k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

Save this PDF as:

Rozměr: px
Začít zobrazení ze stránky:

Download "k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln"

Transkript

1 Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) = A + B +. Vyásobeím jmeovatelem + dostáváme rovost Odtud Pro -tý částečý součet řady pa platí tj. Řada je tedy overgetí a má součet s =. = A + ) + B A =, B =. + = +. s = = +, s = s ) = =. +.. Přílad. Rozhoděte pomocí defiice o overgeci, resp. součtu ásledující řady: + 6 = Řešeí: Využitím vzorce pro -tý částečý součet geometricé řady dostáváme Odtud pa s = ) Daá řada tedy overguje a má součet s = 0... Přílad. Určete součet řady Řešeí: Pro -tý částečý součet řady platí s = l + l + + l + ) = )+ s = s = = 0. l + ) = l + l + l )+ = l + l l + + l + ) l = l + ). ÚM FSI VUT v Brě.

2 Číselé řady - řešeé přílady Protože příslušá řada diverguje. s = l + ) =, Částečě řešeé přílady:.4. Přílad. Určete součet řady =0 e. Řešeí: Protože e = e ), jedá se o geometricou řadu s prvím čleem rovým jedé a vocietem e ; odtud podle vzorce s = e = e e..5. Přílad. Určete součet řady 4. Řešeí: Rozladem a parciálí zlomy máme 4 = /. +) Dosazeím tohoto vztahu a rozepsáím -tého částečého součtu dostáváme s = + ), tedy s = s =..6. Přílad. Určete součet řady = l ). Řešeí: Píšeme l ) = l ). Odtud s = l ), de s chápeme jao součet a + +a čle a v daé řadě chybí). Pa pro =,, 4,... ejprve odvodíme, a poté iducí ověříme, že = +, tedy s = l +, a odtud s = l..7. Přílad. Určete součet řady arctg. Řešeí: K určeí s užijeme vztahu arctg x + arctg y = arctg x+y xy vztahu postupě pro =,, 4,...) odvodíme, a poté iducí ověříme, že s = arctg sado s = arctg + = arctg = π 4., terý platí poud xy <. Z tohoto. Odtud pa + B. Kovergece řad Před uvedeím příladů připomeňme dvě důležité ity, teré mají při posuzováí overgece řad pomocí itích ritérií velý výzam. Platí ) ) + + a = e, obecěji = e a pro aždé reálé a, a dále =, obecěji a = pro aždé reálé a. Vzorové přílady:.8. Přílad. Zjistěte, pro terá reálá p overguje řada p = + p + p ÚM FSI VUT v Brě

3 Číselé řady - řešeé přílady Řešeí: Především pozameejme, že řada má ladé čley. Pro p 0 eí splěa utá podmía overgece tj. vztah a = 0) a řada diverguje. Pro p > 0 užijeme itegrálí ritérium výpočtem se přesvědčte, že obě ití ritéria selhávají, tj. L = ). Zde je fx) = / x p = x p. Pro x > 0 a p > 0 je to lesající a ladá fuce. Pro p platí t t x p dx = t p+ p + { p = p < pro p >, pro p <. Pro p > tedy daá řada overguje podle itegrálího ritéria. Pro p < pa řada diverguje podle téhož ritéria. Případ p = musíme z itegračích důvodů posoudit zvlášt. Nejprve vša pozameejme, že pro p = je řada tvaru = , což je řada harmoicá. Pomocí itegrálího ritéria sado určíme divergeci této řady. Platí totiž t t x dx = l t) =. t Řada / p tedy overguje pro p > a diverguje pro p. Přitom pro všecha p > 0 je splěa utá podmía overgece..9. Přílad. Rozhoděte o overgeci či divergeci řady l + ) = l + l + l Řešeí: Řada má opět ladé čley. Protože + > l + ), platí l + ) > +. Řada / + ) podle příladu.8 diverguje, taže podle srovávacího ritéria řada / l + ) taé diverguje..0. Přílad. Rozhoděte o overgeci řady! = Řešeí: Jedá se o řadu s ladými čley. Pomocí itího podílového ritéria určíme Protože L = 0 <, řada overguje. a + L = = a.. Přílad. Rozhoděte o overgeci řady! + )! + = + = 0. arctg + ) = arctg + arctg + arctg ÚM FSI VUT v Brě

