Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby."

Transkript

1 V kapitole Ituitiví kobiatorika jse řešili příklady více éě stejý způsobe a stejých pricipech. Nyí si je zobecíe a adefiujee obvyklou teriologii. pravidlo součtu: Jestliže ějaký objekt A ůžee vybrat způsoby a jiý objekt B lze vybrat způsoby, poto výběr buď A ebo B je ožé provést + způsoby. pravidlo součiu: Jestliže ějaký objekt A ůžee vybrat způsoby a jestliže po každé takové výběru lze jiý objekt B vybrat způsoby, poto výběr A a zároveň B je ožé provést. způsoby. Uvaže ásledující postup výběru předětů z ožiy obsahující koečý počet plě od sebe rozezatelých předětů. Mechaisus výběru: Je dáa ožia M obsahující růzých prvků. Z ožiy M vyberee jede prvek a odložíe ho straou, za í vyberee další a odložíe vedle prvího, atd, až jich vyberee celke k; 0 k. Z vybraých prvků straou se stala k-tice. Zdůrazěe: vybraé prvky evracíe. Zajíá ás: 1) Kolik růzých uspořádaých k-tic (rozezáváe pořadí prvků) ůžee takto dostat? 2) Kolik růzých euspořádaých k-tic (erozezáváe pořadí prvků) ůžee takto dostat? Defiice: Uspořádaá k-tice z prvků se azývá variace k-té třídy z prvků a jejich počet se začí V(k,). Uspořádaá -tice z prvků se azývá perutace z prvků a jejich počet se začí P(). Perutace je zvláští případ variace P() = V(,). Neuspořádaá k-tice z prvků se azývá kobiace k-té třídy z prvků a jejich počet se začí K(k,). Pozáka: Neuspořádaé k-tice z prvků jsou vlastě podožiy o k prvcích získaé z ožiy obsahující prvků. Věta vzorců o počtech: Počet variací k-té třídy z prvků je V(k,) =.(-1).(-2)...(-k+1) Počet perutací z prvků je P() = V(,) =! Počet kobiací k-té třídy z prvků je K(k,) = V(k,)/P(k) = ( k)

2 Úkol: U ásledujících příkladů určete, zda se jedá o perutace, kobiace ebo variace: a) Toáš, Hoza, Věra si podávají ruku. Kolik bude podáí ruky? b) Pravidelý osiúhelík á vrcholy K, L, M, N, O, P, Q, R. Kolik existuje trojúhelíků, které ají vrchol ve vrcholech osiúhelíka. c) Karel, Pavel, Duša, Eva a Karla běží závod a 100. Kolika způsoby je ožé sestavit trojici vítězů, které budou stát a stupi vítězů? d) S připoíkai k avrhovaéu zákou chce v parlaetu vystoupit 5 poslaců. Určete počet všech ožých pořadí vystoupeí jedotlivých poslaců. e) Kolika způsoby ohou Petr, Karel, Zdeěk, Fratišek a Duša ráo a táboře astoupit do řady? f) Kolika způsoby je ožé sestavit vlajku, která á být složea ze tří růzobarevých pruhů, áe-li k dispozici barvu zeleou, čerou, žlutou, fialovou, bílou? g) Kolika způsoby je ožé sestavit vlajku, která á být složea ze tří růzobarevých pruhů, áe-li k dispozici barvu zeleou, čerou, žlutou? odpověď: a) kobiace ( 3 2) = 3; b) kobiace ( 8 3) = 56; c) variace = 60; d) perutace 5! = 120; e) perutace 5! = 120; f) variace = 60; g) perutace 3! = 6; Příklad 1: Kolik přirozeých čísel větších ež 3000 lze vytvořit z cifer 1,2,3,4, jestliže se žádá cifra esí opakovat? Řešte a) ituitivě, b) vzorci (perutace, kobiace, variace) Příklad 2: Kolik příek je určeo 10 body, jestliže a) žádé tři z ich eleží v jedé příce b) právě čtyři leží v jedé příce Příklad 3: V roviě jsou dáy dvě růzé rovoběžé příky a, b. Na příce a leží růzých bodů, a příce b růzých bodů. Určete počet všech (edegeerovaých) trojúhelíků, které ají tři vrcholy v uvedeých bodech dvěa růzýi způsoby. Příklad 4: Kolika způsoby lze rozdat 52 karet ezi 4 hráče, aby a) v listu 1. hráče byla právě 4 srdce b) hráč č. 1 a 3 ěli dohroady všechy krále

