1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

Rozměr: px
Začít zobrazení ze stránky:

Download "1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL"

Transkript

1 Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo, zda se jedá o medicíu, biologii, ebo ekoomii případě marketig. Jmeovitě ekoomické disciplíy patří mezi ty obory, pro které je zpracováí dat evyhutelé. Pro složitější testováí a sofistikovaé ekoometrické modely ekoomové určitě zvolí speciálí statistický software, ale pro základí charakteristiky dat, statistické testy a jedoduché regresí modely je možé použít také tabulkový procesor. To, jak pro základí statistické operace využít tabulkový procesor Excel je stručě popsaé v prvích čtyřech kapitolách studijího textu. Předpokládáme přitom, že čteář má k dispozici verzi Excel 2007, evetuálě vyšší. Pro zjedodušeí práce je vhodé mít aktivovaý doplěk Aalýza dat ve složce Data (viz Obr..) Obrázek. V případě, že teto doplěk eí ve složce Data, lehce ho aistalujete tímto postupem: Tlačítko Office Možosti aplikace Excel Doplňky Přejít a v dialogovém okě zaškrtout položku Aalytické ástroje (viz Obr..2). Obrázek.2 Kromě doplňku Aalýza dat tabulkový procesor MS Excel dispouje širokým spektrem statistických fukcí. Všechy fukce procesoru MS Excel použité v ásledujícím textu budou vyzačey ve tvaru: =FUNKCE(proměá; ; proměán) se zamékem = a začátku; použití aalytického ástroje bude vyzačeo podobým způsobem, apříklad Histogram

2 Popisá statistika v programu MS Excel Základí metodou zpracováí velkého rozsahu číselých dat je metoda rozděleí četosti, a jeho zobrazeí pomocí sloupcového grafu histogramu četosti. Dalším krokem je obvykle výpočet základích charakteristik souboru a případé zázorěí dat pomocí grafů, aby bylo možé odhadout případé závislosti v souboru. Kostrukcí histogramu četosti a výpočtem základích charakteristik dat se zabývá další část této kapitoly.. HISTOGRAM ČETNOSTI Histogram četosti je sloupcový graf, zázorňující rozděleí četostí číselých dat v třídách epřekrývajících se stejě širokých itervalech. Optimálí počet tříd k v histogramu lze staovit pomocí tzv. Sturgersova pravidla k Roud ( 3,3.log ( )), kde je počet údajů v souboru. Fukce Roud ( ) ozačuje 0 zaokrouhleí argumetu fukce a ejbližší celé číslo. Počet tříd v histogramu se může mírě lišit od optimálího hlavě z důvodů většího přehledu a logiky v datech. Například časy příchodů zákazíků do prodejy sledovaé po dobu jedoho týde je logické do histogramu seřadit v závislosti a velikosti souboru po dech, případě po hodiách, a esažit se uměle vytvořit třídy, které ekorespodují s obvyklým časovým čleěím týde (apříklad,8 de, ebo 3,48 hodiy) Je-li staove počet tříd, pak šířku třídy lze určit jako podíl rozpětí souboru a počtu tříd. Za rozpětí souboru považujeme rozdíl ejmeší a ejvětší hodoty souboru. Tabulkový procesor MS Excel umožňuje vytvořeí histogramu přímo z dat pomocí aalytického ástroje Histogram. Jako vstupí údaj stačí zadat pouze soubor číselých dat a horí hraice požadovaých tříd. Použití tohoto aalytického ástroje demostruje ásledující příklad: ŘEŠENÝ PŘÍKLAD. Následující tabulka obsahuje počty bodů, které získali studeti a testu ze statistiky a) Vypočítejte optimálí počet tříd pomocí Sturgersova pravidla. b) Zobrazte histogram četosti pro počet tříd z příkladu a). c) Zobrazte histogram četosti pro pět tříd. Řešeí: a) Optimálí počet tříd závisí a celkovém počtu pozorováí (údajů) v zadáí je výsledek třiceti písemých prací, tedy 30. Optimálí počet tříd: k Roud ( 3,3.log 0(30)) Roud (3,3.,477) Roud (4,8745) 5 6 b) Rozpětí souboru R zjistíme jako rozdíl maximálí a miimálí hodoty v datech. Teto rozdíl je: R max( x i ) mi( xi ) Šířka třídy bude tedy 00/6 = 6,7. Pro sestrojeí histogramu četosti je uté připravit data a horí hraice tříd (viz Obr..3)