4 Číselé řady - řešeé přílady 4 Řešeí: Řada má ladé čley a vzhledem e tvaru a zvolíme ití odmociové ritérium. Nejprve vypočteme odmociu a = arctg ) + = arctg ) + a pa určíme itu Protože =, platí L = a = arctg + ). L = arctg + ) = arctg = 4 π >. Daá řada tedy diverguje podle itího odmociového ritéria... Přílad. Vyšetřete, zda overguje řada = a ) = e dostáváme! = Řešeí: Pro posouzeí overgece této řady s ladými čley zvolíme ití podílové ritérium. Nejprve upravíme podíl a + + )! + ) +! = ) + ) =. + Pa pomocí vztahu + ) a + L = = = a + + = ) e <, a tedy podle itího podílového ritéria řada! overguje... Přílad. Rozhoděte o overgeci ebo divergeci řady si π = si π 4 + si π 9 + si π = Řešeí: Daá řada má ladé čley. Vzhledem erovosti 0 < si x < x pro x > 0 vyzoušíme srovávací ritérium. Platí tedy si π < π pro =,,.... Řada = = π = π = si π overgetí. je vša overgetí viz přílad.8), a podle srovávacího ritéria je tedy i řada.4. Přílad. Rozhoděte o overgeci, resp. absolutí overgeci řady ) + l + ) = l l + l ÚM FSI VUT v Brě

5 Číselé řady - řešeé přílady 5 Řešeí: Daá řada je alterující, proto ověříme předpolady Leibizova ritéria. Platí )+ l + ) = 0 čley řady overgují ule) a dále l + ) > l + ) + absolutí hodoty čleů řady tvoří lesající posloupost). Podle Leibizova ritéria tedy uvedeá řada overguje. Posoudíme absolutí overgeci, tj. overgeci řady absolutích hodot )+ l + ) = l + ). To je vša podle příladu. divergetí řada, a proto je overgece původí řady pouze eabsolutí relativí). Částečě řešeé přílady:.5. Přílad. Rozhoděte o overgeci řady!) )!. Řešeí: Užijeme ití podílové ritérium. Nejprve upravíme výraz a + /a jao odtud a +/a = 4, a řada tedy overguje..6. Přílad. Rozhoděte o overgeci řady [ + )!] [ + )]! )!!) = + ) + ) + ) = + + ) ; e. Řešeí: Pomocí itího odmociového ritéria máme řada tedy overguje..7. Přílad. Rozhoděte o overgeci řady a = e <, l. Řešeí: Na záladě itegrálího ritéria posuzujeme overgeci evlastího itegrálu dx. Substitucí t = l x jej převedeme a l x x t e t dt. Kovergeci tohoto itegrálu lze považovat za samozřejmou; 0 můžeme ji ověřit apř. přímým výpočtem metodou per partes. Řada proto overguje apř. podle itegrálího ritéria)..8. Přílad. Rozhoděte o overgeci řady si. Řešeí: Nabízí se srováí s divergetí harmoicou řadou. Provedeme proto odhad si x π x pro všecha x 0, π/ areslete si obráze). Protože / 0, π/ pro všecha =,,..., máme si π pro všecha =,,.... Divergece daé řady tedy plye ze srovávacího ritéria..9. Přílad. Rozhoděte o overgeci, resp. absolutí overgeci řady ÚM FSI VUT v Brě = ) l.