3 Příklad 5: Ve třídě se vyučuje 11 předětů. Kolik růzých rozvrhů a podělí je ožé sestavit, když se v podělí vyučuje 6 hodi a každý předět ůže ít ejvýše jedu hodiu. Příklad 6: Karel á 4 kihy v češtiě a 3 v agličtiě a všechy ají ázev začíající a jié píseo. Kolika způsoby je ůže uístit do kihovy a) bez ladu b) tak, aby byly zleva ejprve kihy v češtiě, a pak v agličtiě c) tak, aby byly seřazey podle abecedy Příklad 7: Do taečího kurzu dochází 15 chlapců a 24 dívek. Kolik taečích párů je ožé sestavit? Určete dvěa způsoby. Příklad 8: V lavici je 5 žáků A,B,C,D,E. Kolika způsoby je ůžee přesadit a) vůbec b) A bude sedět a kraji c) B, C budou sedět vedle sebe d) C a kraji a A, D vedle sebe Příklad 9: Kolik á -úhelík úhlopříček? >3 Příklad 10: Kolika způsoby lze seřadit 10 lidí a) do řady, b) do kruhu? Kolika způsoby lze seřadit 5 chlapců a 5 dívek c) do řady d) do kruhu, aby vedle sebe ebyli dva jedici stejého pohlaví?

4 Příklad 11: a) Kolika způsoby lze vybrat 5 karet do listu z balíčku 52 karet? b) Kolika způsoby lze vybrat 5 karet stejé barvy z balíčku 52 karet? Příklad 12: Kolik čtyřciferých čísel eších ež 4000 lze utvořit z cifer 1,3,5,7,9, eají-li se cifry opakovat? Příklad 13: Kolika způsoby lze ze šachovice vybrat 3 pole tak, aby eěla všecha tři stejou barvu? Příklad 14: Na večírku při slavostí přípitku si všech 10 přítoých přiťuklo každý s každý. Kolikrát zazělo cikutí skleiček? Příklad 15: Deset přátel si při odchodu a prázdiy slíbilo poslat vzájeě pohledice z cest. Kolik pohledic bylo celke rozesláo? Následující příklady jsou taková upoutávka a to, co ás čeká v další kapitole. Pokuste se je vyřešit sai, ať áte být a co hrdí. V další kapitole ajdete a porováí. Příklad 16: Město čtvercového půdorysu je vyezeo 5 ulicei od jihu k severu a 6 ulicei od západu a východ. Kolik cest existuje ezi jihozápadí rohe A a severovýchodí rohe B, sí-li se chodit je a východ a a sever? Příklad 17: Kolika způsoby lze rozdělit 40 jablek ezi 3 děti?

5 Příklad 18: Aražér á do výlohy uístit tři stejé svetry bílé, dva stejé svetry odré a čtyři stejé svetry červeé. Pro svetry si vybral potřebých 9 íst. Kolika způsoby ůže svetry a tato ísta uístit? ŘEŠENÍ Řešeí příkladu 1: čísla jsou založea a pozičí systéu, a tedy záleží a pořadí a) čtyřciferé číslo = čtyři pozice Aby vziklo čtyřciferé číslo z cifer 1,2,3,4 větší ež 3000, sí být a 1. ístě je 3 ebo 4; a ostatích ístech je to jedo. Na 1. ístě áe 2 ožostí a 2. ístě už je 3 ožostí, atd = 12 b) Záleží a pořadí a spotřebujee všechy prvky, jde o perutace Všech ožostí jak uspořádat 4 prvky ze čtyř je P(4). Do tohoto počtu jsou zahruty i ta čísla, která začíají 1, což evyhovuje zadáí a usíe je odečíst. 1 a začátku představuje tolik trojciferých čísel, které se dají vytvořit ze tří cifer 2,3,4 a těch je P(3). Stejě usíe odečíst čtyřciferá čísla, která začíají a 2. Celke jde tedy o P(4) 2.P(3) = 4! 2.3! = 12 čísel Řešeí příkladu 2: příka je určea dvěa body a ezáleží a pořadí, jde o kobiace a) K(2,10) = ( 10 2) = 45 b) čtyři body a jedé příce vytvářejí stále jedu příku, ale v předchozí případě jsou započítáy v počtu K(2,4) = ( 4 2) = 6 a usíe je odečíst; ale pozor, tu jedu, kterou vytvářejí, započítat usíe K(2,10) K(2,4) + 1 = = 40 Řešeí příkladu 3: trojúhelík je defiová třei ekolieáríi (eleží a jedé příce) body; ezáleží a pořadí, tedy jde o kobiace a) z (+) bodů lze vytvořit ( + 3) trojúhelíků; ale ěkteré z ich jsou degeerovaé (pouze úsečky, ejsou to trojúhelíky) a to vždy, když 3 body jsou vybráy pouze z příky a, resp. b. Takových je a příce a celke ( 3) a a příce b celke ( 3). Celke trojúhelíků dle zadáí je ( + 3) ( 3) ( 3)