3 Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy Obrázek.3 Po otevřeí ástroje Histogram (Data Aalýza dat Histogram) lze zadat vstupí oblast dat, horí hraice tříd a ozačit, že program má vytvořit graf (Obr..4). Obrázek.4 Program vygeeruje a ový list požadovaé četosti a také histogram (Obr..5). Obrázek.5 - -

4 Popisá statistika v programu MS Excel c) V případě, že histogram bude mít pět tříd je šířka třídy 20. Připraveé zadáí (Obr..6) Obrázek.6 Výsledý histogram (obr.7): Obrázek.7.2 ZÁKLADNÍ CHARAKTERISTIKY DAT Číselé charakteristiky jsou umerickým vyjádřeím ejzákladějších vlastostí statistického souboru. Podle toho, které vlastosti popisují, je lze rozdělit a charakteristiky polohy a charakteristiky variability. Mezi základí charakteristiky polohy patří modus, mediá a průměr. Mezi základí charakteristiky variability patří rozptyl, směrodatá odchylka, šikmost a špičatost. Modus xˆ představuje ejčetější hodotu, tedy takovou hodotu, která se v souboru vyskytuje ejčastěji. Je zcela ezávislý a ostatích hodotách, které se mohou libovolě měit, aiž se modus změí. Modus v programu MS Excel vypočítáme pomocí statistické fukce = MODE(číslo;číslo2;...). V případě že je v souboru více modů (multimodálí soubor), fukce zobrazí prví (ejmeší) modus v pořadí

5 Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy Mediá x ~ představuje prostředí hodotu v souboru hodot, tedy takovou hodotu, kdy existuje stejý počet meších (ebo stejých) a stejý počet větších (ebo stejých) hodot. Při sudém počtu hodot se mediá defiuje jako aritmetický průměr z ejvyšší hodoty dolí poloviy a ejižší hodoty horí poloviy hodot uspořádaých podle velikosti. Takto fuguje apř. statistická fukce =MEDIAN(číslo;číslo2;...) v Excelu. Lze se setkat též s defiicí mediáu coby 50% kvatilu. V tom případě je mediá ejvětší hodotou v dolí poloviě uspořádaých hodot. Aritmetický průměr (zkráceě: průměr) obdržíme jako součet jedotlivých výsledků měřeí ebo zjišťováí vyděleý celkovým počtem výsledků. Rozlišujeme přitom aritmetický průměr z celého souboru údajů, ebo je z určitého vzorku - výběru. Te prví azýváme populačím průměrem a ozačujeme jej řeckým písmeem, pro te druhý používáme ozačeí x a azýváme jej výběrovým průměrem. Zda se jedá o výběrový ebo populačí průměr, závisí a kokrétí situaci. Matematické vyjádřeí je ásledující: N populačí průměr, výběrový průměr x x i N i x i i. Přitom N představuje počet údajů celého souboru, představuje počet údajů z příslušého výběru. K výpočtu aritmetického průměru se používá fukce =PRŮMĚR(číslo;číslo2; ), která počítá pouze s číselými údaji, ostatí údaje včetě prázdých buěk igoruje. Aritmetický průměr dává stejou důležitost (váhu) každému z údajů, avšak údaje ěkdy stejou důležitost emají. Proto je v těchto případech vhodé použít vážeý aritmetický průměr pomocí vah w. V Excelu eí k dispozici speciálí fukce pro výpočet vážeého i aritmetického průměru, k výpočtu je třeba apsat vhodý vzorec. vážeý aritmetický průměr x w x. w i w i i V ekoomické oblasti se často počítá s růzými idexy, apř. ceovými. Pro výpočet průměrého idexu za určité období se používá geometrický průměr, který se vypočítá jako -tá odmocia ze součiu kladých hodot x. x 2 x : geometrický průměr x x x x g. 2. K výpočtu geometrického průměru se používá fukce =GEOMEAN(číslo;číslo2; ). Rozptyl je aritmetickým průměrem kvadrátů odchylek od aritmetického průměru. Podle toho, zda se jedá o rozptyl z celého souboru celé populace, ebo je rozptyl z jistého vzorku výběru z této populace, rozlišujeme populačí rozptyl, kterému říkáme jedoduše 2 2 rozptyl, začíme, a výběrový rozptyl, ozačujeme jej s : Vzorce vypadají ásledově: N 2 2 (populačí) rozptyl ( ), v Excelu fukce = VAR(číslo;číslo2;...), N i x i 2 2 výběrový rozptyl s ( x i x), v Excelu = VAR.VÝBĚR( (číslo;číslo2;...). i Číslo - se azývá počet stupňů volosti. Směrodatá odchylka je druhou odmociou z rozptylu. Ve shodě s předchozí termiologií rozlišujeme populačí směrodatou odchylku, ozačujeme ji, které říkáme prostě směrodatá odchylka, a výběrovou směrodatou odchylku, která je odmociou z výběrového rozptylu, ozačujeme ji s. V Excelu lze vypočítat populačí směrodatou i i - 3 -

