Buněčný cyklus, spojení se signálními cestami a molekulární mechanismy onkogeneze
|
|
- Filip Bárta
- před 8 lety
- Počet zobrazení:
Transkript
1 Buněčný cyklus, spojení se signálními cestami a molekulární mechanismy onkogeneze MUDr. Jiří Vachtenheim, CSc. Přehled regulace buněčného cyklu Základní terminologie: Cycliny evolučně konzervované proteiny s homologními oblastmi; jejich buněčná hladina výrazně osciluje během buněčného cyklu vlivem transkripční regulace a různě rychlé degradace proteinu. Cycliny jsou katalytické podjednotky aktivních cyklin-cdk komplexů. CYKLINY A, B1, D(1,2,3), E Cyclin-dependentní kinázy (cdks) protein-kinásy vyžadující jako katalytickou podjednotku cyklin a jejich aktivita je regulována fosforylací a defosforylací a pomocí cdk-inhibitorů. CDK 1,2,3,4,6,7 Cdc25 fosfatasy defosforylují cdk na N-konci a tím je aktivují. Substráty cyklin-cdk komplexů nejdůležitější je the retinoblastoma protein (Rb). Rb rodina: Rb, p107, p130. Cdk inhibitory váží se na a inaktivují cyclin-cdk complexy. E2F transkripční faktory heterodimery E2Fs (1-5) a DPs (1,2) aktivují transkripci genů důležitých pro syntézu DNA. Aktivita E2F transkripčních faktorů je inhibována Rb proteinem, event. p107 a p130. Pouze de(hypo)fosforylovaný Rb protein inhibuje tuto transkripční aktivitu. Po fosforylaci cyklin-dependentními kinasami je Rb protein inaktivní. Cílové promotery pro E2F: DNA polymerasa α, dihydrofolát-reduktasa, thimidin kinasa, Cyclin E, cyclin A, c-myc, E2F-1 (pozitivní zpětná vazba), cdc6. 1
2 Přehled cyklin-cdk komplexů a regulace během buněčného cyklu Fáze buň. cyklu Cyclin-cdk komplex inhibitor aktivace Substrát(y) G1 Cyklin D/cdk 4,6 p16 family, p21 family CAK, Cdc25A Rb protein G1/S Cyklin E/cdk 2 p21 family CAK, Cdc25A Rb protein, NPAT, cdc6 S Cyklin A/cdk 2 (Cyklin A/cdk 1) p21 family CAK, Cdc25 Rb protein, pre- RC, E2F G2/M Cyklin B/cdk 1 (Cyklin A/ cdk 1) (cdk1= cdc2) p21 family CAK, Cdc25C Mitotické proteiny (APC, laminy, kondensiny) Cdk inhibitory INK4 rodina: p16 (INK4a), p15 (INK4b) p18 (INK4c) p19 (INK4d) Inhibují pouze cyclin D/cdk 4,6 complexy p21 (Cip1) family p21 (Cip1, WAF1), p27 (kip1), p57 (Kip2) Univerzální inhibitory, inhibují cyklin D/cdk 4,6 complexy i cyklin E/cdk2 a cyklin A/cdk2 complexy. p14arf (p19arf u myši) stabilizuje p53 protein 2
3 3
4 Nefosforylovaný Rb blokuje transkripci Vysoká hladina E2F sekvestruje Rb od promoteru Fosforylace Rb komplexy cdk-cyklin inaktivuje Rb Onkogenní proteiny DNA virů inaktivují Rb Absence E2F-1 znemožňuje vytvoření represorového komplexu RB-E2F Buněčné procesy, které mají následek vystoupení z buněčného cyklu nebo přechodný blok v buněčném cyklu. Diferenciace. Diferencované buňky jsou vetšinou v G0 fázi buněčného cyklu. Terminální diferenciace norm. nedovoluje návrat do buněčného cyklu (neurony, myocyty). Diferencované buňky mají specifickou morfologii a exprimují specifické markery pro příslušnou tkáň. Blok a výstup z buněčného cyklu je zprostředkován tkáňově specifickými transkripčními faktory, které aktivují expresi blokátorů buněčného cyklu (např. inhibitorů cdk) Senescence (buněčné stárnutí). Replikativní senescence má za následek výstup z buněčného cyklu do G0 fáze. Z tohoto stavu nejsou norm. buňky schopny vrátit se do buněčného cyklu. Senescentní buňky mají specifickou morfologii a exprimují specifické markery. Buňky: normální imortalizované - transformované Checkpoints buněčného cyklu. Přechodný blok v buněčném cyklu po signálu (např. poškození DNA) Trvalé defekty v regulaci buněčného cyklu: Trvale porušená regulace buněčného cyklu u nádorových buněk. Většinou porucha regulace v G1 fázi a/nebo porucha kontrolních bodů 4
