si cos 0. b) cos, Opravá zouša z matematiy 3SD (druhé pololetí) c) cotg 3 5b) ) Na možiě R řeš rovici cos cos 0. 4b) 3) Vzdáleost bodů AB elze

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická

Více

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.)

Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.) Aktvta Semář základů tattky a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tříděí Základí metoda tattckého zpracováí. Sekupováí hodot proměé, které jou z hledka klafkačího

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.

SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem restart. To oceníme při opakovaném použití dokumentu. Úloha 1 - Koupě nového televizoru SPOTŘEBITELSKÝ ÚVĚR Chceme si oupit nový televizor v hodnotě 000,-Kč. Bana nám půjčí, přičemž její úroová sazba činí 11%. Předpoládejme, že si půjčujeme na jeden ro a

Více

ú ú ú ú úč Š ú Š ú š Č š ú Š š Ř Ý Č ž Š ú Č ó ú ž š šť ž Š ž ž ž Š ž ú ó ž ú Š š š ú š Š Š Š ú ť ú š Š ú ú ú Ř Ý Á Š É š Č Ó Ó Ť Ě Ť š Ý Ů Č Š Ř Š Ě Ý š Č ó ó ú ď Á ó ž ú ž ú Ó Á Ý Á Á š Ť ť ť ť Ť š

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

ú čá á ú á Í á č é ú Ť á ě ů ů á Žá Í á ú ě é ě č á č ú ě é é č Í ú ě č ú ě ů čá čá ě ú é ů ě á é ů Í ě Í ě ú Í č ú ě č ě č ú ě é ů é é čú é é č ě é ě é é é č č ú ě ě é č ě č ě Í á ů č ě ě ů ú é é ú é

Více

1.1.14 Rovnice rovnoměrně zrychleného pohybu

1.1.14 Rovnice rovnoměrně zrychleného pohybu ..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace Název: Kombiatoria Autor: Mgr. Haa Čerá Název šoly: Gymázium Jaa Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: matematia a její apliace Ročí: 5. ročí Tématicý cele: Kombiatoria a pravděpodobost

Více

1.5.7 Prvočísla a složená čísla

1.5.7 Prvočísla a složená čísla 17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu Apliace margiálích áladů Oceňováí ztrát v distribučím rozvodu Učebí text předmětu MES Doc. Ig. J. Vastl, CSc. Celové ročí álady a ztráty N P ( T ) z z sj z wj Kč de N z celové ročí álady a ztráty *Kč+

Více

ě ú ě ú ů ě ů ě é ú ž ú ě Ú ů ů ě é š ů ě ě Ú ě ě ě ň é ň é Ú é é ěž é é ž Ú ž ž ž ů ě ě ž ě é ě ě ů é ň Č ž é Č ě Č ň ů ú ěž ú ú Č Ú ě ú ů Ú ě ú ě ů Ú é é ě é ú ě ú Ú ě é ú ú ů ú ď Č Ř é ě ú ů ů ě ě š

Více

4. Třídění statistických dat pořádek v datech

4. Třídění statistických dat pořádek v datech 4. Třídění statstcých dat pořáde v datech Záladní členění statstcých řad: řada časová, řada prostorová, řada věcná věcná slovní řada, věcná číselná řada. Záladem statstcého třídění je uspořádání hodnot

Více

Ř Í Ř Ý Ú Á Ř Í Í Í Ř Ř Á É Í Ě Ě Š Ř Ů Ř Ý Á Ř Á É Á Á Á Á Ý č ú é Í š č ž Š Á ý ý ý ý č é é é Ř Ř Í é Š é é Í ó č é ů ý é Í č Í Š é é é š ý ů é ý Ó Í Í ý ý č é ú Í ý ý Úč Í Ř Ř ů ý ý ší čů Í ů Í é čá

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

2. TEORIE PRAVDĚPODOBNOSTI

2. TEORIE PRAVDĚPODOBNOSTI . TEORIE PRAVDĚPODOBNOSTI V prax se můžeme setat s dvojím typem procesů. Jeda jsou to procesy determstcé, u terých platí, že př dodržeí orétích vstupích podmíe obdržíme přesý, předem zámý výslede (te můžeme

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1. Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé

Více

Příloha č. 1 Část II. Ekonomika systému IDS JMK

Příloha č. 1 Část II. Ekonomika systému IDS JMK Příloha č. 1 Část II. Eonomia systému IDS JMK Květen 2011 Eonomia systému IDS JMK I. EKONOMICKÉ JEDNOTKY Pro účely dělení výnosů je rozděleno území IDS JMK do eonomicých jednote tvořených supinami tarifních

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí

Více

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených. Kombiatoria Kombiatoria část matematiy, terá se zabývá růzými číselými "ombiacemi". Využití - apř při hledáí počtu možých tipů ve sportce ebo jiých soutěžích hrách, v chemii při spojováí moleul... Záladím

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků 2. Sě ěšováí a ředěí roztoů vyučováí áte z roztoů Sožeí ě áte ůžee vyadřovat poocí hototích zoů edotvých áte (ože ě). Hototí zoe -té ožy e defová ao poěr eí hotot hotot ě : (2) Pode záoa zachováí hotot

Více

8.2.2 Vzorce pro aritmetickou posloupnost Předpoklady: Př. 1: Př. 2: Př. 3:

8.2.2 Vzorce pro aritmetickou posloupnost Předpoklady: Př. 1: Př. 2: Př. 3: 8 Vzoce po itmeticou poloupot Předpoldy: 80 Př : Po itmeticou poloupot pltí 5 ; d Uči čle iž by učovl Mohli bychom pomocí vzoce po -tý čle učit čle p pomocí tejého vzoce učit i Teto potup zzuje zdáí příldu

Více

š č ů š ň č č Ú Ú č č č č Ú ú Ú č ž č Ž Ý Í š Š č Ž ú Í Š ú Č Í Á ÍÁ č ší č š ž č č ů ů č č ň č č ů Ž ú ž č ů č č ů š Š č č č ů ů ů č ž č š š č č Ž č č č š Í č č č čů š š ž š ž č č č č č Í ž ú Í Ž č ů

Více

Í Í Ů Č ř ů ř Í ú ů ř ú ř ů ů ů ř ú ů Ť ž ů Š ř Š ů ř ř ů ř ů ř ů ú ž ž ú ň ž ř Ú Ž Í ž ř ř É Ť Ň Ř ř ů ů ž ů Ý Ř Ě ř ž ř ř Ý ů ř ř ů ř ú ů ů ž ů Č ř ž ř ř ů ř ř Ý ř ř ř ž ř ů ž ž ž ď ů ř ů ů ů ů ž ů Í

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Měření na trojfázovém transformátoru naprázdno a nakrátko.

Měření na trojfázovém transformátoru naprázdno a nakrátko. Úol: Měřeí a trojfázovém trasformátoru aprázdo a aráto. 1. Změřte a areslete charateristiy aprázdo trojfázového trasformátoru 2,, P, cos = f ( 1) v rozmezí 4-1 V. Zdůvoděte průběh charateristi 2 = f (

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

9 Kombinatorika, teorie pravděpodobnosti a matematická statistika

9 Kombinatorika, teorie pravděpodobnosti a matematická statistika 9 Kombatora, teore pravděpodobost a matematcá statsta Te, do argumetue průměrým platem, e s velou pravděpodobostí vysoce adprůměrý vůl s hluboce podprůměrým vzděláím (Mloslav Drucmüller) 9. Kombatora Kombatora

Více

a) Hypotézy o parametru jedné populace (o stední hodnot, mediánu, rozptylu, relativní

a) Hypotézy o parametru jedné populace (o stední hodnot, mediánu, rozptylu, relativní TESTOVÁNÍ HYPOTÉZ a ke tudu kaptoly: 8 mut Cíl Po protudováí tohoto odtavce budete: zát základí pojmy a prcpy tetováí hypotéz zát kocepc klackého tetu umt rozhodovat pomocí tého tetu výzamot umt pooudt

Více

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA UNIVERZIT PLCKÉHO V OLOMOUCI PŘÍROOVĚECKÁ FKULT KTER LGEBRY GEOMETRIE OSVĚTLENÍ VE STŘEOVÉM PROMÍTÁNÍ LINEÁRNÍ PERSPEKTIVĚ Bakalářká práce Vedoucí práce: RNr. Leka Juklová, Ph.. Rok odevdáí 202 Vypracovala:

Více

9 Skonto, porovnání různých forem financování

9 Skonto, porovnání různých forem financování 9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je

Více

Ů Ř É Ř ž ů č ý Ř ž ě č š Ú ě č č ý š ě ě ě š ó ů ý š ě ě š ř ů č ř š ů č ů ř š ů ó ě ů ř úč Í ě ě ý Ř ě ě š ý ř Úč ě ě ě ň š ř ě úč ů ý ů ě ř ě ě č ň ý ý ě ý ě ž ě č ěř ů č ý ů Ř ř š Ř ě š ý ě č čů ž

Více

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ Příkld 0: Nvrhěte pouďte protě uložeou oelobetoovou tropii rozpětí 6 m včetě poouzeí trpézového plehu jko ztreého beděí. - rozteč tropi m - tloušťk betoové dek elkem 00 mm - oel S 5 - beto C 0/5 - užité

Více

Ý Á Á ů Č Ú É Ř Ž É Ř Ř Š Ř Á ů Č ň ň Š Š Č Š ň Č ů ť Č Č Ú Č ú Ů ň ů ů Č ů Č Š Š Š ň Š Č ň ň ů Č ů Č Š ú ň ů ů ú ú ú ů ú ň ů ú ů Ř ů Š Č Š Č Š ů Š ú ú ú ť ů ú ů ů ů ň ů ů ú ó ú ň ú ň ň ú ó ó ó Č Č Č ů

Více

Jednotlivé mezivýsledky, získané v prbhu analýzy rozptylu, jsou prbžn a systematicky zaznamenávány v tabulce ANOVA. Prmrný tverec. volnosti SS B.

Jednotlivé mezivýsledky, získané v prbhu analýzy rozptylu, jsou prbžn a systematicky zaznamenávány v tabulce ANOVA. Prmrný tverec. volnosti SS B. Ing. Martna Ltschmannová Statsta I., cvení ANOVA Rozšíením dvouvýbrových test pro stední hodnoty je analýza rozptylu nebol ANOVA, terá umožuje srovnávat nol stedních hodnot nezávslých náhodných výbr. Analýza

Více

2.5.10 Přímá úměrnost

2.5.10 Přímá úměrnost 2.5.10 Přímá úměrost Předpoklady: 020508 Př. 1: 1 kwh hodia elektrické eergie stojí typicky 4,50 Kč. Doplň do tabulky kolik Kč stojí růzá možství objedaé elektrické eergie. Zkus v tabulce ajít zajímavé

Více

elektrické filtry Jiří Petržela základní pojmy

elektrické filtry Jiří Petržela základní pojmy Jiří Petržela základí ojmy základí ojmy z oblati elektrických filtrů základí ojmy elektrický filtr je lieárí dvojbra, který bez útlumu roouští je určité kmitočtové ložky, které obahuje vtuí igál rouštěé

Více

Í é čá í á ř í á ó ř é ď ň í á é č é ř á í á á á í í á á á á ď á é č á ó ů č á í ů č é é í Í é ů é ř í í ů í ď é ř é é í é í é é é á č é á á á é í ů í é á é Á Í Š Í É é á é í íčí ů Í ů é á á í ř é á é

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl: 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND.

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND. Pravděpodobnostn podobnostní charateristiy diagnosticých testů, Bayesův vzorec Prof.RND RND.Jana Zvárov rová,, DrSc. Náhodný pous, náhodný n jev Náhodný pous: výslede není jednoznačně určen podmínami,

Více

Ž é é ť Ů ž š é Ž Ú Ú ť ď Ň Ě ž Ž Ú Ú ó é Ž é ó Ž ó š š Á é é é ž ó Ž Á ó ó É š š Ž ť Ú Ě Á ó ž ž é é é ž é ž š ť Ú Ž ť Ťť Ů Ú ť ď ď š š š Ž Ú Ú Ť ó š ó ó ó ó ó Ú Ť ó Ť ó Ž Ú Ě Ó ó Ú é ó ť Ý ů é Ž Ž Ý

Více

É ú ž ž č ž ů ý ů ř ů ý ň ú ň č ůč Ž ř č ý ů Í ý č Ž ř č ř č ší ý ů ř š š ů ř Ž š ů č č ň Í ý ř š š č Ž š š ý č Ž č š ú Ž ř Š Ž Í ů ř č š č č ůč Ž ř Í č č ý Í ř ý č š Ž Š š Ž ř č Í ý úč ý ý ř š ý š ř Ž