6 Popisá statistika v programu MS Excel odchylku pomocí fukce =SMODCH(číslo;číslo2;...) a výběrovou směrodatou odchylku pomocí fukce =SMODCH.VÝBĚR(číslo;číslo2;...). Šikmost je charakteristikou, popisující symetrii pravděpodobostího rozděleí vzhledem k aritmetickému průměru, v Excelu se používá fukce = SKEW(číslo;číslo2;...). Nulová šikmost začí, že hodoty souboru jsou rovoměrě rozděley vlevo a vpravo od průměru. Kladá šikmost začí, že vpravo od průměru se vyskytují odlehlejší hodoty ežli vlevo a většia hodot se achází vlevo od průměru. U záporé šikmosti je tomu aopak. Špičatost je charakteristika rozděleí hodot souboru, která porovává daé rozděleí s tzv. ormálím rozděleím. V Excelu se pro výpočet špičatosti používá fukce =KURT(číslo;číslo2;...). Hodoty s tzv. ormovaým ormálím rozděleím (které má průměr rove ule a směrodatou odchylku rovu jedé) mají koeficiet špičatosti rove ule. Rozděleí s kladým koeficietem jsou špičatější ež ormovaé ormálí rozděleí, tedy hodoty jsou více kocetrováy v blízkosti průměru. Naopak rozděleí se záporým koeficietem šikmosti jsou plošší ež ormovaé ormálí rozděleí. ŘEŠENÝ PŘÍKLAD.2 Následující tabulka obsahuje počty bodů, které získali jedotliví studeti z testu z mikroekoomie: a) Vypočítejte průměrý počet bodů. b) Nalezěte modus souboru. c) Vypočítejte mediá souboru. d) Vypočítejte výběrový rozptyl souboru. e) Vypočítejte výběrovou směrodatou odchylku souboru. f) Vypočítejte populačí rozptyl. g) Vypočítejte populačí směrodatou odchylku souboru. h) Vypočítejte šikmost souboru. i) Špičatost souboru. j) Načrtěte histogram četosti pro 5 tříd. Řešeí: Pomocí fukcí Excelu postupě dostaeme výsledky (Obr..8): - 4 -

7 Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy Obrázek.8 Statistické fukce ejsou jediou možostí, kterou Excel v souvislosti s popisou statistikou abízí. Tabulkový procesor MS Excel umožňuje výpočet celého souboru výběrových základích charakteristik přímo z dat pomocí položky hlavího meu záložky Data: Aalýza dat (pozor, musí být aistalováa, viz text pod obrázkem.), aalytický ástroj Popisá statistika. Použití tohoto aalytického ástroje demostruje ásledující příklad: ŘEŠENÝ PŘÍKLAD.3 Následující tabulka (stejá jako v Příkladu.2) obsahuje počty bodů, které získali jedotliví studeti z testu z mikroekoomie: Vypočítejte průměrý počet bodů, alezěte modus souboru, vypočítejte mediá souboru, vypočítejte výběrový rozptyl a směrodatou odchylku souboru. Vypočítejte šikmost a špičatost souboru. Nalezěte maximálí a miimálí hodotu v souboru

