-1- Finanční matematika. Složené úrokování

Rozměr: px
Začít zobrazení ze stránky:

Download "-1- Finanční matematika. Složené úrokování"

Transkript

1 -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí o ( + k i) K K. k zdaňovací koeficiet i. úroková íra vyjádřeá desetiý čísle K o počátečí kapitál (vklad, úvěry ).počet let, po který se kapitál úročí ( úročí se jedou ročě) Příklad ) Sleča A. si uložila a teríovaý vklad a tři roky Kč s ročí úrokovou írou 4,8 %. Jde o složeé úročeí, baka připisuje úroky jedou ročě, daň z úroku je %. Kolik koru baka slečě A. po třech letech vyplatí? Řešeí: 3, K Kč, i 0,048, k 0,8 K ( + 0,87.0,048 ) ,0 Kč. Příklad 2) Podikatel si chce půjčit od baky a začátku a 2 roky 3 ilioy Kč. Předpokládá, že po dvou letech bude ít a splaceí úvěru 3, iliou Kč. Baka abízí úvěr s úrokovou írou 4,6%, úročí se jedou ročě, vždy a koci roku ( jde o složeé úročeí). a) Bude částka 3, iliou Kč a splaceí úvěru stačit? b) Kolik koru axiálě si ůže podikatel půjčit? Baka poskytuje úvěry c celých tisícikoruách. Řešeí : a) 2, K Kč, i 0,46, k K ( +0,46) Kč.částka 3, ilioů koru stačit ebude K b) ze základího vzorce vyjádříe K 0 ( + k. i) a za K dosadíe Kč K Kč Příklad 3) Má 000 Kč. Na kolik let usí uložit tuto částku do baky, aby vzrostla a 6000 Kč? Úroková íra po celou dobu bude 4,4 %, daň z úroku %, jedá se o složeé úročeí, baka úročí jedou ročě. Řešeí : K Kč, K 6000 Kč, i0,044, k 0,8,? Dosazeí do výše uvedeého vzorce dostaee : ( + 0,8.0,044),2,0374 a logaritováí dostaee. log,0374 log,2 log,2 4,97 let log,0374

2 - 2 Příklad 4) Má 000 Kč. Chci tuto částku uložit a začátku roku do baky. Jak vysoká by usela být úroková íra, aby se vklad za let zdvojásobil? Předpokládá, že baka úročí jedou ročě vždy a koci roku, že jde o složeé úročeí a daň z úroku je %. K 0 000Kč,, K 0000, k 0,8, i? Řešeí: Dosadí do výše uvedeého vzorce ,8. i i 7,% 2 ( +0,8.i ) 0,8 Cvičeí : l) Pa Urba si uložil a začátku roku a vkladí kížku s výpovědí lhůtou Kč. Úroková íra je 4,%, daň z úroku čií %, jde o složeé úročeí, baka vklady úročí jedou za rok vždy a koci každého roku. Pa Urba si z vkladí kížky žádé peíze (ai úroky) evybírá. Kolik koru bude ít pa Urba a vkladí kížce a koci třetího roku? ( 8 2 Kč ) 2) Pa Řeřicha uložil a teríovaý vklad a pět let s úrokovou írou, % částku Kč. Baka úročí vklad jedou za rok, jde o složeé úročeí, daň z úroku je %. Kolik koru baka pau Řeřichovi za pět let vyplatí? ( 928 Kč ) 3) Paí V. á Kč, které chce uložit a začátku příštího roku do baky a tři roky. Rozhoduje se ezi dvěa bakai. Obě baky abízejí stejou úrokovou íru,2%, obě úročí jedou za rok, vždy a koci roku, daň z úroku je v obou případech %. Jediý rozdíl je v to, že v prví bace jde o jedoduché úročeí, ve druhé o složeé úročeí. a) Ve které bace by získala paí V. celkově vyšší úrok? b) Vypočítejte úrok za tři roky v prví bace a ve druhé bace. Kolik koru je rozdíl v úrocích? (.baka úrok Kč, 2.baka , Kč, rozdíl89,0 Kč Jedoduché úročeí - úroky se počítají vždy z počátečího vkladu. Úrok U k.i..k 0 k.zdaňovací koeficiet. počet let, po které se vklad úročí i.. úroková íra vyjádřeá desetiý čísle K 0 počátečí kapitál, vklad, úvěr 4) Jaa M. uložila a začátku roku a vkladí kížku s ročí úrokovou írou 4,2 % částku Kč. Za jak dlouho bude ít a kížce aspoň Kč? Baka úročí jedou ročě, vždy a koci roku. Jde o složeé úročeí, daň z úroku je %. ( 3 roky ) ) Paí Holubičková požádala paa Krahujce o půjčku ve výši Kč a šest let. Pa Krahujec chce staovit úrokovou íru tak, aby při složeé úročeí, které bude provádět jedou ročě, dostal po šesti letech zpět trojásobek půjčeé částky. Kolik procet by byla úroková íra? ( 20%) Úrokovací období - 3

