1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL"

Transkript

1 Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo, zda se jedá o medicíu, biologii, ebo ekoomii případě marketig. Jmeovitě ekoomické disciplíy patří mezi ty obory, pro které je zpracováí dat evyhutelé. Pro složitější testováí a sofistikovaé ekoometrické modely ekoomové určitě zvolí speciálí statistický software, ale pro základí charakteristiky dat, statistické testy a jedoduché regresí modely je možé použít také tabulkový procesor. To, jak pro základí statistické operace využít tabulkový procesor Excel je stručě popsaé v prvích čtyřech kapitolách studijího textu. Předpokládáme přitom, že čteář má k dispozici verzi Excel 2007, evetuálě vyšší. Pro zjedodušeí práce je vhodé mít aktivovaý doplěk Aalýza dat ve složce Data (viz Obr..) Obrázek. V případě, že teto doplěk eí ve složce Data, lehce ho aistalujete tímto postupem: Tlačítko Office Možosti aplikace Excel Doplňky Přejít a v dialogovém okě zaškrtout položku Aalytické ástroje (viz Obr..2). Obrázek.2 Kromě doplňku Aalýza dat tabulkový procesor MS Excel dispouje širokým spektrem statistických fukcí. Všechy fukce procesoru MS Excel použité v ásledujícím textu budou vyzačey ve tvaru: =FUNKCE(proměá; ; proměán) se zamékem = a začátku; použití aalytického ástroje bude vyzačeo podobým způsobem, apříklad Histogram

2 Popisá statistika v programu MS Excel Základí metodou zpracováí velkého rozsahu číselých dat je metoda rozděleí četosti, a jeho zobrazeí pomocí sloupcového grafu histogramu četosti. Dalším krokem je obvykle výpočet základích charakteristik souboru a případé zázorěí dat pomocí grafů, aby bylo možé odhadout případé závislosti v souboru. Kostrukcí histogramu četosti a výpočtem základích charakteristik dat se zabývá další část této kapitoly.. HISTOGRAM ČETNOSTI Histogram četosti je sloupcový graf, zázorňující rozděleí četostí číselých dat v třídách epřekrývajících se stejě širokých itervalech. Optimálí počet tříd k v histogramu lze staovit pomocí tzv. Sturgersova pravidla k Roud ( 3,3.log ( )), kde je počet údajů v souboru. Fukce Roud ( ) ozačuje 0 zaokrouhleí argumetu fukce a ejbližší celé číslo. Počet tříd v histogramu se může mírě lišit od optimálího hlavě z důvodů většího přehledu a logiky v datech. Například časy příchodů zákazíků do prodejy sledovaé po dobu jedoho týde je logické do histogramu seřadit v závislosti a velikosti souboru po dech, případě po hodiách, a esažit se uměle vytvořit třídy, které ekorespodují s obvyklým časovým čleěím týde (apříklad,8 de, ebo 3,48 hodiy) Je-li staove počet tříd, pak šířku třídy lze určit jako podíl rozpětí souboru a počtu tříd. Za rozpětí souboru považujeme rozdíl ejmeší a ejvětší hodoty souboru. Tabulkový procesor MS Excel umožňuje vytvořeí histogramu přímo z dat pomocí aalytického ástroje Histogram. Jako vstupí údaj stačí zadat pouze soubor číselých dat a horí hraice požadovaých tříd. Použití tohoto aalytického ástroje demostruje ásledující příklad: ŘEŠENÝ PŘÍKLAD. Následující tabulka obsahuje počty bodů, které získali studeti a testu ze statistiky a) Vypočítejte optimálí počet tříd pomocí Sturgersova pravidla. b) Zobrazte histogram četosti pro počet tříd z příkladu a). c) Zobrazte histogram četosti pro pět tříd. Řešeí: a) Optimálí počet tříd závisí a celkovém počtu pozorováí (údajů) v zadáí je výsledek třiceti písemých prací, tedy 30. Optimálí počet tříd: k Roud ( 3,3.log 0(30)) Roud (3,3.,477) Roud (4,8745) 5 6 b) Rozpětí souboru R zjistíme jako rozdíl maximálí a miimálí hodoty v datech. Teto rozdíl je: R max( x i ) mi( xi ) Šířka třídy bude tedy 00/6 = 6,7. Pro sestrojeí histogramu četosti je uté připravit data a horí hraice tříd (viz Obr..3)