6 Číselé řady - řešeé přílady 6 Řešeí: Kovergeci řady sado ověříme užitím Leibizova ritéria. Kovergeci řady absolutích hodot prověříme itegrálím ritériem. Itegrál počítáme substitucí t = l x, po jejímž = l provedeí sado rozhodeme o divergeci tohoto itegrálu. Daá řada tedy overguje pouze eabsolutě relativě). dx x l x C. Přibližé součty řad Vzorové přílady:.0. Přílad. Uažte, že řada = overguje, a odhaděte chybu, teré se dopustíte při áhradě součtu s této řady hodotou s 0. Řešeí: Kovergeci řady lze sado uázat apř. užitím podílového ebo odmociového ritéria. Pro odhad chyby pa platí R 0 = < ) = 0 = 0, Aproximujeme-li tedy hodotu součtu s daé řady hodotou částečého součtu s 0 = 0 = 0, 69065, pa chyba této aproximace epřevýší hodotu 0, < 0 4. Pozameejme, že přesá hodota součtu s této řady čií s = l 0, Přílad. Rozhoděte, oli čleů řady je třeba sečíst, aby částečý součet s řady = aproximoval přesý součet této řady s chybou meší ež 0 4. Řešeí: O overgeci této řady jsme rozhodli v příladu.8 pomocí itegrálího ritéria. V případě užití tohoto ritéria platí odhad chyby R fx) dx = x dx =. Odtud K aplěí požadovaé přesosti je třeba sečíst alespoň 7 sčítaců daé řady... Přílad. Určete přibližou hodotu součtu řady s chybou meší ež 0. = ) l = l l + 4 l 4 ÚM FSI VUT v Brě

7 Číselé řady - řešeé přílady 7 Řešeí: Podle příladu.9 tato řada overguje, poěvadž splňuje předpolady Leibizova ritéria. Pa platí jedoduchý odhad chyby ve tvaru Protože odtud R a + = + ) l + ). + ) l + ) 0 + ) l + ) 0 5, = s přesostí a desetié místo. Částečě řešeé přílady:.. Přílad. Rozhoděte, oli čleů řady přesou hodotu s s chybou meší ež 0 4. ) l l l + 4 l 4 5 l 5 0, 5 Řešeí: Řada overguje apř. podle itegrálího ritéria. Pa R x + dx = π arctg 0 4 > tg + je třeba sečíst, aby částečý součet s aproximoval ) π Přílad. Rozhoděte, oli čleů řady je třeba sečíst, aby částečý součet s aproximoval přesou hodotu s s chybou meší ež 0 4. ) + +)! Řešeí: Řada overguje podle Leibizova ritéria overguje dooce absolutě - prověřte), tedy R [ + ) + ]! = + )! Přílad. Pomocí vztahu l < + + < + l rozhoděte, oli čleů harmoicé řady / je třeba sečíst, aby s > 00. Řešeí: s = + > l > 00 > e00, ÚM FSI VUT v Brě

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1 3. cvičeí Přílady. (a) (b) (c) ( ) ( 3 ) = Otestujeme itu 3 = 3 = = 0. Je vidět, že posloupost je elesající, tedy z Leibize řada overguje, ( ) Řada overguje podle Leibizova ritéria, ebot je zjevě erostoucí.

Více

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0 Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

1 Nekonečné řady s nezápornými členy

1 Nekonečné řady s nezápornými členy Nekoečé řady s ezáporými čley Příklad.. Rozhoděte o kovergeci ásledující řady Řešeí. Pro každé N platí Řada tg. tg. diverguje, a proto podle srovávacího kritéria diverguje také řada tg. Příklad.. Určete

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

(3n + 1) 3n Příklady pro samostatnou práci

(3n + 1) 3n Příklady pro samostatnou práci ... 4. 5. 6. 0 0 0 a q koverguje pro q < geometrická řada diverguje harmoická řada koverguje srovejte s teleskopickou řadou + + utá podmíka kovergece + 4 + + 7 ití srovávací kritérium, srováí s ití podílové

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

Mocninné řady - sbírka příkladů

Mocninné řady - sbírka příkladů UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Mocié řady - sbírka příkladů Vedoucí bakalářské práce: Mgr. Iveta Bebčáková, Ph.D.

Více

MA1: Cvičné příklady posloupnosti, řady, mocninné řady Stručná řešení

MA1: Cvičné příklady posloupnosti, řady, mocninné řady Stručná řešení MA: Cvičé přílady poslouposti, řady, mocié řady Stručá řešeí Prvíčley: a 0, a, a, a 5, a 5 Podezřeí: {a }jerostoucípodívámeseato: a + > a + ++ > + + > + + > + 0 > Dostalijsmeerovostplatouprovšecha,ámstačípro,protopro

Více

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace: . cvičeí Příklady a matematickou idukci Dokažte:.! . Návody:. + +. + i i i i + + 4. + + + + + + + + Operace s možiami.