3 Časový úsek, a jehož koci vzroste kapitál o úrok, se azývá úrokovací období. Vzorec pro kapitál K a koci -tého úrokovacího období při složeé úrokováí je K t K i. k 360 Cvičeí: )Jiří M. uložil a začátku roku do baky a vkladí kížku s úrokovou írou 3,7% částku 6000 Kč. Úrokovací období je čtvrt roku, úročí se vždy a koci kaledářího čtvrtletí. Daň z úroku je %. Kolik koru bude ít Jiří M. a kížce a koci roku po připsáí úroku po zdaěí? (6 9,-Kč) 2)Alea C. si uložila a počátku roku a teríovaý vklad a 2 roky s úrokovou írou 4,% částku Kč. Úrokovací období je ěsíc, daň z úroku je %. a) Kolik koru obdržela v de splatosti vkladu? b) Kolik koru čiil úrok po zdaěí? ( a) Kč, b) Kč) 3) Sleča Hlučá si uložila a teríovaý vklad a ěsíc s revolvige částku Kč. Vklad byl čtyřikrát obove a a koci pátého ěsíčího období byl slečě Hlučé a základě její žádosti vyplace. Sleča Hlučá úroky evybírala, ty byly připisováy k vkladu a spolu s í úročey.po celé úrokovací období byla úroková íra 4,7%, úrokovací období je ěsíc, poprvé se úročí za ěsíc po uložeí vkladu. Daň z úroku je %. Vypočítejte, kolik koru bylo slečě Hlučé vyplaceo. ( 8 340,0Kč ) Spořeí Vzorec pro kapitál S dosažeý při pravidelé spořeí stejých částek a koci -tého úrokovacího období q S K. q - počet úrokovacích období K částka aspořeá v jedo úrokovací období a a koci tohoto období zúročeá t q +. k. i, t..počet dí tvořících úrokovací období 360 k.zdaňovací koeficiet i..úroková íra vyjádřeá desetiý čísle Příklad : Kolik Kč astřádáe za 0 let, jestliže a počátku každého roku vložíe 3000 Kč, baka úročí 2,6% a koci každého roku a daň z úroku je %? Řešeí : 0,022 q +0,8.0,026,022, K 3000., Kč,022-4 Příklad 2: Kolik Kč astřádáe za let, když

4 a) počátke každého roku vložíe 6000 Kč při 3% zhodoceí ( baka úročí jedekrát ročě), daň z úroku se pro teto druh spořeí ( pezijí připojištěí) eplatí b) kolik koru astřádáe, budee-li ěsíčě ukládat 00Kč, ostatí podíky jsou eěé,03 Řešeí : a) q +0,03,03, K 6000.,03., ,0Kč b)ejprve usíe spočítat výši částky,kterou dosáhee do koce roku : Částka vložeá Úroková doba Částka a koci roku a začátku ěsíce: v počtu ěsíců: ( po odečtu daě z úroků): leda 2 2 K 0. +.k. i 2 úora K 0. +.k. i 2 březa 0 K k. i 2 listopadu 2 K k. i 2 prosice K 0. +.k. i Celková částka a koci roku je součte částek v pravé sloupci. Čísla,,,..., prvích dvaáct čleů aritetické poslouposti, jejíž prví čle je 2 2 2, 2 tvoří 2 a diferece se rová 2. Součet těchto čleů vypočítáe podle vzorce s.( a + ) 2 a,tj. s Celková částka a koci roku je K K k. i, kde K 0 je částka ukládaá pravidelě a 2 počátku každého ěsíce Pro áš příklad K 3 3, , 03 a K , Kč 2 2,03 Cvičeí : ) Kolik koru astřádáe za let, jestliže a počátku každého roku vložíe Kč, baka úročí jedou ročě, eěá úroková íra po celé období je 3 %, daň z úroku je % ( Kč) -