3 Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy Obrázek.3 Po otevřeí ástroje Histogram (Data Aalýza dat Histogram) lze zadat vstupí oblast dat, horí hraice tříd a ozačit, že program má vytvořit graf (Obr..4). Obrázek.4 Program vygeeruje a ový list požadovaé četosti a také histogram (Obr..5). Obrázek.5 - -

4 Popisá statistika v programu MS Excel c) V případě, že histogram bude mít pět tříd je šířka třídy 20. Připraveé zadáí (Obr..6) Obrázek.6 Výsledý histogram (obr.7): Obrázek.7.2 ZÁKLADNÍ CHARAKTERISTIKY DAT Číselé charakteristiky jsou umerickým vyjádřeím ejzákladějších vlastostí statistického souboru. Podle toho, které vlastosti popisují, je lze rozdělit a charakteristiky polohy a charakteristiky variability. Mezi základí charakteristiky polohy patří modus, mediá a průměr. Mezi základí charakteristiky variability patří rozptyl, směrodatá odchylka, šikmost a špičatost. Modus xˆ představuje ejčetější hodotu, tedy takovou hodotu, která se v souboru vyskytuje ejčastěji. Je zcela ezávislý a ostatích hodotách, které se mohou libovolě měit, aiž se modus změí. Modus v programu MS Excel vypočítáme pomocí statistické fukce = MODE(číslo;číslo2;...). V případě že je v souboru více modů (multimodálí soubor), fukce zobrazí prví (ejmeší) modus v pořadí

5 Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy Mediá x ~ představuje prostředí hodotu v souboru hodot, tedy takovou hodotu, kdy existuje stejý počet meších (ebo stejých) a stejý počet větších (ebo stejých) hodot. Při sudém počtu hodot se mediá defiuje jako aritmetický průměr z ejvyšší hodoty dolí poloviy a ejižší hodoty horí poloviy hodot uspořádaých podle velikosti. Takto fuguje apř. statistická fukce =MEDIAN(číslo;číslo2;...) v Excelu. Lze se setkat též s defiicí mediáu coby 50% kvatilu. V tom případě je mediá ejvětší hodotou v dolí poloviě uspořádaých hodot. Aritmetický průměr (zkráceě: průměr) obdržíme jako součet jedotlivých výsledků měřeí ebo zjišťováí vyděleý celkovým počtem výsledků. Rozlišujeme přitom aritmetický průměr z celého souboru údajů, ebo je z určitého vzorku - výběru. Te prví azýváme populačím průměrem a ozačujeme jej řeckým písmeem, pro te druhý používáme ozačeí x a azýváme jej výběrovým průměrem. Zda se jedá o výběrový ebo populačí průměr, závisí a kokrétí situaci. Matematické vyjádřeí je ásledující: N populačí průměr, výběrový průměr x x i N i x i i. Přitom N představuje počet údajů celého souboru, představuje počet údajů z příslušého výběru. K výpočtu aritmetického průměru se používá fukce =PRŮMĚR(číslo;číslo2; ), která počítá pouze s číselými údaji, ostatí údaje včetě prázdých buěk igoruje. Aritmetický průměr dává stejou důležitost (váhu) každému z údajů, avšak údaje ěkdy stejou důležitost emají. Proto je v těchto případech vhodé použít vážeý aritmetický průměr pomocí vah w. V Excelu eí k dispozici speciálí fukce pro výpočet vážeého i aritmetického průměru, k výpočtu je třeba apsat vhodý vzorec. vážeý aritmetický průměr x w x. w i w i i V ekoomické oblasti se často počítá s růzými idexy, apř. ceovými. Pro výpočet průměrého idexu za určité období se používá geometrický průměr, který se vypočítá jako -tá odmocia ze součiu kladých hodot x. x 2 x : geometrický průměr x x x x g. 2. K výpočtu geometrického průměru se používá fukce =GEOMEAN(číslo;číslo2; ). Rozptyl je aritmetickým průměrem kvadrátů odchylek od aritmetického průměru. Podle toho, zda se jedá o rozptyl z celého souboru celé populace, ebo je rozptyl z jistého vzorku výběru z této populace, rozlišujeme populačí rozptyl, kterému říkáme jedoduše 2 2 rozptyl, začíme, a výběrový rozptyl, ozačujeme jej s : Vzorce vypadají ásledově: N 2 2 (populačí) rozptyl ( ), v Excelu fukce = VAR(číslo;číslo2;...), N i x i 2 2 výběrový rozptyl s ( x i x), v Excelu = VAR.VÝBĚR( (číslo;číslo2;...). i Číslo - se azývá počet stupňů volosti. Směrodatá odchylka je druhou odmociou z rozptylu. Ve shodě s předchozí termiologií rozlišujeme populačí směrodatou odchylku, ozačujeme ji, které říkáme prostě směrodatá odchylka, a výběrovou směrodatou odchylku, která je odmociou z výběrového rozptylu, ozačujeme ji s. V Excelu lze vypočítat populačí směrodatou i i - 3 -