Více

ZS 2018/19 Po 10:40 T5

ZS 2018/19 Po 10:40 T5 Cvičeí - Matematická aalýza ZS 08/9 Po 0:40 T5 Cvičeí 008 Řešte erovice v R: 8, log 3 ( 3+3 0 Částečý součet geometrické řady: pro každé q C, q, a N platí 3 Důsledek: +q +q + +q = q+ q si+si+ +si = si

Více

Masarykova univerzita Přírodovědecká fakulta

Masarykova univerzita Přírodovědecká fakulta Masarykova uiverzita Přírodovědecká fakulta Zuzaa Došlá, Vítězslav Novák NEKONEČNÉ ŘADY Bro 00 c Zuzaa Došlá, Vítězslav Novák, Masarykova uiverzita, Bro, 998, 00 ISBN 80-0-949- 3 Kapitola 3 Řady absolutě

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,

Více

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte: 6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové: Užitečé zdroje příkladů jsou: Materiály ke cvičeím z Kalkulu 3 od Kristýy Kucové: http://www.karli.mff.cui.cz/~kucova/historie8. php K posloupostem řad a fukcí Ilja Čerý: Iteligetí kalkulus. Olie zde:

Více

5. Posloupnosti a řady

5. Posloupnosti a řady Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru

Více

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost

Více

1.1. Primitivní funkce a neurčitý integrál

1.1. Primitivní funkce a neurčitý integrál Mateatia II. NEURČITÝ INTEGRÁL.. Priitiví fuce a eurčitý itegrál Defiice... Říáe, že fuce F( ) je v itervalu ( ab, ) priitiví fucí fuci f ( ), platí-li pro všecha ( ab, ) vztah F = f. Defiice... Možia

Více

( x) ( lim ( ) ( ) 0

( x) ( lim ( ) ( ) 0 357 :33 Jose Herdla Poslouposti a řady ucí Poslouposti a řady ucí Bodová overgece poslouposti ucí Deiice (odová overgece) Nechť je posloupost ucí : S, S Říáme, že posloupost ucí overguje uci a odově a

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

8.2.6 Geometrická posloupnost

8.2.6 Geometrická posloupnost 8.. Geometricá posloupost Předpoldy: 80, 80, 80, 807 Pedgogicá pozám: V hodiě rozdělím třídu dvě supiy ždá z ich dělá jede z prvích dvou příldů. Př. : Poločs rozpdu (dob z terou se rozpde polovi existujícího

Více

Řešení písemné zkoušky z Matematické analýzy 1a ZS ,

Řešení písemné zkoušky z Matematické analýzy 1a ZS , Řešeí písemé zkoušky z Matematické aalýzy a ZS008-09009 Příklad : Spočtěte itu poslouposti + 3 +) 4+3 4+ 5 bodů) Řešeí: Díky tvaru jmeovatele budeme zlomek + 3 +) Z : 4+3 4+ rozšiřovatvýrazem 4+3+ 4+Přepíšemečitatele:

Více

P. Girg. 23. listopadu 2012

P. Girg. 23. listopadu 2012 Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

I. TAYLORŮV POLYNOM ( 1

I. TAYLORŮV POLYNOM ( 1 I. TAYLORŮV POLYNOM Připomeňme si defiice elemetárích fukcí: a si( = 2+ = ( (2+! b cos( = 2 = ( (2! c e = =!. Dokažte, že Taylorův polyom k-tého řádu v bodě pro fukce f je rove polyomu P : (tyto výsledky

Více

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých

Více

I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =

I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) = Taylorovy řady ěkterých fukcí: I. TAYLORŮV POLYNOM Pro R platí: si) = 2+ = ), cos) = 2 2+)! = ), 2)! e = =.! Pro, : log + ) = = ) Pro, ) a a R: + ) a = a ) =, kde ) a = a a ) a 2) a +).!. Nalezěte Taylorův