5 2) Kolik Kč astřádáe za 8 let, budee li a začátku každého ěsíce ukládat 800 Kč, eěá úroková íra je 2,2 %, daň z úroku %, baka úročí jedekrát za rok. ( 8280 Kč) 3) Kolik koru astřádáe za 3 roky, jestliže od počátku roku budee ukládat počátke každého ěsíce 000 Kč, baka úročí vklady jedou ročě, úroková íra je 3,9% a daň z úroku je %. ( ,7 Kč)) 4) Paí T. spoří od začátku roku a začátku každého ěsíce 600 Kč. Baka poskytuje úrokovou íru 4,2%, úrokovací období je jede rok, úročeí se provádí a koci každého kaledářího roku. Daň z úroku je %. a) Kolik koru uloží paí T. do koce roku celke? b) Kolik koru bude ít paí T.a koci roku a vkladí kížce po připsáí zdaěého úroku? c) Kolik koru by ěla paí T. a vkladí kížce a koci čtvrtého roku za ezěěých podíek? ( a) Kč, b) 7 34 Kč, c) ,0 Kč ) ) Sleča Malá spoří od začátku roku a počátku každého ěsíce 200 Kč. Baka úročí a koci každého kaledářího čtvrtletí, úroková íra je stále 4,4 %, daň z úroku je %. a) Kolik koru bude ít sleča Malá a koci druhého roku? b) Kolik koru z toho čií úrok? ( a) 4 99 Kč, b) 9 Kč ) Spláceí dluhu Vzorec pro splátku s při pravidelé spláceí dluhu stejýi splátkai: ( q ) Dq s q Předpokládá se, že splátky se platí od koce prvího úrokovacího období, jedou za úrokovací období, vždy a jeho koci. D.. počátečí výše dluhu.. počet úrokovacích období čili počet splátek t q + i, kde t je počet dí tvořících úrokovací období a i je úroková íra 360 vyjádřeá desetiý čísle Příklad: ) Podikatel získal začátke roku od baky úvěr ve výši 2 ilioy Kč a dobu tří let s úrokovou írou, %. Úrokovací období je rok. Podikatel splatí úvěr ve třech stejých ročích splátkách, prvího jedo roce od poskytutí úvěru. a) Kolik koru bude čiit jeda splátka? b) Kolik koru zaplatí podikatel celke? Řešeí : D Kč, 3, t360, i0,, q + 0,, 3 s ,.0, Kč,, 3 celke zaplatí.s ,- Kč

6 - 6 - Příklad : 2) Pa Šafář získal de.4. od baky úvěr ve výši Kč a dobu 2 let s úrokovou írou 4%. Úrokovací období je ěsíc, poprvé de Baka staovuje splátky se zaokrouhleí a koruy. a) Vypočítejte výši jedé splátky b) Kolik koru zaplatí pa Šafář bace celke? Řešeí : D Kč, i 0,4, ,4..0, a) s 288, Kč q +.0, ,4 2 b) Celke ,-Kč Cvičeí : ) Paí Kárá získala od baky de.9. úvěr ve výši Kč s úrokovou írou 3%. Měsíčě bude splácet 2 00 Kč., vždy a koci ěsíce, poprvé Úrokovací období je ěsíc. a) Jaký bude stav dluhu paí Káré de před prví splátkou a po připsáí úroku bakou? b) Jaký bude stav jejího dluhu de 3.0. po připsáí úroku a po druhé splátce? ( a) Kč, b) Kč ) 2) Baka poskytla podikateli počátke roku úvěr ve výši Kč a dobu pěti let s úrokovou írou 4,8 %. Úrokovací období je rok. Podikatel bude úvěr splácet pravidelě stejýi ročíi splátkai, prví zaplatí po jedo roce od poskytutí úvěru. a) Vypočítejte výši jedé splátka se zaokrouhleí a koruy b) Kolik koru zaplatí podikatel bace celke? ( a) Kč, b) Kč) 3) Pa Mařík uvažuje o to, že si začátke příštího ěsíce veze od baky spotřebitelský úvěr ve výši Kč Baka abízí teto typ úvěru a 2 ěsíců, 8 ěsíců a 24 ěsíců, ve všech případech s úrokovou írou 4 %. Úrokovací období je ěsíc. Splácí se pravidelě jedou ěsíčě, stejýi splátkai, poprvé a koci ěsíce, ve které byl poskytut spotřebitelský úvěr. a) Vypočítejte výši ěsíčích splátek pro všechy tři případy a dobu splatosti úvěru. Vypočítaé částky zaokrouhlete a koruy. ( Kč, Kč, 3 60 Kč ) b) Vypočítejte pro všechy případy, kolik koru by pa Mařík zaplatil bace celke ( Kč, 8392 Kč, Kč) 4) Maželé Berkovi získali od baky hypotéčí úvěr a ový dů ve výši Kč a dobu 20 let. Úvěr se splácí forou stejých splátek jedou ěsíčě, úrokovací období je ěsíc. a) Vypočítejte výši ěsíčí splátky ( zaokrouhleou a koruy) za předpokladu, že úroková íra bude po celou dobu spláceí úvěru 8, %. b) Vypočítejte, kolik koru aželé Berkovi zaplatí ve splátkách za 20 let bace celke? ( a) Kč, b) Kč ) - 7 -