6 Popisá statistika v programu MS Excel odchylku pomocí fukce =SMODCH(číslo;číslo2;...) a výběrovou směrodatou odchylku pomocí fukce =SMODCH.VÝBĚR(číslo;číslo2;...). Šikmost je charakteristikou, popisující symetrii pravděpodobostího rozděleí vzhledem k aritmetickému průměru, v Excelu se používá fukce = SKEW(číslo;číslo2;...). Nulová šikmost začí, že hodoty souboru jsou rovoměrě rozděley vlevo a vpravo od průměru. Kladá šikmost začí, že vpravo od průměru se vyskytují odlehlejší hodoty ežli vlevo a většia hodot se achází vlevo od průměru. U záporé šikmosti je tomu aopak. Špičatost je charakteristika rozděleí hodot souboru, která porovává daé rozděleí s tzv. ormálím rozděleím. V Excelu se pro výpočet špičatosti používá fukce =KURT(číslo;číslo2;...). Hodoty s tzv. ormovaým ormálím rozděleím (které má průměr rove ule a směrodatou odchylku rovu jedé) mají koeficiet špičatosti rove ule. Rozděleí s kladým koeficietem jsou špičatější ež ormovaé ormálí rozděleí, tedy hodoty jsou více kocetrováy v blízkosti průměru. Naopak rozděleí se záporým koeficietem šikmosti jsou plošší ež ormovaé ormálí rozděleí. ŘEŠENÝ PŘÍKLAD.2 Následující tabulka obsahuje počty bodů, které získali jedotliví studeti z testu z mikroekoomie: a) Vypočítejte průměrý počet bodů. b) Nalezěte modus souboru. c) Vypočítejte mediá souboru. d) Vypočítejte výběrový rozptyl souboru. e) Vypočítejte výběrovou směrodatou odchylku souboru. f) Vypočítejte populačí rozptyl. g) Vypočítejte populačí směrodatou odchylku souboru. h) Vypočítejte šikmost souboru. i) Špičatost souboru. j) Načrtěte histogram četosti pro 5 tříd. Řešeí: Pomocí fukcí Excelu postupě dostaeme výsledky (Obr..8): - 4 -

7 Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy Obrázek.8 Statistické fukce ejsou jediou možostí, kterou Excel v souvislosti s popisou statistikou abízí. Tabulkový procesor MS Excel umožňuje výpočet celého souboru výběrových základích charakteristik přímo z dat pomocí položky hlavího meu záložky Data: Aalýza dat (pozor, musí být aistalováa, viz text pod obrázkem.), aalytický ástroj Popisá statistika. Použití tohoto aalytického ástroje demostruje ásledující příklad: ŘEŠENÝ PŘÍKLAD.3 Následující tabulka (stejá jako v Příkladu.2) obsahuje počty bodů, které získali jedotliví studeti z testu z mikroekoomie: Vypočítejte průměrý počet bodů, alezěte modus souboru, vypočítejte mediá souboru, vypočítejte výběrový rozptyl a směrodatou odchylku souboru. Vypočítejte šikmost a špičatost souboru. Nalezěte maximálí a miimálí hodotu v souboru