Více

4. KRUHOVÁ KONVOLUCE, RYCHLÁ FOURIEROVA TRANSFORMACE (FFT) A SPEKTRÁLNÍ ANALÝZA SIGNÁLŮ

4. KRUHOVÁ KONVOLUCE, RYCHLÁ FOURIEROVA TRANSFORMACE (FFT) A SPEKTRÁLNÍ ANALÝZA SIGNÁLŮ 4. KRUHOVÁ KOVOLUCE, RYCHLÁ FOURIEROVA TRASFORMACE FFT A SEKTRÁLÍ AALÝZA SIGÁLŮ Kruová cylcá ovoluce Ryclá Fourerova trasformace Aplace DFT a aalogové sgály, frevečí aalýza perodcýc aalogovýc sgálů s využtím

Více

ě ě Č ě ř ý ě Č ý ě ů ř ý ý Č Č Ú Ř É ř ů ů ř ú ě ě Č Č Č ř ž ř ř ú Ř Ý ř ž ř ř ř ú Ě Á Ú Č Á Ř Ý Í ř ř ů ě ž ř ž Á ý Á Á ř ř ř ú ě ů ů ě ě Č ř ů ř ů ř ž ó ř ů ř ů ů ě ě Č ě ó ř ř ý ě ř ů ř ř ě ó ř ř ý

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech)

Poznámky k tématu Korelace a jednoduchá lineární regrese (Téma není ve skriptech) Pozámk k tématu Koelace a jedoduchá leáí egee (Téma eí ve kptech) Mějme data, ),...,(, ), kteá jou áhodým výběem z ějaké populace. Data ted pokládáme za ezávlé ealzace dvojce áhodých velč ( X, Y ). Půmě

Více

10 - Přímá vazba, Feedforward

10 - Přímá vazba, Feedforward 0 - Přímá vazba, Feedforward Michael Šebek Automatické řízeí 03 4--3 Motivace (FF podle Atroma) Automatické řízeí - Kberetika a robotika Už máme avržeu zpětovazebí čát Chceme zajitit přeo referece rový

Více

Ů á č č Ů č Ů č č á č Ě č ň Ď č č č ď ň ř č Ž č Ů Ů č č Ů Ž č č Ý Ú Ž Ú Ú Ů Ď Ů ť Č Ů č Ý Ů Ž Ů Ď Ě č Ě Ů Ů Ě Ě Ě č Ž Ě č č č á ť Ů č Ě Ž č č ňř č č č ť č č Ď Ů č Ě č Ž č ĚĎ Ž č č Úč Ů ť ť ť č Ě Ž Ě č

Více

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha FINANČNÍ MATEMATIA Jarmila Radová BP VŠE Praha Osova Jedoduché úročeí Diskotováí krátkodobé ceé papíry Metody vedeí a výpočtu úroku z běžého účtu Skoto Složeé úrokováí Budoucí hodota auity spořeí Současá

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

ď Í Ú Č č č č Š ě č Š š ě ě ů Č ě ě ó ž ě š ď ó š č ě č č ů ň óč ě ě č š ě ž ž š š čň š š ů ú ů ž š ůž ě č Š ú ě ě Ž š Ž č č ú č ůč Š č ě š č č ú ě Š č š ě š ě š ě š ě š Ž č ě ě č č č č ě č ě ů č č ů ě

Více

Ě Á ČÁ Úř ě é úř š é š ě Ž ř ř Í ř ě é Ž Ž é ě ř é ř é ě é éř ě š š ě ě ř ř é ň ě š ň ž ř ě é é ž é é ř é ě é ě ř é ř ž ť ě é ř ě é ř š úř ú ř é ě š ě ě š ř ř é ě ě é ďě é úř ě ě ě ěř ž š Č úř é ž Ž š

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

Á Ě č Ý Úč Ř ů ů č č č č ú ů Ž é ž ž ú ů ů ů č š č š ť č é č č č š č ž Úč é é úč é úč č ů č č ů é ú Ž é ůč ň š úč ž úč ž é úč č č ž Č ů č úč č š Í ú č é Č č ť Ř Í Í Č č č ú ů ů é Í č Ú ú ů ů é é Í č Ž

Více

Zhotovení strojní součásti pomocí moderních technologií

Zhotovení strojní součásti pomocí moderních technologií Útav Strojírené technologie Zadání: Speciální technologie č. zadání: Cvičení Zhotovení trojní oučáti poocí oderních technologií Poznáy: Pro zadanou trojní oučát (hotový výrobe) dle pořadového číla viz

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více