6 b) Aby vzikl trojúhelík a e je úsečka, usíe vybírat jede bod z příky a a dva z b resp. jede bod z příky b a dva z a jede z příky a je ožé vybrat způsoby a dva z příky b ( 2) způsoby jede z příky b je ožé vybrat způsoby a dva z příky a ( 2) způsoby za použití pravidla součiu a součtu dospějee k výsledku.( 2) +.( 2) Jde o vyjádřeí stejého počtu, tedy usí platit ( + 3) ( 3) ( 3) =.( 2) +.( 2) převeďe odčítáí a druhou strau rovosti ( + 3) = ( 3) +.( 2) +.( 2) + ( 3) a užije záé vlastosti kobiačích čísel ( x 0) = 1 a ( x 1) = x; dostaee teto vztah, který lze zobecit z 3 a k ( + 3) = ( 0)( 3) + ( 1)( 2) + ( 2)( 1) + ( 3)( 0) Je-li 0 k,, pak platí k 0 k 1 k 1... k 1 1 k 0 Řešeí příkladu 4: karetí list: ezáleží a pořadí rozdáí, kobiace; dále použijee pravidla součiu; hráči jsou přede očíslovái, s těi se již žádé záěy edělají a) 1.hráč dostae 4 srdce ze 13 a z 39 esrdcí zbývajících 9 karet (do 13) 2.hráč pak ze zbytku 39 karet svých 13 3.hráč ze zbytku 26 karet svých 13 4.hráč ze zbytku 13 karet svých 13 ( 13 4)( 39 9) ( 39 13) ( 26 13) ( 13 13) b) vezee 4 krále ze 4 a k i dalších 22 karet ze zbývajících 48 z této hroádky pak vyberee 1. hráči 13 karet z 26 a 3. hráči 13 z 13 a zbývajících 26 karet rozdáe ezi 2. a 4. hráče ( 4 4)( 48 22) ( 26 13)( 13 13) ( 26 13)( 13 13) Řešeí příkladu 5: vyučovací hodiy jsou uspořádáy, 6 hodi a 11 předětů, tedy jde o variace V(6,11) = =

7 Řešeí příkladu 6: a) 7 rozlišitelých kih a 7 íst, záleží a pořadí, tedy perutace P(7) = 7! b) použijee pravidlo součiu: v češtiě P(4), v agličtiě P(3), celke P(4)P(3)=4!3! c) každý ázev začíá jiý písee, tí je uspřádáí určeo => jediá ožost Řešeí příkladu 7: a) v taečí páru a pozici páa áe 15 ožostí, a pozici dáy 24, celke tedy ožostí b) áe celke 39 lidí; taečí pár představuje 2 lidi a ezáleží a pořadí (Aa+Karel je týž pár jako Karel+Aa); z 39 lidí vybrat 2 je ( 39 2) ožostí, ale usíe odečíst páry stejého pohlaví, tedy ( 39 2) ( 24 2) ( 15 2) = ( 24 1)( 15 1) = opět tu áe vztah ( ) = ( 15 0)( 24 2) + ( 24 1)( 15 1) + ( 15 2) ( 24 0) Řešeí příkladu 8: a) 5 žáků, 5 pozic, záleží a pořadí, perutace P(5) = 5! b) A ůže sedět vlevo ebo vpravo, když ho usadíe, zbývá 4 pozice a 4 žáky 2P(4)=2.4! c) žáky B a C ůžee posadit jako BC ebo CB, tedy 2 způsoby a dál s ii ůžee pracovat jako s jedí prvke: áe 4 žáky A, BC, D, E a 4 ísta 2P(4)=2.4! d) žáka C ůžee posadit 2 způsoby, žáky A,D 2 způsoby vedle sebe a dál s ii počítat jako s jedí prvke, výsledek 2.2P(3) = 2.2.3! Řešeí příkladu 9: Spojice dvou vrcholů -úhelíka je buď úhlopříčka, ebo straa. Stra je celke. Vyberee-li 2 body z vrcholů, ezáleží a pořadí, získáe všechy ožé dvojice. Počet úhlopříček pak určuje rozdíl ( 2) = (-3)/2 Odsud je záý vzorec počet úhlopříček je dá vzorce (-3)/2.