5 Cell cycle checkpoints (kontrolní body buň. cyklu) Checkpoints umožňují zpomalit nebo zastavit buněčný cyklus při poškození DNA, neúplné replikaci nebo chybě při sestavování mitotických chromosomů. - restriction point regulační bod v G1 fázi, po kterém je již buňka předurčena k dokončení buněčného cyklu nezávisle na přítomnosti mitogenů. - DNA replication checkpoint (v G2/M) buňka kontroluje v G2 fázi, zda nedošlo k chybám při replikaci a zda replikace byla kompletní. Po replikaci dojde vždy k mitóze, ale výjimečně v některých buňkách dochází k endoreduplikaci (opakování replikace bez mitózy). - spindle assembly checkpoint zajišťuje správnou segregaci chromosomů při mitóze. - DNA damage checkpoint(s) při poškození DNA může buňka zpomalit nebo zastavit cyklus v G1, S, i G2 fázi. Cytokinesa: konečný stupeň dělení buněk oddělení cytoplasmy 5
6 Analýza fází buněčného cyklu pomocí průtokové cytometrie 6
7 Anaphase promoting complex (APC) Je nutný pro dokončení mitózy a segregaci chromosomů. Specifický komplex umožňující rychlou degradaci proteinů. Signální cesty mitogenů a receptorů růstových faktorů konvergují při positivní regulaci G1 fáze (vstupu do S-fáze). 7
8 Přechod G1 S 1. Retinoblastoma protein: Rb >>> P-Rb aktivní inaktivní 2. Akumulace konc. cyklinů a cdk kinas, které fosforylují Rb Cyklin D-cdk 4,6 Cyklin E-cdk 2 Cyklin A-cdk 2 Akumulace proteinů nutných pro syntézu DNA: Thymidin kinasa, DNA polymerasa a, DHFR, cyklin A, cyklin E. Promotery jsou aktivovány E2F. 8
9 MAPK signální cesta zahrnuje kaskádu fosforylací třemi hlavními kinázami, Raf, MEK a ERK: RAS signalizace (ras: H-ras, K-ras, N-ras GTP-vázající membránové proteiny, s GTPázovou aktivitou), aktivní forma: GTP-ras (mutované ras proteiny jsou konstitutivně aktivní) u nádorů) RAF = MAP kinase kinase kinase (MAPKKK) MEK = MAP kinase kinase (MAPKK) ERK = MAP kinase (MAPK), extracelulárně regulovaná kináza (extracellular signalregulated kinase) proteinové substráty 9
10 Poruchy funkce regulátorů buněčného cyklu u nádorových buněk Cykliny: Cyklin D amplifikace genu, zvýšená exprese Cyklin E zvýšená exprese, porušená degradace Cyklin-dependentní kinasy: Cdk4 amplifikace, zvýšená exprese, mutace Cdk6 zvýšená exprese, amplifikace Cdc25A zvýšená exprese Rb protein: Mutace, delece = ztráta funkce Cdk inhibitory: p16(ink4a) mutace, delece, methylace promoteru = snížená exprese (p21, p27 zvýšená degradace) p53 protein bodové mutace Familiární formy nádorů Gen Lokus Somatické mutace u nádorů Rb 13q14 Retinoblastom osteosarkom, SCLC, p53 17p13 Syndrom Li-Fraumeni, většina nádorù NF1,2 17q11; 22q12 Neurofibromatosa typ 1,2 neurofibrom,.. p16 9p21 "Familiární" melanom melanom, ca. pankreatu, ca. plic,... WT1 11p13 Wilmsův tu. Další geny: BRCA 1,2, FHIT, APC, VHL, p300 10
11 ONKOGENY x SUPRESOROVÉ GENY Aktivace buněčných onkogenů: - bodové mutace (ras) - zvýšená exprese (transkripce) (jun,neu,.) - amplifikace genu (myc, myb, EGFR, cyklin D1.) - translokace do blízkosti silného promotoru/enhanceru (c-myc) - vytvoření chimerického proteinu translokací Abl-Bcr t(9;22) Pax3-FKHR t(2;13) - zvýšená stabilita proteinu bodové mutace a fúze translokací: vznik dominantního onkogenu Inaktivace supresorových genů: - bodové mutace (Rb, p53) - delece různého rozsahu (od několika bazí po ztrátu lokusu (LOH) - snížená exprese (transkripce) methylace promoteru (p16) - zvýšená degradace proteinu (p53 x mdm2) Genom retroviru: 2 identické molekuly RNA (každá 35S), cap na 3 -konci, polya na 5- konci sekvence RNA kóduje: gag - strukturní proteiny virové kapsidy pol - reverzní transkriptasu (+ proteasu) env - virový obal R U5 S.d. Ψ Gag Pol Env U3 R 11