7 ) Podikatel chce získat od příštího roku úvěr ilioů Kč a dobu šesti let. Prví baka abízí úrokovou íru 4,3%, druhá baka 4,2%. Úrokové íry se liší je o 0,%. V obou bakách je úrokovací období rok, spláceí by probíhalo forou šesti stejých ročích splátek, prví z ich by ěla být splacea a koci roku, ve které byl poskytut úvěr. a) Odhaděte, zda rozdíl jedé splátky v prví bace a v druhé bace je ižší ebo vyšší ež 000 Kč b) Vypočítejte výši jedé splátky v prví a v druhé bace. Vypočítaé částky zaokrouhlete a koruy. c) Vypočítejte rozdíl částek,které by usel podikatel celke splatit prví a druhé bace. ( b) v l.bace: Kč, v 2.bace Kč,c) 330Kč) 6) Jak velké splátky budee platit vždy a koci každého roku, jestliže si a let vypůjčíe Kč při 4% úroku? ( ,0 Kč) 7) Jak velké splátky budee platit vždy ěsíčě, vypůjčíe-li si Kč při 6% úroku a a) pět let, b) a deset let? ( a) 933,0 Kč, b) 0,-Kč) Kolik zaplatíe celke v případě a), b) ( a) 600 Kč, b) Kč ) 8) Družstvo si vypůjčilo Kč a á je splatit v sedi stejých ročích splátkách. Prví splátka bude za tři roky. Jak velké budou splátky, je-li úroková íra 8%? ( Návod : ejprve uto vypočítat, jak aroste dluh za prví dva roky,ve který družstvo esplácí,třetí rok je už zahrut ve vzorci. Dluh za prví dva roky aroste a částku D vypůjčeá částka. q 2, t.j , Kč Výsledek : celke zaplatí 2323 Kč) 9) Jak velké budou splátky úvěru Kč, které budee splácet pravidelě ěsíčě po dobu dvou let při úrokové íře 2%, začee li splácet až za rok od získáí úvěru a vždy a koci ěsíce? ( výše splátky 272 Kč, celke Kč)

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

Finanční řízení podniku. Téma: Časová hodnota peněz

Finanční řízení podniku. Téma: Časová hodnota peněz Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Užití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014

Užití geometrických posloupností ve finanční matematice VY_32_INOVACE_M1.3.14 PaedDr. Hana Kůstová 1. pololetí školního roku 2013/2014 Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

7.1. Jistina, úroková míra, úroková doba, úrok

7.1. Jistina, úroková míra, úroková doba, úrok 7. Finanční matematika 7.. Jistina, úroková míra, úroková doba, úrok Základní pojmy : Dlužník osoba nebo instituce, které si peníze půjčuje. Věřitel osoba nebo instituce, která peníze půjčuje. Jistina

Více

Využití účetních dat pro finanční řízení

Využití účetních dat pro finanční řízení Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející

Více

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY

ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY ÚROKOVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY 1. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(r) úrok v % z hodoty kapitálu za časové