8 Řešeí příkladu 10: a) 10 rozlišitelých lidí seřadíe do 10 ísté řady (perutace) P(10)=10! b) Jestliže těchto 10 lidí (obecě ) posadíe ke kulatéu stolu, je rozlišitelé pouze koho kdo á po levici a po pravici. Proto v řadě růzá seřazeí ABCDEFGHIJ, BCDEFGHIJA, EFGHIJABCD, atd v kruhu dávají jedié; těchto protočeí (A zleva až akoec vpravo, atd) je přesě tolik, kolik je účastíků tedy 10 (obecě ). Celkový počet způsobů seřazeí do kruhu tedy je P(10)/10=10!/10=9! obecě P()/=P(-1)=(-1)! c) Očísluje si pozice v řadě od 1 do 10. Aby ikde ebyli vedle sebe dva chlapci či dvě dívky, zařídíe jedoduše tak, že budee chlapce rozisťovat a lichá (sudá) čísla a dívky a sudá (lichá) čísla to představuje 2 ožosti. Uístit 5 chlapců (5 dívek) a 5 íst, záleží a pořadí, představuje perutaci P(5). Celke ožostí jak uspořádat do řady 5 chlapců a 5 dívek aiž by spolu sousedilo stejé pohlaví je 2.P(5).P(5) = 2.5!.5! d) ad c) ale do kruhu; s odvoláí a ad b) je celkový počet ožostí ad c) děleo 10 2.P(5).P(5)/10 = 2.5!.5!/10 = 5!.4! Řešeí příkladu 11: Vybírat karty z balíčku karet do listu (tak se to obvykle yslí) ezáleží a pořadí a jde tedy o kobiace. V prví případě jde o K(5.52) = ( 52 5) v druhé případě vybíráe z karet stejé barvy, zato áe 4 ožosti jak stejou barvu zvolit 4.K(5,13) = 4.( 13 5) Řešeí příkladu 12: Jde o 4 ísta z pěti prvků a záleží a uspořádáí, variace. Buď uvažujee, že a 1. pozici usí být je číslice 1,3 a zbytek je už libovolý, ebo určíe všechy čtyřciferá čísla a odečtee ty, které začíají a 5,7,9. 2.V(3,4) = V(4,5) - 3.V(3,4) Řešeí příkladu 13: Vybrat ze šachovice 3 pole => ezáleží a pořadí, tedy kobiace. Buď vyberee z bílých (z čerých) polí jedo pole a z čerých (z bílých) dvě pole, ebo budee postupovat tak, že z celé šachovice vyberee 3 pole a pak odečtee evhodé výběry = všechy trojice stejé barvy opět se objevuje záý vzorec 2.( 32 1)( 32 2) = ( 64 3) 2.( 32 3)

9 rozepište sai ( ) = ( 32 0)( 32 3) + Řešeí příkladu 14: Když si A ťukl s B, bylo to zároveň B s A. Nezáleží a pořadí, jde o kobiace ( 10 2) = 45 Řešeí příkladu 15: když A pošle pohledici B eí to totéž, jako B posílá A. Záleží a pořadí, variace. V(9,10) = 10.9 = 90 KONEC

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMBINATORIKA Gymázium Jiřího Wolera v Prostějově Výuové materiály z matematiy pro vyšší gymázia Autoři projetu Studet a prahu. století - využití ICT ve vyučováí matematiy a gymáziu INVESTICE DO ROZVOJE

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

VARIACE BEZ OPAKOVÁNÍ

VARIACE BEZ OPAKOVÁNÍ VARIACE BEZ OPAKOVÁNÍ (1) Trezor má 6 otočných zámků s číslicemi 0 9. O kódu víme pouze to, že v něm žádná z číslic není dvakrát. O kolik možných nastavení se může jednat? Analogicky odvoďte obecné řešení.