8 Popisá statistika v programu MS Excel Řešeí: Pro výpočet pomocí aalytického ástroje Popisá statistika je uté připravit data do jedoho sloupce (ebo řádku), protože pro každý sloupec (případě řádek) se všechy hodoty počítají zvlášť. Tato vlastost je výhodá pro výpočet základích charakteristik dat pro ěkolik souborů (sloupců ebo řádků dat) ajedou. Po otevřeí ástroje Popisá statistika (Data Aalýza dat Popisá statistika) lze zadat vstupí oblast dat, ozačit, zda jsou data ve sloupci ebo v řádku, zadat případé popisky a určit, že vyžadujeme celkový přehled (Obr..9). Obrázek.9 Výsledá tabulka obsahuje všechy požadovaé iformace s popisem (Obr..0). Výsledky si můžete porovat s řešeím předchozího příkladu.2: Obrázek.0-6 -

9 Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy.3 PŘÍKLADY K PROCVIČENÍ PŘÍKLAD. Následující tabulka obsahuje počty bodů, které získali studeti z testu z makroekoomie a) Vypočítejte optimálí počet tříd pomocí Sturgersova pravidla. b) Zobrazte histogram četosti pro počet tříd z příkladu a). PŘÍKLAD.2 Zjistěte základí charakteristiky pro soubor dat z ásledující tabulky: Vypočítejte průměrý počet bodů, alezěte modus souboru, vypočítejte mediá souboru, vypočítejte výběrový rozptyl a směrodatou odchylku souboru. Vypočítejte šikmost a špičatost souboru. Nalezěte maximálí a miimálí hodotu v souboru. Použijte aalytický ástroj Popisá statistika. PŘÍKLAD.3 Pro data z ásledující tabulky určete výběrovou směrodatou odchylku a populačí směrodatou odchylku a výsledky porovejte. Která směrodatá odchylka je větší? ŘEŠENÍ PŘÍKLADŮ ŘEŠENÍ PŘÍKLADU. Optimálí počet tříd: k Roud ( 3,3.log (20)) Roud (3,3.,30) Roud (4,293) Histogram četosti (Obr..): - 7 -

10 Popisá statistika v programu MS Excel Obrázek. ŘEŠENÍ PŘÍKLADU.2 Výsledá tabulka obsahuje všechy požadovaé iformace s popisem (Obr..2). Obrázek.2 ŘEŠENÍ PŘÍKLADU.3 Výběrová směrodatá odchylka je 6,034 a populačí směrodatá odchylka je 5,764. Větší je výběrová směrodatá odchylka

11 Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy.5 PŘÍPADOVÉ STUDIE PŘÍPADOVÁ STUDIE. Při marketigové studii pro výrobce praček byli respodeti dotázái, kolik let vlastí pračku, kterou mají doma. Odpovědi 00 respodetů jsou v ásledující tabulce: a) Vypočítejte průměrý počet let vlastictví pračky. b) Nalezěte modus souboru. c) Vypočítejte mediá souboru. d) Vypočítejte výběrový rozptyl souboru. e) Vypočítejte výběrovou směrodatou odchylku souboru. f) Vypočítejte populačí rozptyl. g) Vypočítejte populačí směrodatou odchylku souboru. h) Vypočítejte šikmost a špičatost souboru. i) Pomocí Sturgersova pravidla určete optimálí počet tříd a ačrtěte histogram četosti. j) Načrtěte histogram četosti pro 0 tříd

12 Popisá statistika v programu MS Excel PŘÍPADOVÁ STUDIE.2 Při marketigové studii pro výrobce praček byli respodeti dále dotázái, kolik let vlastili pračku, kterou měli před yější pračkou. Odpovědi 00 respodetů jsou v ásledující tabulce: a) Vypočítejte průměrý počet let vlastictví pračky. b) Nalezěte modus souboru. c) Vypočítejte mediá souboru. d) Vypočítejte výběrový rozptyl souboru. e) Vypočítejte výběrovou směrodatou odchylku souboru. f) Vypočítejte populačí rozptyl. g) Vypočítejte populačí směrodatou odchylku souboru. h) Vypočítejte šikmost a špičatost souboru. i) Pomocí Sturgersova pravidla určete optimálí počet tříd a ačrtěte histogram četosti. j) Načrtěte histogram četosti pro 5 tříd. k) Porovejte výsledky případové studie. a.2 a iterpretujte rozdíly

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Máme dotazníky. A co dál? Martina Litschmannová