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

SPOŘENÍ. Spoření krátkodobé

SPOŘENÍ. Spoření krátkodobé SPOŘENÍ Krátkodobé- doba spořeí epřesáhe jedo úrokové období (obvykle 1 rok). Úroky jsou přpsováy a koc doby spořeí. Jedotlvé složky jsou úročey a základě jedoduchého úročeí. Dlouhodobé doba spořeí bude

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

FINANČNÍ MATEMATIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

FINANČNÍ MATEMATIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky FINANČNÍ MATEMATIKA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

1 Umořovatel, umořovací plán, diskont směnky

1 Umořovatel, umořovací plán, diskont směnky 1 Umořovatel, umořovací plán, diskont směnky Umořovatel je párovým vzorcem k zásobiteli (viz kapitola č. 5), využívá se pro určení anuity, nebo-li pravidelné částky, kterou musím splácet bance, pokud si

Více

Složené úročení. Škoda, že to neudělal

Složené úročení. Škoda, že to neudělal Složené úročení Charakteristika (rozdíl oproti jednoduchému) Kdy je obecně užíváno Využití v praxi Síla složeného úročení Albert Einstein: Je to další div světa Složené úročení Složené úročení Kdyby Karel

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Systémy finančních toků a jejich využití v praxi

Systémy finančních toků a jejich využití v praxi UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Systéy finančních toků a jejich využití v praxi Vedoucí bakalářské práce: Mgr.

Více

PŘIJÍMACÍ ŘÍZENÍ PRO ŠKOLNÍ ROK 2012/2013

PŘIJÍMACÍ ŘÍZENÍ PRO ŠKOLNÍ ROK 2012/2013 PŘIJÍMACÍ ŘÍZENÍ PRO ŠKOLNÍ ROK 2012/2013 OSNOVA 1. Práví předpisy 2. Přijímací řízeí 3. Termíy 4. Hodoceí uchazečů 5. Rozhodutí 6. Další kola přijímacího řízeí 7. Zápisový lístek 8. Jedoté přijímací zkoušky

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Téma: Jednoduché úročení

Téma: Jednoduché úročení Téma: Jednoduché úročení 1. Půjčili jste 10 000 Kč. Za 5 měsíců Vám vrátili 11 000 Kč. Jaká byla výnosnost této půjčky (při jaké úrokové sazbě jste ji poskytli)? [24 % p. a.] 2. Za kolik dnů vzroste vklad

Více

Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby.

Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby. V kapitole Ituitiví kobiatorika jse řešili příklady více éě stejý způsobe a stejých pricipech. Nyí si je zobecíe a adefiujee obvyklou teriologii. pravidlo součtu: Jestliže ějaký objekt A ůžee vybrat způsoby

Více

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz

FINANČNÍ MATEMATIKA Základní pojmy od P do Z. www.zlinskedumy.cz FINANČNÍ MATEMATIKA Základní pojmy od P do Z www.zlinskedumy.cz plat - mzda, kterou dostávají státní zaměstnanci promile jedna tisícina ze základu pohledávka právo věřitele na plnění určitého dluhu dlužníkem

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha FINANČNÍ MATEMATIA Jarmila Radová BP VŠE Praha Osova Jedoduché úročeí Diskotováí krátkodobé ceé papíry Metody vedeí a výpočtu úroku z běžého účtu Skoto Složeé úrokováí Budoucí hodota auity spořeí Současá

Více

Finanční matematika I.

Finanční matematika I. Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

VY_62_INOVACE_1ZIM70. Autor: Mgr. Jana Zimková. Datum: 14.10.2011. Ročník: 5. Vzdělávací oblast: Finanční gramotnost. Předmět: Matematika

VY_62_INOVACE_1ZIM70. Autor: Mgr. Jana Zimková. Datum: 14.10.2011. Ročník: 5. Vzdělávací oblast: Finanční gramotnost. Předmět: Matematika VY_62_INOVACE_1ZIM70 Autor: Mgr. Jana Zimková Datum: 14.10.2011 Ročník: 5. Vzdělávací oblast: Finanční gramotnost Předmět: Matematika Tematický okruh: Nestandardní aplikační úlohy a problémy Téma: Banka