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Aritmetická posloupnost

Aritmetická posloupnost /65 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis... 5. AP - součet... 6. AP - prvoúhlý trojúhelík... 7. Součet čísel v itervlu... 8 Geometrická posloupost... 0. Soustv

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

POJIŠŤOVNICTVÍ A POJISTNÁ MATEMATIKA

POJIŠŤOVNICTVÍ A POJISTNÁ MATEMATIKA VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra ateatiky a katedra ekooických studií POJIŠŤOVNICTVÍ A POJISTNÁ MATEMATIKA STUIJNÍ MATERIÁL LENKA LÍZALOVÁ, RAEK STOLÍN 04 Recezovali: RNr. Ig. Haa Kotoučková,

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA RVDĚODONOST STTISTIK Gymázium Jiřího Wolkera v rostějově Výukové materiály z matematiky pro vyšší gymázia utoři projektu Studet a prahu. století - využití ICT ve vyučováí matematiky a gymáziu Teto projekt

Více

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál:

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: PERMUTACE a VARIACE 2.1 Permutace P() = * ( - 1) * ( - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: ( )! P = Jedá se o vzorec pro počet permutací z prvků bez opakováí. 2.2 Variace bez

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

Nepředvídané události v rámci kvantifikace rizika

Nepředvídané události v rámci kvantifikace rizika Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

Využití účetních dat pro finanční řízení

Využití účetních dat pro finanční řízení Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

Vlastní hodnocení školy

Vlastní hodnocení školy Vlastí hodoceí školy dle vyhlášky 15/2005 Sb., v platém zěí, kterou se staoví áležitosti dlouhodobých záměrů, výročích zpráv a vlastí hodoceí školy. Škola: Základí umělecká škola Plzeň, Sokolovská 30,

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností

Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností . Základí cheické výpočty toová hotostí jedotka, relativí atoové a olekulové hotosti toová hotostí jedotka u se používá k relativíu porováí hotostí ikročástic, atoů a olekul a je defiováa jako hotosti

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

9.1.1 Základní kombinatorická pravidla I

9.1.1 Základní kombinatorická pravidla I 9.. Základní kombinatorická pravidla I Předpoklady: Př. : Ve třídě je 7 děvčat a 3 kluků. Kolik máme možností jak vybrat dvojici klukholka, která bude mít projev na maturitním plese? Vybíráme ze 7 holek

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Metodika implementace Průřezového tématu Environmentální výchova I

Metodika implementace Průřezového tématu Environmentální výchova I Elektroická publikace Metodika implemetace Průřezového tématu Evirometálí výchova I Zpracovaly: Bc. Jaroslava Rozprýmová a Mgr. Milica Sedláčková Témata: 1. Zemědělství a životí prostředí 2. Ekologické

Více

Měření na D/A a A/D převodnících

Měření na D/A a A/D převodnících Měřeí a D/A a A/D převodících. Zadáí A. Na D/A převodíku ealizovaém pomocí MDAC 8: a) Změřte závislost výstupího apětí převodíku v ozsahu až V a zvoleé vstupí kombiaci sousedích kódových slov. Měřeí poveďte

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Klonování, embryonální kmenové buňky, aj. proč ano a proč ne

Klonování, embryonální kmenové buňky, aj. proč ano a proč ne Kloováí, embryoálí kmeové buňky, aj. proč ao a proč e Doc. MUDr. Petr Hach, Csc., Em. předosta ústavu pro histologii a embryologii 1. lékařské fakulty Uiversity Karlovy v Praze Neí určeo k dalšímu šířeí

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

ě ů É ď ů š ě ů ů ž ů ě ě ú Ú ě Ú ě é ě ě é ě š ú ů š š é ě ě ů ě ě ž Í Á Á é ě ěž Ú ě ů ěž ě Ú é ě é é ů é Ž é ě ě ě é é ě ě ú é ě ě ě é ě ď Ú š ú ů é ď ů ě ů ů ě é é ě ů Ú é ů ů é ě Í Á ě ě ů é ě ěž