12 Onkogenní DNA viry. Virus: Onkoprotein: Genom (kb): SV-40 virus large T Ag 5 Polyomavirus middle T (large T) 5 Adenoviry (Ad12) E1a (E1b) 35 Papilomaviry (HPV16) E7, E6 8 Hepatitis B viry Herpesviry, Epstein-Barr virus Poxviry Ras-signalizace RAS proteiny mohou být aktivovány (např. změna aminokyseliny v pozici 12 a 13 u K-ras, 61 u H- ras), a stanou se tak onkogenními mutace časté v nádorových buňkách. Fyziologicky jsou RAS proteiny aktivovány signálními cestami, např. epidermálním růstovým faktorem přes EGFR (=EGF receptor). Při hyperstimulaci ras proteiny aktivují checkpoint který má za následek blok v G1 fázi buněčného cyklu za předpokladu, že ostatní proteiny regulující buň. cyklus nejsou mutovány nebo inaktivovány (p16, p14arf, p53) Tento ras-indukovaný blok připomíná blok v b. cyklu při senescenci. Jestliže ras signální cesta je hyperstimulována (např. mutací) při současné inaktivaci supresorového genu (p16, p14arf, p53) nastává deregulace buněčného cyklu a vznik nádoru (u myší). Ras aktivita je za fyziologických podmínek nutná pro překonání G1/S bariéry, stimulací ras se zvyšuje hladina cyklinu D. Ras aktivuje: MAPK signální cestu a PI3K signální cestu (PIP3 Akt kináza důsledkem je zvýšená hladina cyklinu D posttranskripčně, translokace p21 a p27 do cytoplasmy). 12
13 13
14 14
15 Knock-out myši: GENOTYP FENOTYP Rb -/- embryon. letalita poruchy diferenciace nervových a krevních b., zvýš. apoptosa, abn. mitosy, pituitární tumory E2F-1 -/- viabilní ---> dysplasie exokrinních žláz, testikul. atrofie, pozdní nádory Ink4a lokus -/- viabilní ---> predisposice k tu. (fibrosarkom, lymfom) (p16 Ink4a +p19arf) p19arf -/- viabilní predisposice k tu. (fibrosarkom, lymfom) p16 Ink4a -/- viabilní zvýšená incidence tu. (melanom), hyperplasie thymu p21 -/- normální fibroblasty defektní v kontrole G1 fáze p27 -/- gigantismus, hyperplasie mnoha tk., pituitární tu, dysplasie retiny p53 -/- zvýšená incidence nádorů různých typů (zejména lymfomy a sarkomy) p107 -/- normální p130 -/- normální p107 -/-, p130 -/- neonatální letalita defekty ve vývoji končetin p300 -/- nebo CBP -/- embryon. letalita embryon. fibroblasty rostou pomalu 15
Buněčný cyklus a molekulární mechanismy onkogeneze
Buněčný cyklus a molekulární mechanismy onkogeneze Imunofluorescence DAPI Přehled regulace buněčného cyklu Základní terminologie: Cycliny evolučně konzervované proteiny s homologními oblastmi; jejich
BUŇEČNÝ CYKLUS A JEHO KONTROLA
BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
ONKOGENETIKA. Spojuje: - lékařskou genetiku. - buněčnou biologii. - molekulární biologii. - cytogenetiku. - virologii
ONKOGENETIKA Spojuje: - lékařskou genetiku - buněčnou biologii - molekulární biologii - cytogenetiku - virologii Důležitost spolupráce různých specialistů při detekci hereditárních forem nádorů - (onkologů,internistů,chirurgů,kožních
Onkogeny a nádorové supresory
Onkogeny a nádorové supresory Historie Francis) Peyton Rous (October 5, 1879 February 16, 1970) He made his seminal observation, that a malignant tumor growing on a domestic chicken could be transferred
Buněčný cyklus. When a cell arises, there must be a previous cell, just as animals can only arise from animals and plant from plants.