Více

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé

Úroková sazba. Typy úrokových sazeb: pevné (fixní) pohyblivé Úroky, úročení Úroková sazba Typy úrokových sazeb: pevné (fixní) pohyblivé Úrokové období roční p.a. (per annum), pololetní p.s. (per semestre), čtvrtletní p.q. (per quartale), měsíční p.m. (per mensem),

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

Šablona: III/2. Sada: VY_32_INOVACE_7IS

Šablona: III/2. Sada: VY_32_INOVACE_7IS Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_7IS Pořadové číslo: 11 Ověření ve výuce Třída: 8.A Datum: 14.10.2013 1 Procenta úroková míra Předmět: Ročník: Škola

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti DLUHOPISY ceý papír, jehož koupí si ivestor zajistí předem defiovaé peěží toky, které obdrží v budoucosti podle doby splatosti ~ 1 rok dlouhodobé dluhopisy Pokladičí poukázky

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

4. Základní výpočty vycházející z chemických rovnic

4. Základní výpočty vycházející z chemických rovnic 4. Základí výpočty vycházející z cheických rovic heické rovice vyjadřující eje jaké látky spolu reagují (reaktaty, edukty) a jaké látky reakcí vzikají (produkty), ale i vztahy ezi ožstvíi spotřebovaých

Více

CZ.1.07/1.5.00/34.0499

CZ.1.07/1.5.00/34.0499 Číslo projektu Název školy Název materiálu Autor Tematický okruh Ročník CZ.1.07/1.5.00/34.0499 Soukromá střední odborná škola Frýdek-Místek,s.r.o. VY_32_INOVACE_251_ESP_06 Marcela Kovářová Datum tvorby

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

tisková konference Praha, 7. ledna 2014

tisková konference Praha, 7. ledna 2014 tisková konference Praha, 7. ledna 2014 Úspěšný rok 2013 v oblasti retailového bankovnictví 3 / Vracíme poplatky Více než dvojnásobek klientů K 31/12/12 K 31/12/13 4 / Vracíme poplatky Více než dvojnásobek

Více

PENÍZE, BANKY, FINANČNÍ TRHY

PENÍZE, BANKY, FINANČNÍ TRHY PENÍZE, BANKY, FINANČNÍ TRHY Úročení 2 1. Jednoduché úročení Kapitál, Jistina označení pro peněžní částku Úrok odměna věřitele, u dlužníka je to cena za úvěr = CENA PENĚZ Doba splatnosti doba, po kterou

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Finanční matematika II.

Finanční matematika II. Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem. HYPTEČNÍ ÚVĚR Spláceí úvěru stejým splátkam - kostatí auta ÚLHA 1: Mladý maželský pár s dostačujícím příjmy (tz. a získáí hypotéčího úvěru) se rozhodl postavt s meší rodý domek. Podle předběžé kalkulace

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 7 6 2 Edice Osobní a rodinné

Více

Základy finanční matematiky

Základy finanční matematiky Základy finanční matematiky Na finance s procenty: Základní škola T. G. Masaryka, Studénka, ul. 2. května 500, okres Nový Jičín Číslo projektu: CZ.107/1.4.00/21.1489 Autor:Mgr. Miroslava Tomanová Předmět:

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

Ča Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek

Ča Č sov o á ho h dn o o dn t o a pe p n e ě n z ě Petr Málek Časová hodnota peněz Petr Málek Časová hodnota peněz - úvod Finanční rozhodování je ovlivněno časem Současné peněžní prostředky peněžní prostředky v budoucnu Úrokové výnosy Jiné výnosy Úrokové míry v ekonomice

Více

Pracovní list. Workshop: Finanční trh, finanční produkty

Pracovní list. Workshop: Finanční trh, finanční produkty Pracovní list Workshop: Finanční trh, finanční produkty Úkol č. 1 Osobní půjčka Doplňte v následující tabulce kolik zaplatíte za úvěr celkem (vč. úroků) při jednotlivých RPSN. Současně porovnejte, zda

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová

FINANČNÍ MATEMATIKA. PŘEDNÁŠEJÍCÍ: Jarmila Radová FINANČNÍ MATEMATIKA PŘEDNÁŠEJÍCÍ: Jarmila Radová Radová Tel: 224 095 102 E-mail: radova@vse.cz Kontakt Jednoduché úročení Diskontování krátkodobé cenné papíry Složené úrokování Budoucí hodnota anuity spoření

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota

1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota 1 Oceňování finančního majetku, jednoduchý a složený úrok, budoucí a současná hodnota Stejné nominální částky mají v různých obdobích různou hodnotu tj. koruna dnes má jinou hodnotu, než koruna zítra.