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

MĚŘENÍ NA ASYNCHRONNÍM MOTORU

MĚŘENÍ NA ASYNCHRONNÍM MOTORU MĚŘENÍ NA ASYNCHRONNÍM MOTORU Základní úkole ěření je seznáit posluchače s vlastnosti asynchronního otoru v různých provozních stavech a s ožnosti využití provozu otoru v generátorické chodu a v režiu

Více

ZABEZPEČENÍ KOMUNIKACE SENZORICKÉHO SYSTÉMU

ZABEZPEČENÍ KOMUNIKACE SENZORICKÉHO SYSTÉMU Roč. 71 (2015) Číslo 2 O. Čožík, J. Kadlec: Zabezpečeí komuikace sezorického systému 1 ZABEZPEČEÍ KOMUIKACE SEZORICKÉHO SYSTÉMU Ig. Odřej Čožík 1, Doc. Ig. Jaroslav Kadlec, Ph.D. 2 Ústav mikroelektroiky;

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

3.3.3 Rovinná soustava sil a momentů sil

3.3.3 Rovinná soustava sil a momentů sil 3.3.3 Rová soustava s a oetů s Předpoady Všechy síy soustavy eží v edé rově. Všechy oety sou oé a tuto rovu. *) Souřadý systé voíe ta, že rova - e totožá s rovou s. y O *) Po.: Sový oet ůžee ahradt dvocí

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

KOMBINATORIKA. Způsob řešení b)

KOMBINATORIKA. Způsob řešení b) / KOMBINATORIKA Příld Určete počet všech přirozeých dvojciferých čísel, v jejichž dedicém zápisu se ždá číslice vysytuje ejvýše jedou. Způsob řešeí ) Kombitoricé prvidlo součiu: Počet všech uspořádých

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Ť Ť Ť Ť Ť Ť Ť ň Ť š Ť É éť š Ť š éť š éť š ď éť š éť š éť š éť š Ú éť š š Ť š š ě š Ť š é Ť š Ť Ť š Ť Ť š ď Ť Ť š Ú Ě é Ť š Ť š é Ť š Ř š ž Ž ě ď é Ť š é Ť š Ž ž é Ť é Ť š é ě ě ď ě Ť š Ť š é Ť š é é š

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení šablony/označení sady VY_32_INOVACE_04_M3 M 3

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení šablony/označení sady VY_32_INOVACE_04_M3 M 3 Záznamový arch Název školy: Základní škola a Mateřská škola Brno, Bosonožské nám. 44, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/21.2499 Číslo a název šablony klíčové aktivity: III/2 Inovace

Více

ě ú ě Ž ě ň é ě é ě ž ě ž ě ě ě ň é ú ě ž é ž ž é ě š é ě ě š é ě š é ě ě Č Ř Č Č é Š ú ě ě ě ě ú ě Ú ě ž ž ž é é Ž š ž é Ů Ž Č Č é ě é ž éú š Ů Ž Ů ě ů é š é ŠÍ Č ě Ž Č é š ŠÍ ž Š ě é ě ž ů š Ů Ů é ú

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

VZDUCH V MÍSTNOSTI POMŮCKY NASTAVENÍ MĚŘICÍHO ZAŘÍZENÍ. Vzdělávací předmět: Fyzika. Tematický celek dle RVP: Látky a tělesa

VZDUCH V MÍSTNOSTI POMŮCKY NASTAVENÍ MĚŘICÍHO ZAŘÍZENÍ. Vzdělávací předmět: Fyzika. Tematický celek dle RVP: Látky a tělesa VZDUCH V MÍSTNOSTI Vzdělávací předět: Fyzika Teatický celek dle RVP: Látky a tělesa Teatická oblast: Měření fyzikálních veličin Cílová skupina: Žák 6. ročníku základní školy Cíle pokusu je určení rozěrů

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla

Více

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa yzikálí praktiku I Úloha č10 Měřeí oporu prouícího zuchu (erze 0/01) Úloha č 10 Měřeí rychloti prouu zuchu Měřeí záiloti íly oporu protřeí a taru tělea 1) Poůcky: Aeroyaický tuel, ikroaoetr, Pratloa trubice,

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc.

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc. IDEÁLÍ PLY I Prof. RDr. Eanuel Soboda, CSc. DEFIICE IDEÁLÍHO PLYU (MODEL IP) O oleulách ideálního plynu ysloujee 3 předpolady: 1. Rozěry oleul jsou zanedbatelně alé e sronání se střední zdáleností oleul

Více