8 Popisá statistika v programu MS Excel Řešeí: Pro výpočet pomocí aalytického ástroje Popisá statistika je uté připravit data do jedoho sloupce (ebo řádku), protože pro každý sloupec (případě řádek) se všechy hodoty počítají zvlášť. Tato vlastost je výhodá pro výpočet základích charakteristik dat pro ěkolik souborů (sloupců ebo řádků dat) ajedou. Po otevřeí ástroje Popisá statistika (Data Aalýza dat Popisá statistika) lze zadat vstupí oblast dat, ozačit, zda jsou data ve sloupci ebo v řádku, zadat případé popisky a určit, že vyžadujeme celkový přehled (Obr..9). Obrázek.9 Výsledá tabulka obsahuje všechy požadovaé iformace s popisem (Obr..0). Výsledky si můžete porovat s řešeím předchozího příkladu.2: Obrázek.0-6 -

9 Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy.3 PŘÍKLADY K PROCVIČENÍ PŘÍKLAD. Následující tabulka obsahuje počty bodů, které získali studeti z testu z makroekoomie a) Vypočítejte optimálí počet tříd pomocí Sturgersova pravidla. b) Zobrazte histogram četosti pro počet tříd z příkladu a). PŘÍKLAD.2 Zjistěte základí charakteristiky pro soubor dat z ásledující tabulky: Vypočítejte průměrý počet bodů, alezěte modus souboru, vypočítejte mediá souboru, vypočítejte výběrový rozptyl a směrodatou odchylku souboru. Vypočítejte šikmost a špičatost souboru. Nalezěte maximálí a miimálí hodotu v souboru. Použijte aalytický ástroj Popisá statistika. PŘÍKLAD.3 Pro data z ásledující tabulky určete výběrovou směrodatou odchylku a populačí směrodatou odchylku a výsledky porovejte. Která směrodatá odchylka je větší? ŘEŠENÍ PŘÍKLADŮ ŘEŠENÍ PŘÍKLADU. Optimálí počet tříd: k Roud ( 3,3.log (20)) Roud (3,3.,30) Roud (4,293) Histogram četosti (Obr..): - 7 -

10 Popisá statistika v programu MS Excel Obrázek. ŘEŠENÍ PŘÍKLADU.2 Výsledá tabulka obsahuje všechy požadovaé iformace s popisem (Obr..2). Obrázek.2 ŘEŠENÍ PŘÍKLADU.3 Výběrová směrodatá odchylka je 6,034 a populačí směrodatá odchylka je 5,764. Větší je výběrová směrodatá odchylka

11 Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy.5 PŘÍPADOVÉ STUDIE PŘÍPADOVÁ STUDIE. Při marketigové studii pro výrobce praček byli respodeti dotázái, kolik let vlastí pračku, kterou mají doma. Odpovědi 00 respodetů jsou v ásledující tabulce: a) Vypočítejte průměrý počet let vlastictví pračky. b) Nalezěte modus souboru. c) Vypočítejte mediá souboru. d) Vypočítejte výběrový rozptyl souboru. e) Vypočítejte výběrovou směrodatou odchylku souboru. f) Vypočítejte populačí rozptyl. g) Vypočítejte populačí směrodatou odchylku souboru. h) Vypočítejte šikmost a špičatost souboru. i) Pomocí Sturgersova pravidla určete optimálí počet tříd a ačrtěte histogram četosti. j) Načrtěte histogram četosti pro 0 tříd