Buněčný cyklus When a cell arises, there must be a previous cell, just as animals can only arise from animals and plant from plants. (Rudolf Wirchow, 1858) Buněčný cyklus cyklus buněčných procesů začínajících
Apoptóza Onkogeny. Srbová Martina
Apoptóza Onkogeny Srbová Martina Buněčný cyklus Regulace buněčného cyklu 1. Cyklin-dependentní kináza (Cdk) cyclin Regulace buněčného cyklu 2. Retinoblastomový protein (prb) E2F Regulace buněčného cyklu
INTRACELULÁRNÍ SIGNALIZACE II
INTRACELULÁRNÍ SIGNALIZACE II 1 VÝZNAM INTRACELULÁRNÍ SIGNALIZACE V MEDICÍNĚ Příklad: Intracelulární signalizace: aktivace Ras proteinu (aktivace receptorové kinázy aktivace Ras aktivace kinázové kaskády
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
MUDr. Iva Slaninová, Ph.D. Biologický ústav LF MU
Onkogeny,, nádorové supresory, onkogenní viry MUDr. Iva Slaninová, Ph.D. Biologický ústav LF MU Rakovina je výsledkem porušení překážek buněčné proliferace. Jsou 2 základní skupiny genů, jejichž poruchy
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY 1 VÝZNAM BUNĚČNÉ TRANSFORMACE V MEDICÍNĚ Příklad: Buněčná transformace: postupná kumulace genetických změn Nádorové onemocnění: kolorektální karcinom 2 3 BUNĚČNÁ TRANSFORMACE
Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno
Retinoblastom Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno Retinoblastom (RBL) zhoubný nádor oka, pocházející z primitivních
arise from animals and plant from
Buněčný cyklus When a cell arises, there must be a previous cell, just as animals can only arise from animals and plant from plants. (Rudolf Wirchow, 1858) Jediným způsobem jak může vzniknou nová buňka
růstu a buněčného dělění
Buněčný cyklus - principy regulace buněčného Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění Mitóza Průběh mitózy v buněčné kultuře fibroblastů Buněčný cyklus Kinázy závislé na cyklinech
EPIGENETIKA reverzibilních změn funkce genů, Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická
EPIGENETIKA Epigenetika se zabývá studiem reverzibilních změn funkce genů, aniž by při tom došlo ke změnám v sekvenci jaderné DNA. Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická
Nádorová transformace buněk. Marie Kopecká, Biologický ústav LF MU Brno 2006
Nádorová transformace buněk. Marie Kopecká, Biologický ústav LF MU Brno 2006 Nádorová transformace linie myších fibroblastů 3T3 pomocí lidské nádorové DNA (=transfekce transfekce) DNA isolovaná z lidských
Senescence v rozvoji a léčbě nádorů. Řezáčová Martina
Senescence v rozvoji a léčbě nádorů Řezáčová Martina Replikační senescence Alexis Carrel vs. Leonard Hayflick and Paul Moorhead Diferencované bb mohou prodělat pouze omezený počet dělení - Hayflickův limit
Biomarkery - diagnostika a prognóza nádorových onemocnění
Biomarkery - diagnostika a prognóza nádorových onemocnění O. Topolčan,M.Pesta, J.Kinkorova, R. Fuchsová Fakultní nemocnice a Lékařská fakulta Plzeň CZ.1.07/2.3.00/20.0040 a IVMZČR Témata přednášky Přepdpoklady
Buněčný cyklus, onkogeny a nádorové supresory
Buněčný cyklus, onkogeny a nádorové supresory Barbora Fialová, Jan Bouchal a Jiří Ehrmann Laboratoř molekulární patologie LF UP http://lmp.upol.cz Přehled 1) Rozdělení buněčného cyklu, jeho iniciace a
Buněčné jádro a viry
Buněčné jádro a viry Struktura virionu Obal kapsida strukturni proteiny povrchove glykoproteiny interakce s receptorem na povrchu buňky uvnitř nukleocore (ribo )nukleova kyselina, virove proteiny Lokalizace
Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU
BUNĚČNÝ CYKLUS Buněčné dělení Cykliny a na cyklinech závislé proteinkinázy (Cyclin- Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího systému buněčného cyklu 8 cyklinů
8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů
Buněč ěčné dělení BUNĚČ ĚČNÝ CYKLUS ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU cykliny a na cyklinech závislé proteinkinázy (Cyclin-Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Elementy signálních drah. cíle protinádorové terapie