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Matematická analýza I

Matematická analýza I 1 Matematická aalýza ity posloupostí, součty ekoečých řad, ity fukce, derivace Matematická aalýza I látka z I. semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia a další 2 Matematická

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více

Infinity series collection of solved and unsolved examples

Infinity series collection of solved and unsolved examples Nekoečé řady sbírka řešeých a eřešeých příkladů Ifiity series collectio of solved ad usolved examples Lucie Jaoušková Bakalářská práce 9 ABSTRAKT Cílem práce bylo vytvořit sbírku řešeých příkladů, která

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

5. Lineární diferenciální rovnice n-tého řádu

5. Lineární diferenciální rovnice n-tého řádu 5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

1 Základní pojmy a vlastnosti

1 Základní pojmy a vlastnosti Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

Posloupnosti a řady. Obsah

Posloupnosti a řady. Obsah Poslouposti řdy Poslouposti řdy Obsh. Poslouposti... 8. Úvod do posloupostí... 8. Aritmetická geometrická posloupost... 9. Limit poslouposti... 9. Řdy... 0. Nekoečá geometrická řd... 0 Strák 7 Poslouposti

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

Derivace funkcí jedné reálné proměnné

Derivace funkcí jedné reálné proměnné Derivace fukcí jedé reálé proměé Pozámka Derivaci fukce v zadaém bodě můžeme počítat přímo pomocí defiice, použitím vět o algebře derivací, použitím vět o derivaci iverzí fukce, použitím vět o derivaci

Více

S k l á d á n í s i l

S k l á d á n í s i l S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících

Více

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n. Matematická aalýza II předášky M. Málka cvičeí A. Hakové a R. Otáhalové Semestr letí 2005 6. Nekoečé řady fukcí V šesté kapitole pokračujeme ve studiu ekoečých řad. Nejprve odvozujeme základí tvrzeí o

Více

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické 5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

9. Číselné posloupnosti a řady

9. Číselné posloupnosti a řady 9 548 5: Josef Herdl Číselé poslouposti řdy 9 Číselé poslouposti řdy Defiice 9 (číselá posloupost Fuce se zývá číselá posloupost : (9 Jestliže pro obor hodot R ( poslouposti pltí R ( budeme řít že posloupost

Více

Vlastnosti posloupností

Vlastnosti posloupností Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti

Více

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI 6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.. ČÍSELNÉ POSLOUPNOSTI V této kpitole se dozvíte: jk defiujeme posloupost reálých ebo komplexích čísel; defiici vlstí evlstí limity poslouposti; defiici pojmů souvisejících

Více

Spojitost a limita funkcí jedné reálné proměnné

Spojitost a limita funkcí jedné reálné proměnné Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v

Více

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n Jméo: Příklad 3 Celkem bodů Bodů 8 0 30 Získáo [8 Uvažujte posloupost distribucí f } D R defiovaou jako f [δ kde δ a začí Diracovu distribuci v bodě a Najděte itu δ 0 + δ + této poslouposti aeb spočtěte

Více

DUM č. 19 v sadě. 13. Ma-1 Příprava k maturitě a PZ algebra, logika, teorie množin, funkce, posloupnosti, řady, kombinatorika, pravděpodobnost

DUM č. 19 v sadě. 13. Ma-1 Příprava k maturitě a PZ algebra, logika, teorie množin, funkce, posloupnosti, řady, kombinatorika, pravděpodobnost projekt GML Bro Doces DUM č. 9 v sdě. M- Příprv k mturitě PZ lgebr, logik, teorie moži, fukce, poslouposti, řdy, kombitorik, prvděpodobost Autor: Jrmil Šimečková Dtum:.0.0 Ročík: mturití ročíky Aotce DUMu:

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených. Kombiatoria Kombiatoria část matematiy, terá se zabývá růzými číselými "ombiacemi". Využití - apř při hledáí počtu možých tipů ve sportce ebo jiých soutěžích hrách, v chemii při spojováí moleul... Záladím