12 Popisá statistika v programu MS Excel PŘÍPADOVÁ STUDIE.2 Při marketigové studii pro výrobce praček byli respodeti dále dotázái, kolik let vlastili pračku, kterou měli před yější pračkou. Odpovědi 00 respodetů jsou v ásledující tabulce: a) Vypočítejte průměrý počet let vlastictví pračky. b) Nalezěte modus souboru. c) Vypočítejte mediá souboru. d) Vypočítejte výběrový rozptyl souboru. e) Vypočítejte výběrovou směrodatou odchylku souboru. f) Vypočítejte populačí rozptyl. g) Vypočítejte populačí směrodatou odchylku souboru. h) Vypočítejte šikmost a špičatost souboru. i) Pomocí Sturgersova pravidla určete optimálí počet tříd a ačrtěte histogram četosti. j) Načrtěte histogram četosti pro 5 tříd. k) Porovejte výsledky případové studie. a.2 a iterpretujte rozdíly

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymázium, Šterberk, Horí ám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šabloa III/2 Iovace a zkvalitěí výuky prostředictvím ICT Ozačeí materiálu VY_32_INOVACE_Hor018 Vypracoval(a), de Mgr. Radek

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více

1.2. NORMA A SKALÁRNÍ SOUČIN

1.2. NORMA A SKALÁRNÍ SOUČIN 2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

Lineární a adaptivní zpracování dat. 8. Modely časových řad I.

Lineární a adaptivní zpracování dat. 8. Modely časových řad I. Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy 3.1 Zadáí: 3. Sekvečí obvody 1. Navrhěte a realizujte obvod geerující zadaou sekveci. Postupujte ásledově: a) Vytvořte vývojovou tabulku pro zadaou sekveci b) Miimalizujte budící fukce pomocí Karaughovy

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

Přednáška VIII. Testování hypotéz o kvantitativních proměnných Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Konec srandy!!! Mocniny s přirozeným mocnitelem I. Předpoklady: základní početní operace

Konec srandy!!! Mocniny s přirozeným mocnitelem I. Předpoklady: základní početní operace Koec srady!!!.6. Mociy s přirozeým mocitelem I Předpoklady: základí početí operace Pedagogická pozámka: Zápis a začátku kapitoly je víc ež je srada. Tato hodia je prví v druhé části studia. Až dosud ehrálo

Více

ZÁKLADY STATISTIKY (s aplikací na zdravotnictví)

ZÁKLADY STATISTIKY (s aplikací na zdravotnictví) PŘEMYSL ZÁŠKODNÝ RENATA HAVRÁNKOVÁ JIŘÍ HAVRÁNEK VLADIMÍR VURM ZÁKLADY STATISTIKY (s aplikací a zdravotictví) Vzik publikace byl ispirová myšlekami, pracemi a ávrhy výzamého sloveského vědce v oblasti

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

8.1.3 Rekurentní zadání posloupnosti I

8.1.3 Rekurentní zadání posloupnosti I 8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Náhodný výběr, statistiky a bodový odhad

Náhodný výběr, statistiky a bodový odhad Lekce Náhodý výběr, statistiky a bodový odhad Parametr rozděleí pravděpodobosti je ezámá kostata, jejíž přímé určeí eí možé. Nástrojem pro odhad ezámých parametrů je áhodý výběr a jeho charakteristiky

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více

Přednášky část 7 Statistické metody vyhodnocování dat

Přednášky část 7 Statistické metody vyhodnocování dat DŽ ředášky část 7 tatistické metody vyhodocováí dat Mila Růžička mechaika.fs.cvt.cz mila.rzicka@fs.cvt.cz DŽ tatistické metody vyhodocováí dat Jak velké rozptyly lze očekávat mezi dosažeými pevostmi ebo

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( ) DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce

Více

Seriál XXX.II Zpracování dat fyzikálních měření

Seriál XXX.II Zpracování dat fyzikálních měření Seriál: Zpracováí dat fyzikálích měřeí V miulém díle seriálu jsme se sezámili s tím, co je to áhodá veličia, hustota pravděpodobosti a jak se dá v ěkterých případech odhadout typ rozděleí áhodé veličiy

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

Téma: 11) Dynamika stavebních konstrukcí

Téma: 11) Dynamika stavebních konstrukcí Počítačová podpora statických výpočtů Téma: ) Dyamika stavebích kostrukcí Katedra stavebí mechaiky Fakulta stavebí, VŠB V Techická uiverzita Ostrava Rozděleí mechaiky Statika Zabývá se problematikou působeí

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více