Elementy signálních drah cíle protinádorové terapie Martin Pešta, Ondřej Topolčan Department of Internal Medicine II, Faculty of Medicine in Pilsen, Charles University in Prague, Czech Republic Cílená
Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění
Buněčný cyklus - principy regulace buněčného růstu a buněčného dělění Mitóza Dr. B. Duronio, The University of North Carolina at Chapel Hill Buněčný cyklus Kinázy závislé na cyklinech kontrolují buněčný
VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ
REGULACE APOPTÓZY 1 VÝZNAM REGULACE APOPTÓZY V MEDICÍNĚ Příklad: Regulace apoptózy: protein p53 je klíčová molekula regulace buněčného cyklu a regulace apoptózy Onemocnění: více než polovina (70-75%) nádorů
Nádorová onemocnění. rostou v původním ložisku, zachovávají charakter tkáně, ze které vznikly
NÁDORY BNIGNÍ Nádorová onemocnění rostou v původním ložisku, zachovávají charakter tkáně, ze které vznikly NÁDORY MALIGNÍ invazívní růst, poškozují strukturu a funkci tkáně, indukují vlastní angiogenezu,
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová
Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
Regulace enzymových aktivit
Regulace enzymových aktivit Regulace enzymových aktivit: Změny množství enzymu v kompartmentu, buňce, orgánu: - změna exprese, degradace atd. - změna lokalizace Skutečné regulace: - aktivace/inhibice nízkomolekulárními
Terapeutické klonování, náhrada tkání a orgánů
Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací
VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů
(Vývojová biologie) Embryologie. Jiří Pacherník
(Vývojová biologie) Embryologie Jiří Pacherník jipa@sci.muni.cz Podpořeno projektem FRVŠ 524/2011 buňka -> tkáně -> orgány -> organismus / jedinec Základní procesy na buněčné úrovni dělení buněk proliferace
Intracelulární Ca 2+ signalizace
Intracelulární Ca 2+ signalizace Vytášek 2009 Ca 2+ je universální intracelulární signalizační molekula (secondary messenger), která kontroluje řadu buměčných metabolických a vývojových cest intracelulární
zvyšování počtu jednotlivých mikroorganismů roste počet živých buněk exponencio- nálně otevřeném systému
Definice růstu Růstem myslíme jednak zvyšování počtu jednotlivých mikroorganismů, případně zbytnění jednotlivých organel, a tím i zvětšování jednotlivého mikrobu. Je-li mikroorganismus v uzavřeném prostoru,
Protinádorová imunita. Jiří Jelínek
Protinádorová imunita Jiří Jelínek Imunitní systém vs. nádor l imunitní systém je poslední přirozený nástroj organismu jak eliminovat vlastní buňky které se vymkly kontrole l do boje proti nádorovým buňkám
Nádorová onemocnění NÁDORY BENIGNÍ
Nádorová onemocnění NÁDORY BENIGNÍ rostou v původním ložisku, zachovávají charakter tkáně, ze které vznikly NÁDORY MALIGNÍ invazivní růst, poškozují strukturu a funkci tkáně, indukují vlastní angiogenezu,
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Brno, 17.5.2011 Izidor (Easy Door) Osnova přednášky 1. Proč nás rakovina tolik zajímá?
Buněčné kultury Primární kultury
Buněčné kultury Primární kultury - odvozené přímo z excise tkáně buněčné linie z různých organizmů, tkání explantované kultury jednobuněčné suspense lze je udržovat jen po omezenou dobu během kultivace
1.12.2009. Maligní nádory. Nádorová onemocnění. Protoonkogeny. Maligní nádorová onemocnění. Protoonkogeny - amplifikace sekvence DNA.
NÁDORY BENIGNÍ Nádorová onemocnění rostou v původním loţisku, zachovávají charakter tkáně, ze které vznikly NÁDORY MALIGNÍ invazivní růst, poškozují strukturu a funkci tkáně, indukují vlastní angiogenezu,
Zárodečné mutace a nádorová onemocnění
Zárodečné mutace a nádorová onemocnění Týká se zhruba 5-10% daného typu nádoru - výskyt nádoru v neobvykle časném věku - multifokální vývoj nádoru nebo bilatelární výskyt u párových orgánů - více neklonálních
http://www.accessexcellence.org/ab/gg/chromosome.html
3. cvičení Buněčný cyklus Mitóza Modifikace mitózy 1 DNA, chromosom genetická informace organismu chromosom = strukturní podoba DNA během dělení (mitózy) řetězec DNA (chromonema) histony další enzymatické
PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU
PREZENTACE ANTIGENU A REGULACE NA ÚROVNI Th (A DALŠÍCH) LYMFOCYTŮ PREZENTACE ANTIGENU Podstata prezentace antigenu (MHC restrikce) byla objevena v roce 1974 V současnosti je zřejmé, že to je jeden z klíčových
Genetická kontrola prenatáln. lního vývoje
Genetická kontrola prenatáln lního vývoje Stádia prenatáln lního vývoje Preembryonální stádium do 6. dne po oplození zygota až blastocysta polární organizace cytoplasmatických struktur zygoty Embryonální
Vytvořilo Oddělení lékařské genetiky FN Brno
GONOSOMY GONOSOMY CHROMOSOMY X, Y Obr. 1 (Nussbaum, 2004) autosomy v chromosomovém páru homologní po celé délce chromosomů crossingover MEIÓZA Obr. 2 (Nussbaum, 2004) GONOSOMY CHROMOSOMY X, Y ODLIŠNOSTI
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í I ti d j dělá á í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním
Genová etiologie nemocí
Genová etiologie nemocí 1. Obecná etiologie nemocí 1. Obecná etiologie nemocí 2. Mutace genů v germinativních a somatických buňkách 3. Molekulární fyziologie genu 4. Regulace aktivity genu (genové exprese)
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány
IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým
1.12.2009. Buněčné kultury. Kontinuální kultury
Primární kultury - odvozené přímo z excise tkáně buněčné linie z různých organizmů, tkání explantované kultury jednobuněčné suspense lze je udržovat jen po omezenou dobu během kultivace ztrácejí diferenciační
RECEPTORY CYTOKINŮ A PŘENOS SIGNÁLU. Jana Novotná
RECEPTORY CYTOKINŮ A PŘENOS SIGNÁLU Jana Novotná Co jsou to cytokiny? Skupina proteinů a peptidů (glykopeptidů( glykopeptidů), vylučovaných živočišnými buňkami a ovlivňujících buněčný růst (též růstové
Kongres medicíny pro praxi IFDA Praha, Hotel Hilton 27.září 2014
Kongres medicíny pro praxi IFDA Praha, Hotel Hilton 27.září 2014 Co znamená cílená terapie karcinomu plic v roce 2014? František Salajka Plicní klinika FN Hradec Králové Co může pneumoonkologické centrum
HD - Huntingtonova chorea. monogenní choroba HDF (CAG) 6-35 (CAG) 36-100+ čistě genetická choroba?
HD - Huntingtonova chorea monogenní choroba HD 4 HDF (CAG) 6-35 (CAG) 36-100+ čistě genetická choroba? 0% geny 100% podíl genů a prostředí na rozvoji chorob 0% prostředí 100% F8 - hemofilie A monogenní
Souhrn 4. přednášky. Genetické metody
Souhrn 4. přednášky Genetické metody Plasmidy (kvasinkové elementy) Integrace (plasmidy, PCR, kazety) Teplotně-sensitivní mutanty (esenciálních genů) Tetrádová analýza Syntetická letalita, epistase, suprese
Inhibitory ATR kinasy v terapii nádorů
Inhibitory ATR kinasy v terapii nádorů J.Vávrová, M Řezáčová Katedra radiobiologie FVZ Hradec Králové UO Brno Ústav lékařské chemie LF Hradec Králové UK Praha Cíl léčby: zničení nádorových buněk zachování
PŘENOS SIGNÁLU V BUŇCE. Nela Pavlíková
PŘENOS SIGNÁLU V BUŇCE Nela Pavlíková nela.pavlikova@lf3.cuni.cz Odpovědi na otázky Co za ligand aktivuje receptor spřažený s G-proteinem obsahující podjednotku α T? Opsin. Co prochází otevřenými CNGC
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
Endocytóza o regulovaný transport látek v buňce
. Endocytóza o regulovaný transport látek v buňce Exocytóza BUNĚČNÝ CYKLUS OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí systém regulace
Buněčné kultury. Kontinuální kultury
Buněčné kultury Primární kultury - odvozené přímo z excise tkáně buněčné linie z různých organizmů, tkání explantované kultury jednobuněčné suspense lze je udržovat jen po omezenou dobu během kultivace
STRUKTURNÍ SKUPINY ADHEZIVNÍCH MOLEKUL
STRUKTURNÍ SKUPINY ADHEZIVNÍCH MOLEKUL - INTEGRINY LIGANDY) - SELEKTINY (SACHARIDOVÉ LIGANDY) - ADHEZIVNÍ MOLEKULY IMUNOGLOBULINOVÉ SKUPINY - MUCINY (LIGANDY SELEKTIN - (CD5, CD44, SKUPINA TNF-R AJ.) AKTIVACE
Kmenové buòky a vznik nádorového onemocnìní Tumorigeneze jako onemocnìní kmenových bunìk (3. èást)