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7]

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7] 6. Fukce a poslouposti ) Rozoděte, která z dvojic [ ;9[, 0; [, ; patří fukci daé předpisem y +. [všecy ) Auto má spotřebu 6 l beziu a 00 km. Na začátku jízdy mělo v plé ádrži 6 l beziu. a) Vyjádřete závislost

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

Nové symboly pro čísla

Nové symboly pro čísla Nové symboly pro čísl V pitole Ituitiví ombitori jsme řešili tyto dv typy příldů. Stále se v ich opují součiy přirozeých čísel, t j jdou z sebou, ědy ž do, ědy sočí dříve. Proto si zvedeme dv ové symboly

Více

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) = NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:

Více

Zimní semestr akademického roku 2015/ listopadu 2015

Zimní semestr akademického roku 2015/ listopadu 2015 Cvičeí k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikovaé matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičeí Zimí semestr akademického roku 2015/2016 20. listopadu 2015 Předmluva

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

NMAF061, ZS Zápočtová písemná práce skupina A 16. listopad dx

NMAF061, ZS Zápočtová písemná práce skupina A 16. listopad dx NMAF06, ZS 07 08 Zápočtová písemá práce skupia A 6. listopad 07 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

1 Uzavřená Gaussova rovina a její topologie

1 Uzavřená Gaussova rovina a její topologie 1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

3. cvičení - LS 2017

3. cvičení - LS 2017 3. cvičeí - LS 07 Michal Outrata Defiičí obor, průsečíky os, kladost/záporost fukce a) fx) x 5x+4 4 x b) fx) x x +4x+ c) fx) 3x 9x+ x +6x 0 d) fx) x 7x+0 4 x. Řešeí a) Nulové body čitatele a jmeovatele

Více

8. Zákony velkých čísel

8. Zákony velkých čísel 8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy

Více

3. cvičení - LS 2017

3. cvičení - LS 2017 3. cvičeí - LS 07 Michal Outrata Defiičí obor, průsečíky os, kladost/záporost fukce a fx x 5x+4 4 x b fx x x +4x+ c fx 3x 9x+ x +6x 0. Řešeí a Nulové body čitatele a jmeovatele jsou { 4}. Aby vše bylo

Více

MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY MB202. Diferenciální a integrální počet B

MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY MB202. Diferenciální a integrální počet B MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY Sbírka příkladů do cvičeí MB0 Difereciálí a itegrálí počet B jaro 08 Mgr. Jakub Juráek Obsah Polyomy, racioálí lomeé fukce, iterpolace Limity a spojitost fukce

Více

4. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

1.2. NORMA A SKALÁRNÍ SOUČIN

1.2. NORMA A SKALÁRNÍ SOUČIN 2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

Diskrétní Fourierova transformace

Diskrétní Fourierova transformace Disrétí Fourierova trasformace Záladí idea trasformace x Trasformace Zpracováí v časové oblasti Zpracováí v trasform. oblasti x Iverzí Trasformace Spojitá Fourierova trasformace f j πft x t e dt Disrétí

Více

66. ročník matematické olympiády III. kolo kategorie A. Liberec, března 2017

66. ročník matematické olympiády III. kolo kategorie A. Liberec, března 2017 66. ročí matematicé olympiády III. olo ategorie A Liberec, 26. 29. březa 2017 MO 1. Na hromádce leží 100 očíslovaých diamatů, z ichž 50 je pravých a 50 falešých. Pozvali jsme svérázého zalce, terý jediý

Více

Komplexní čísla, komplexně sdružená čísla, opačná komplexní čísla, absolutní hodnota (modul) komplexního čísla. z 2 z 1

Komplexní čísla, komplexně sdružená čísla, opačná komplexní čísla, absolutní hodnota (modul) komplexního čísla. z 2 z 1 Komplexí čísla, komplexě sdružeá čísla, opačá komplexí čísla, absolutí hodota (modul) komplexího čísla Defiice komplexího čísla Komplexí číslo je uspořádaá dvojice reálých čísel = (, ) (, ). je reálá,

Více

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II

Více