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ

DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ Ivestičí horizot IH: doba, po kterou má ivestor v daé ivestici vázáy své peíze. Při ivestici do dluhopisu jsme vystavei riziku změy výosů Uvažujme

Více

MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1

MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 =a n 4 a 1 =50. Pro jaké nejmenší přirozené číslo n bude součet prvních n členů záporný? max. 4b, kde Úloha

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Barometr 1. čtvrtletí roku 2015

Barometr 1. čtvrtletí roku 2015 Barometr 1. čtvrtletí roku 215 Bankovní a Nebankovní registr klientských informací evidoval koncem prvního čtvrtletí roku 215 celkový dluh ve výši 1,73 bilionu Kč, z toho tvořil dlouhodobý dluh (hypotéky

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Časová hodnota peněz (2015-01-18)

Časová hodnota peněz (2015-01-18) Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky

Více

Stejně velké platby - anuita

Stejně velké platby - anuita Stejně velké platby - anuita Anuitní platby Existuje vzorec, pomocí kterého lze uspořádat splátky jistiny a platby úroků tak, že jejich součet v každém období (např. každý měsíc) je stejný. Běžný příklad:

Více

Vzorcem pro n-tý člen posloupnosti, např.:, Rekurentně zadáním prvního členu a rekurentního vzorce, který vyjadřuje, např.: výčtem prvků graficky

Vzorcem pro n-tý člen posloupnosti, např.:, Rekurentně zadáním prvního členu a rekurentního vzorce, který vyjadřuje, např.: výčtem prvků graficky Posloupnosti Motivace Víš, jaký bude následující člen v řadách 2, 4, 6, 8,? a 2, 4, 8, 16,?? Urči součet řady Jak převedeš číslo na zlomek? 1 Definice posloupnosti Posloupnost je funkce. Definiční obor

Více

RPSN (Roční Procentní Sazba Nákladů) (2015-01-18)

RPSN (Roční Procentní Sazba Nákladů) (2015-01-18) RPSN (Roční Procentní Sazba Nákladů) (2015-01-18) Zkratkou RPSN se označuje takzvaná roční procentní sazba nákladů. Udává, kolik procent z původní dlužné částky musí spotřebitel za jeden rok zaplatit v

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace Název: Kombiatoria Autor: Mgr. Haa Čerá Název šoly: Gymázium Jaa Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: matematia a její apliace Ročí: 5. ročí Tématicý cele: Kombiatoria a pravděpodobost

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

8 Leasing. 1 Co je to leasing? [online]. [cit. 09/2008] Dostupné z:

8 Leasing. <http://www.sfinance.cz/firmy-a-podnikani/informace/pruvodce/rozdeleni/> 1 Co je to leasing? [online]. [cit. 09/2008] Dostupné z: 8 Leasing Slovo "leasing" bylo převzato do české terminologie z anglického slova, které v překladu znamená "pronájem". Jedná se o obchodní operaci leasingového pronajímatele (leasingová společnost) a leasingového

Více

ZÁKON O SPOTŘEBITELSKÉM ÚVĚRU V ROCE 2011

ZÁKON O SPOTŘEBITELSKÉM ÚVĚRU V ROCE 2011 ZÁKON O SPOTŘEBITELSKÉM ÚVĚRU V ROCE 2011 8.12.2010 JUDr. Ivana Seifertová www.koncimsdluhy.cz Základní údaje zákon č. 145/2010 Sb., o spotřebitelském úvěru a změně některých zákonů vyhlášen 20. května

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

Finanční gramotnost pro SŠ -6. modul Úvěry a předlužení

Finanční gramotnost pro SŠ -6. modul Úvěry a předlužení Modul č. 6 Ing. Miroslav Škvára O úvěrech Co říká o úvěru Wikipedie? Úvěrje formou dočasného postoupení zboží nebo peněžních prostředků (půjčka) věřitelem, na principu návratnosti, dlužníkovi, který je

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

Půjčka. Téma: Metodický postup:

Půjčka. Téma: Metodický postup: Téma: Cíl: Půjčka Seznámit se s porovnáním půjček a úvěrů a s jejich nevýhodností. Doporučený ročník: 8. - 9. ročník Časová dotace: 1 vyučovací hodina (doporučeno M) Pomůcky a potřeby: pracovní list Půjčka,

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku

Úkol: ve výši 11.000 Kč. zachovat? 1. zjistěte, jestli by paní Sirotková byla schopna splácet hypotéku Mgr. Zuzana Válková Zadání: Paní Sirotková má měsíční příjem 27.890 Kč. Bydlí v městském bytě, kde platí měsíční nájem 8.500 Kč. Celkové měsíční výdaje (včetně nájmu) činí 21.600 Kč. Vlastní majetek v

Více

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010 Soukromá vysoká škola ekonomická Znojmo FINANČNÍ MATEMATIKA ZS 2009/2010 Ing. Oldřich Šoba, Ph.D. Kontakt: e-mail: oldrich.soba@mendelu.cz ICQ: 293-727-477 GSM: +420 732 286 982 http://svse.sweb.cz web

Více

8.2.11 Příklady z finanční matematiky II

8.2.11 Příklady z finanční matematiky II 8.2. Příklady z finanční matematiky II Předpoklady: 82 Inflace Peníze nemají v dnešní době žádnou hodnotu samy o sobě, jejich používání reguluje stát, v případě zhroucení ekonomiky se může stát, že svou

Více

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU Metody hodoceí efektvost vestc Opakováí Typy vazeb v uzlové síťové grafu K čeu slouží stude využtelost Fačí odel vestčího záěru Časová hodota peěz Metody vyhodoceí Napšte strukturu propočtu Fačí odel FINANČNÍ

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

Finanční matematika pro každého příklady + CD-ROM

Finanční matematika pro každého příklady + CD-ROM Edice Osobní a rodinné fi nance doc. RNDr. Jarmila Radová, Ph.D. a kolektiv (doc. Mgr. Jiří Málek, PhD., Ing. Nadir Baigarin, Ing. Jiří Nakládal, Ing. Pavel Žilák) Finanční matematika pro každého příklady

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

KDE A JAK SI PENÍZE ULOŽIT A VYPŮJČIT

KDE A JAK SI PENÍZE ULOŽIT A VYPŮJČIT KDE A JAK SI PENÍZE ULOŽIT A VYPŮJČIT Mgr. Ing. Šárka Dytková Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním

Více

Citi Life, Citi Life Metropole, Citi Shopping, O2 Citi základní, Shell MasterCard od Citibank, Citi BILLA, Citi Broker Consulting, Citi Opuscard

Citi Life, Citi Life Metropole, Citi Shopping, O2 Citi základní, Shell MasterCard od Citibank, Citi BILLA, Citi Broker Consulting, Citi Opuscard Typ karty Citi Life, Citi Life Metropole, Citi Shopping, O2 Citi základní, Shell MasterCard od Citibank, Citi BILLA, Citi Broker Consulting, Citi Opuscard 50 Kč měsíčně Hotovostní limit Kč 15,000 Související

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí

Více

SR (CZK/EUR) 26,512 27,122 3 měs. IR CZK p.a. 6,24 7,44 3 měs. IR EUR p.a. 3,86 4,62 a) přímá kotace Nákupní forwardový kurs vypočítáme takto: SR 100

SR (CZK/EUR) 26,512 27,122 3 měs. IR CZK p.a. 6,24 7,44 3 měs. IR EUR p.a. 3,86 4,62 a) přímá kotace Nákupní forwardový kurs vypočítáme takto: SR 100 Příklad č. 1 Na základě následujících kotací spotového kursu eura v korunách a tříměsíčních úrokových měr na korunová a eurová aktiva vypočítejte nákupní a prodejní tříměsíční forwardový kurs eura v korunách

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

Barometr 2. čtvrtletí 2012

Barometr 2. čtvrtletí 2012 Barometr 2. čtvrtletí 2012 Podle údajů Bankovního a Nebankovního registru klientských informací dosáhl dluh obyvatelstva k 30. 6. 2012 výše 1 301 mld. Kč, z toho objem dlouhodobých úvěrů dosáhl výše 951,5

Více