Prof. MUDr. Jaroslav Masopust, DrSc. Univerzita Karlova v Praze, 2. lékaøská fakulta, Ústav klinické biochemie a patobiochemie Kmenové buòky a vznik nádorového onemocnìní Tumorigeneze jako onemocnìní kmenových
Molekulární mechanismy vzniku a vývoje mesenchymových a neuroektodermových nádorů. Zdeněk Kolář
Molekulární mechanismy vzniku a vývoje mesenchymových a neuroektodermových nádorů Zdeněk Kolář Vývoj hematologických malignit Četné chromosomální alterace a translokace, které byla zjištěny u hematologických
Buněčná biologie, nádorová transformace, onkogeny a supresorové geny
Buněčná biologie, nádorová transformace, onkogeny a supresorové geny interval mezi dvěma děleními buňky kontinuální růst buňky nesouvislé dělení buňky podobné mechanizmy u všech eukaryot od kvasinky po
AMPK AMP) Tomáš Kuc era. Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze
AMPK (KINASA AKTIVOVANÁ AMP) Tomáš Kuc era Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze 2013 AMPK PROTEINKINASA AKTIVOVANÁ AMP přítomna ve všech eukaryotních
Regulace metabolických drah na úrovni buňky
Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace
44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů
Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál
Tyranovec královský Onychorhynchus coronatus SIGNALIZACE BUNĚČNÁ. B10, 2015/2016 Ivan Literák
BUNĚČNÁ SIGNALIZACE Tyranovec královský Onychorhynchus coronatus B10, 2015/2016 Ivan Literák BUNĚČNÁ SIGNALIZACE BUNĚČNÁ SIGNALIZACE - reakce na podněty z okolí - komunikace s jinými buňkami - souhra buněk
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
1. Genetická a molekulárně biologická podstata nádorové transformace
1. Genetická a molekulárně biologická podstata nádorové transformace Zhruba 5-10% nádorových onemocnění vykazuje očividně zvýšený výskyt v rodinách a u části těchto případů bylo možné prokázat jednoduše
Základní učební text: Elektronické zpracování Biologie člověka; přednášky Učebnice B. Otová, R. Mihalová Základy biologie a genetiky člověka,
Základní učební text: Elektronické zpracování Biologie člověka; přednášky Učebnice B. Otová, R. Mihalová Základy biologie a genetiky člověka, Karolinum 2012 Doporučená literatura: Kočárek E. - Genetika.
Lekce z analýz genových expresních profilů u MM a návrh panelu genů pro ČR. Mgr. Silvie Dudová
Lekce z analýz genových expresních profilů u MM a návrh panelu genů pro ČR Mgr. Silvie Dudová Centrum základního výzkumu pro monoklonální gamapatie a mnohočetný myelom, ILBIT LF MU Brno Laboratoř experimentální
Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.
Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický
Lékařská genetika a onkologie. Renata Gaillyová OLG a LF MU Brno 2012/2013
Lékařská genetika a onkologie Renata Gaillyová OLG a LF MU Brno 2012/2013 *genetické souvislosti *onkogenetická vyšetření u onkologických onemocnění * genetické vyšetření u hereditárních nádorů *presymptomatické
Zevní faktory vzniku nemocí. Biomedicínská technika a bioinformatika Prof. MUDr. Anna Vašků, CSc. Ústav patologické fyziologie LF MU Brno
Zevní faktory vzniku nemocí Biomedicínská technika a bioinformatika 5. 3. 2008 Prof. MUDr. Anna Vašků, CSc. Ústav patologické fyziologie LF MU Brno Radiobiologie Jednotky v radiobiologii Veličina Dříve
Nádorové kmenové buňky - CSCs (Cancer stem cells)
Nádorové kmenové buňky - CSCs (Cancer stem cells) Původ CSCs? a) somatické kmenové buňky b) TA buňky (progenitory)* Podstatou je akumulace chyb v regulaci diferenciace, proliferace a apoptósy. Tyto chyby
SLEDOVÁNÍ BIOLOGICKÉ AKTIVITY KOLOREKTÁLNÍHO KARCINOMU METODOU REAL - TIME PCR
Univerzita Karlova v Praze, Lékařská fakulta v Plzni Mgr. Martin Pešta SLEDOVÁNÍ BIOLOGICKÉ AKTIVITY KOLOREKTÁLNÍHO KARCINOMU METODOU REAL - TIME PCR Disertační práce II. interní klinika LF UK v Plzni
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
BUNĚČNÝ CYKLUS. OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky. Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí
(1 BUNĚČNÝ CYKLUS BUNĚČNÝ CYKLUS OMNIS CELLULA ET CELLULA - buňka vzniká jen z buňky Sled akcí, ve kterých buňka zdvojí svůj obsah a pak se rozdělí systém regulace kontrolní body molekulární brzdy Jednobuněčné
Tyranovec královský Onychorhynchus coronatus SIGNALIZACE BUNĚČNÁ. B11, 2016/2017 Ivan Literák
BUNĚČNÁ SIGNALIZACE Tyranovec královský Onychorhynchus coronatus B11, 2016/2017 Ivan Literák BUNĚČNÁ SIGNALIZACE BUNĚČNÁ SIGNALIZACE - reakce na podněty z okolí - komunikace s jinými buňkami - souhra buněk
Prognostické a prediktivní markery - část II. prof. MUDr. Ondřej Topolčan, CSc. Centrální laboratoř pro imunoanalýzu, FN a LF UK Plzeň
Prognostické a prediktivní markery - část II prof. MUDr. Ondřej Topolčan, CSc. Centrální laboratoř pro imunoanalýzu, FN a LF UK Plzeň Témata přednášky Molekulární biologie DNA a nádory Parametry molekulární
Struktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
Mutace s dobrou prognózou, mutace se špatnou prognózou omezené možnosti biologické léčby pro onkologické pacienty
Mutace s dobrou prognózou, mutace se špatnou prognózou omezené možnosti biologické léčby pro onkologické pacienty J.Berkovcová, M.Dziechciarková, M.Staňková, A.Janošťáková, D.Dvořáková, M.Hajdúch Laboratoř
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: V/2 - inovace směřující k rozvoji odborných kompetencí Název materiálu: Buněčný cyklus
Struktura a funkce biomakromolekul KBC/BPOL
Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je
Kosterní svalstvo tlustých a tenkých filament
Kosterní svalstvo Základní pojmy: Sarkoplazmatické retikulum zásobárna iontů vápníku - depolarizace membrány uvolnění vápníku v blízkosti kontraktilního aparátu vazba na proteiny zajišťující kontrakci
Zhoubné nádory druhá nejčastější příčina úmrtí v rozvinutých zemích. Imunologické a genetické metody: Zlepšování dg. Zlepšování prognostiky
NÁDOROVÁ IMUNOLOGIE Zhoubné nádory druhá nejčastější příčina úmrtí v rozvinutých zemích. Imunologické a genetické metody: Zlepšování dg. Zlepšování prognostiky NÁDOROVÁ IMUNOLOGIE Vztahy mezi imunitním
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis Mikrotubuly Formace heterodimerů α/βtubulinu Translace α a β -tubulin monomerů chaperonin c-cpn správný folding α-tubulin se váže na TFC B a β na TFC
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Mitochondriální genom, úloha mitochondrií v buněčném metabolismu, signalizaci a apoptóze
Mitochondriální genom, úloha mitochondrií v buněčném metabolismu, signalizaci a apoptóze MUDr. Jan Pláteník, PhD březen 2007 Mitochondrie:... původně fagocytované/parazitující bakterie čtyři kompartmenty:
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk. Aleš Hampl
Molekulární mechanismy diferenciace a programované buněčné smrti - vztah k patologickým procesům buněk Aleš Hampl Tkáně Orgány Živé buňky, které plní různé funkce (podpora struktury, přijímání živin, lokomoce,
Buněčný cyklus. G0 M G1 G2 Aleš Hampl S. Replikace DNA. Buněčný cyklus skládající se z fází G1, S, G2 a M
Buněčný cyklus G0 M G1 G2 Aleš Hampl S Replikace DNA Rozdělení jádra Cytokineze Odehrávají se postupně během každého buněčného cyklu = Buněčný cyklus skládající se z fází G1, S, G2 a M Nahlédnutí do nepříliš
Regulace enzymové aktivity
Regulace enzymové aktivity MUDR. MARTIN VEJRAŽKA, PHD. Regulace enzymové aktivity Organismus NENÍ rovnovážná soustava Rovnováha = smrt Život: homeostáza, ustálený stav Katalýza v uzavřené soustavě bez
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování
Antivirotika. Včetně léčby AIDS
Antivirotika Včetně léčby AIDS Antivirová chemoterapeutika =látky potlačující virové onemocnění Virocidní látky přímo inaktivují virus (málopole neorané) Virostatické látky inhibují virový cyklus na buněčné
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
Václav Hořejší Ústav molekulární genetiky AV ČR. IMUNITNÍ SYSTÉM vs. NÁDORY
Václav Hořejší Ústav molekulární genetiky AV ČR IMUNITNÍ SYSTÉM vs. NÁDORY PROTINÁDOROVÁ IMUNITA - HISTORIE 1891 W. Coley - otec imunoterapie 1957 F.M. Burnet hypotéza imunitního dozoru 1976 A.W. Bruce