Máme dotazníky. A co dál? Martina Litschmannová Máme dotazíy. A co dál? Martia Litschmaová. Úvod S dotazíy se setáváme běžě. Vídáme je v oviách, v časopisech, jsou součásti evaluačích zpráv (sebehodoceí šol, ), výzumých zpráv, Využívají se v sociologii,

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA RVDĚODONOST STTISTIK Gymázium Jiřího Wolkera v rostějově Výukové materiály z matematiky pro vyšší gymázia utoři projektu Studet a prahu. století - využití ICT ve vyučováí matematiky a gymáziu Teto projekt

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

Měření na D/A a A/D převodnících

Měření na D/A a A/D převodnících Měřeí a D/A a A/D převodících. Zadáí A. Na D/A převodíku ealizovaém pomocí MDAC 8: a) Změřte závislost výstupího apětí převodíku v ozsahu až V a zvoleé vstupí kombiaci sousedích kódových slov. Měřeí poveďte

Více

Využití Markovových řetězců pro predikování pohybu cen akcií

Využití Markovových řetězců pro predikování pohybu cen akcií Využití Markovových řetězců pro predikováí pohybu ce akcií Mila Svoboda Tredy v podikáí, 4(2) 63-70 The Author(s) 2014 ISSN 1805-0603 Publisher: UWB i Pilse http://www.fek.zcu.cz/tvp/ Úvod K vybudováí

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH: ÚVOD... 4. CO JE STATISTIKA?... 4. STATISTICKÁ DATA... 5.3 MĚŘENÍ

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

Expertní Systémy. Tvorba aplikace

Expertní Systémy. Tvorba aplikace Tvorba aplikace Typ systému malý velký velmi velký Počet pravidel 50-350 500-3000 10000 Počet člověkoroků 0.3-0.5 1-2 3-5 Cea projektu (v tis.$) 40-60 500-1000 2000-5000 Harmo, Kig (1985) Vytvořeí expertího

Více

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMBINATORIKA Gymázium Jiřího Wolera v Prostějově Výuové materiály z matematiy pro vyšší gymázia Autoři projetu Studet a prahu. století - využití ICT ve vyučováí matematiy a gymáziu INVESTICE DO ROZVOJE

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

ZÁKLADNÍ ICHTYOLOGICKÉ METODY

ZÁKLADNÍ ICHTYOLOGICKÉ METODY ZÁKLADNÍ ICHTYOLOGICKÉ METODY Určováí věku a staoveí růstu ryb Ryby jsou poikilotermí obratlovci, u ichž jsou všechy biologické fukce zásadím způsobem ovlivňováy teplotou vody. To platí v plém rozsahu

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový

Více

Naučte se víc... Microsoft Office Excel 2007 PŘÍKLADY

Naučte se víc... Microsoft Office Excel 2007 PŘÍKLADY Naučte se víc... Microsoft Office Excel 2007 PŘÍKLADY Autor: Lukáš Polák Příklady MS Excel 2007 Tato publikace vznikla za přispění společnosti Microsoft ČR v rámci iniciativy Microsoft Partneři ve vzdělávání.

Více

ZABEZPEČENÍ KOMUNIKACE SENZORICKÉHO SYSTÉMU

ZABEZPEČENÍ KOMUNIKACE SENZORICKÉHO SYSTÉMU Roč. 71 (2015) Číslo 2 O. Čožík, J. Kadlec: Zabezpečeí komuikace sezorického systému 1 ZABEZPEČEÍ KOMUIKACE SEZORICKÉHO SYSTÉMU Ig. Odřej Čožík 1, Doc. Ig. Jaroslav Kadlec, Ph.D. 2 Ústav mikroelektroiky;

Více

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko dáliced3 a rychlostí silice R3 Praha Tábor České Budějovice Rakousko w w obsah základí iformace 3 dálice D3 a rychlostí silice R3 PrahaTáborČeské BudějoviceRakousko 3 > základí iformace 4 > čleěí dálice

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK 04 prof. Ig. Bohuml Mařík, CSc. STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH.

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

Informační systémy o platu a služebním příjmu zahrnují:

Informační systémy o platu a služebním příjmu zahrnují: Katalog datových prvků a dalších položek používaých v Iformačích systémech o platu a služebím příjmu (ISPSP) verze 2014-6 16. 4. 2014 ISPSP Iformačí systémy o platu a služebím příjmu zahrují: ISP Iformačí

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více