10.3 GEOMERTICKÝ PRŮMĚR

Rozměr: px
Začít zobrazení ze stránky:

Download "10.3 GEOMERTICKÝ PRŮMĚR"

Transkript

1 Středí hodoty, geometrický průměr Aleš Drobík straa GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo sčítáí se použije ásobeí, a místo děleí odmocia. Takže geometrický průměr prostý z čísel x 1, x až x vypočteme takto: G xi x 1. x..... x i1 Symbol velkého pí zameá souči jedotlivých hodot x i, kde idex i probíhá od hodoty 1 do hodoty. Geometrický průměr vážeý vziká v případě, když se ěkterá hodota opakuje. Pokud se apříklad ěkterá hodota opakuje dvakrát, pak místo součiu dvou hodot lze umocit tuto hodotu a druhou. Příklad 10.1 Obchodík staovil ceu výrobku (kapesí kalkulačky) a hodotu h = 100 Kč. Pak ceu zvýšil o 10 %, tj. a 110 %, eboli 1,1. Neboli koeficiet růstu čili idex řetězový je 1,1. Po ějaké době ceu zvýšil zovu o 0 % z již zvýšeé cey, tj. a 10 %, eboli 1,. Neboli koeficiet růstu čili idex řetězový je 1,. Jaký je průměrý koeficiet růstu eboli průměrý idex řetězový? Řešeí: Po prvím zdražeí byla cea výrobku: 100 Kč 1,1 = 110 Kč Po druhém zdražeí byla cea výrobku:

2 Středí hodoty, geometrický průměr Aleš Drobík straa 110 Kč 1, = 13 Kč což lze vypočítat také jako: 100 Kč 1,1 1, = 100 Kč 1,3 = 13 Kč Jaký je průměrý koeficiet růstu eboli průměrý idex řetězový? Aritmetický průměr koeficietů růstu by byl: x x. 1 x 1,1 1, 1,15 Geometrický průměr koeficietů růstu by byl: G i1 x i x. x 1,1.1, 1 1,3 1,1489 Jaký použijeme průměr pro staoveí průměrého koeficietu růstu? Uvědomíme si, že když platí: 1,3 1,1489 pak po umocěí druhou mociou platí též: 1,3 1,1489 Co to zameá? Že kdyby se cea dvakrát zvýšila právě 1,1489, tak by výsledá cea byla a stejé hodotě 13 Kč, eboť: 100 Kč 1,1489 1,1489 = 100 Kč 1,3 = 13 Kč Geometrický průměr lze použít ke staoveí průměrého koeficietu růstu eboli průměrého idexu řetězového a počítá se podle vztahu:

3 Středí hodoty, geometrický průměr Aleš Drobík straa 3 G xi x 1. x..... x i1 Hodoty x 1, x až x jsou jedotlivé koeficiety růstu eboli jedotlivé idexy řetězové. Příklad 10.1: Ze serveru jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky V kapitole 7. Idexy základí, řetězové a tempo přírůstku v příkladu 7.1 jsme počítali idex základí, idex řetězový a tempo přírůstku, které jsou je uvedeé v tabulce Připomíáme, že idex řetězový v tomto příkladě porovává, a kolik procet se změila sklizeň obilovi v každém roce vždy oproti předchozímu roku. a) Vypočteme průměrou ročí výrobu obilovi a formulujeme odpověď. b) Vypočítáme průměrý idex řetězový. c) Pro průměrý idex řetězový formulujeme odpovědi typu a kolik %, o kolik % a kolikrát. d) Do tabulky doplíme, jaká by byla v uvedeých letech výroba obilovi, kdyby se vyvíjela podle průměrého idexu řetězového. Vypočteme odhad a rok 01. e) Formulujeme odpověď pro výrobu obilovi v roce 01. Tabulka 10.10: Sklizeň obilovi v ČR Ukazatel Rok Výroba v mil. tu 6,4 7,1 8,4 7,8 6,9 8, x Idex základí v % 100,0 110,9 131,3 11,9 107,8 18,1 x Idex základí 1,000 1,109 1,313 1,19 1,078 1,81 x Idex řetězový v % x 110,9 118,3 9,9 88,5 118,8 x Idex řetězový x 1,109 1,183 0,99 0,885 1,188 x Tempo přírůstku v % x 10,9 18,3-7,1-11,5 18,8 x Tempo přírůstku x 0,109 0,183-0,071-0,115 0,188 x Výroba dle průměrého idexu řetězového Řešeí: Ad a) Vypočteme průměrou ročí výrobu obilovi a formulujeme odpověď.

4 Středí hodoty, geometrický průměr Aleš Drobík straa 4 Výpočet prostého aritmetického průměru: sečteme hodoty číselých statistických zaků souboru x 1, x,... x a výsledek vydělíme počtem prvků souboru Aritmetický průměr prostý x z číselých statistických zaků se tedy počítá podle vztahu: x xi 1 x1 x... x i U ás: Hodoty x 1, x,... x jsou výroby obilovi v jedotlivých letech, počet let = 6. Vztah má v ašem příkladě tvar: 6 xi i x x1 x x3 x4 x5 x6 6,4 7,1 8,4 7,8 6,9 8, ,47 mil. t V období 006 až 011 byla průměrá ročí výroba obilovi 7,47 mil. tu. Výpočet v Excelu je =PRŮMĚR(B19:G19) Ad b) Vypočítáme průměrý idex řetězový. Víme, že idex řetězový jako poměré číslo v ašem případě říká, kolikrát se změila sklizeň obilovi v každém roce vždy oproti předchozímu roku. Průměrý idex řetězový jako poměré číslo bude říkat, kolikrát se průměrě změila sklizeň obilovi v každém roce oproti miulému roku. Geometrický průměr lze použít ke staoveí průměrého koeficietu růstu eboli průměrého idexu řetězového a počítá se podle vztahu:

5 Středí hodoty, geometrický průměr Aleš Drobík straa 5 G xi x 1. x..... x i1 Hodoty x 1, x,... x jsou jedotlivé idexy řetězové ve tvaru poměrého čísla. Povšiměme si, že idexů řetězových je pouze 5, tj. o jedo méě, ež je hodot výrob obilovi! Průměrý idex řetězový se počítá v ašem případě podle vztahu: G 5 5 x 5 i i1 x. x. x. x. x G 5 1,109.1,183.0,99.0,885.1,188 1,81 1,0508 Pozámka: Všiměme si, že souči idexů řetězových je rove idexu základímu v posledím uvedeém roce, u ás 1,109.1,183.0,99.0,885.1,188 = 1,81. To eí áhoda, to je zákoité. Dokázali byste odvodit, proč tomu tak je? V Excelu lze průměrý idex řetězový G vypočítat ěkolika způsoby: i) Pomocí součiu idexů řetězových a odmociy. Pátá odmocia je realizováa jako mocia (1/5). =(1,109*1,183*0,99*0,885*1,188)^(1/5) Kvůli vyšší přesosti je lepší abrat idexy řetězové jako buňky, apříklad: =(C3*D3*E3*F3*G3)^(1/5) Zak mociy se tvoří pomocí ^, který se a české klávesici udělá pomocí trojkombiace pravé Alt + š + mezerík. Místo součiu idexů řetězových lze dosadit rovou idex řetězový v posledím uvedeém období, tj. koeficiet 1,81. ii) Pomocí fukce POWER, kde v argumetu je součiu idexů řetězových a mocia 1/5.

6 Středí hodoty, geometrický průměr Aleš Drobík straa 6 =POWER(1,109*1,183*0,99*0,885*1,188;1/5) Kvůli vyšší přesosti je lepší ačíst idexy řetězové jako buňky, apříklad: =POWER(C3*D3*E3*F3*G3;1/5) iii) Pomocí fukce GEOMEAN: =GEOMEAN(C3:G3) Za argumet fukce uto abrat oblast tabulky C3 až G3, kde jsou umístěé jedotlivé idexy řetězové ve tvaru poměrého čísla. Ve všech případech vyjde průměrý idex řetězový 1,0508. Ad c) Pro průměrý idex řetězový formulujeme odpovědi typu a kolik %, o kolik % a kolikrát. Průměrý idex řetězový je přibližě 1,0508, což zameá: V období 006 až 011 rostla výroba obilovi v ČR každý rok průměrě 1,0508 oproti miulému roku, eboli výroba rostla a 105,08 %, čili rostla o 5,08 %. Uvědomíme si: Číslo 105,08 % je průměrý idex řetězový vyjádřeý v procetech. Číslo 5,08 % je průměré tempo přírůstku vyjádřeé v procetech. Ad d) Do tabulky doplíme, jaká by byla v uvedeých letech výroba obilovi, kdyby se vyvíjela podle průměrého idexu řetězového. Vypočteme odhad a rok 01. Postup: Je uté se ukotvit do ějaké hodoty. Proto v roce 006 opíšeme hodotu výroby obilovi podle skutečosti, tj. 6,4 mil. t. Hodota výroby v roce 007 podle průměrého idexu řetězového, tj. kdyby stoupala 1,0508 oproti miulému roku, se spočítá: 6,40 mil. t 1,0508 = 6,73 mil. t

7 Středí hodoty, geometrický průměr Aleš Drobík straa 7 V Excelu se vzorec apíše tak, že v řádku Výroba dle průměrého idexu řetězového a ve sloupci rok 007 abereme buňku a stejém řádku vlevo a ásobíme buňkou, ve které je vypočte průměrý idex řetězový: =B4*$B14 Hodota výroby v roce 008, kdyby stoupala 1,0508 oproti miulému roku, se spočítá: 6,73 mil. t 1,0508 = 6,4 mil. t 1,0508 = 7,07 mil. t V Excelu se vzorec apíše tak, že v řádku Výroba dle průměrého idexu řetězového ve sloupci rok 008 abereme buňku a stejém řádku vlevo a ásobíme buňkou, ve které je vypočte průměrý idex řetězový. =C4*$B14 Je zřejmé že, teto vzorec můžeme zkopírovat do koce tabulky doprava. Hodota výroby v roce 009, kdyby stoupala 1,0508 oproti miulému roku, se spočítá: 7,07 mil. t 1,0508 = 6,4 mil. t 1, = 7,43 mil. t Hodota výroby v roce 010, kdyby stoupala 1,0508 oproti miulému roku, se spočítá: 7,43 mil. t 1,0508 = 6,4 mil. t 1, = 7,80 mil. t Hodota výroby v roce 011, kdyby stoupala 1,0508 oproti miulému roku, se spočítá: 7,80 mil. t 1,0508 = 6,4 mil. t 1, = 8,0 mil. t Hodota výroby v roce 011 počítaá podle průměrého idexu řetězového musí odpovídat (a také odpovídá) skutečé výrobě 8, mil. t. Lze dokoce spočítat odhad výroby obilovi za další roky 01 i 013 (odhad a více ež roky dopředu již je epřesý): Hodota výroby v roce 01, kdyby stoupala 1,0508 oproti miulému roku, se spočítá: 8, mil. t 1,0508 = 6,4 mil. t 1, = 8,6 mil. t

8 Středí hodoty, geometrický průměr Aleš Drobík straa 8 Hodota výroby v roce 013, kdyby stoupala 1,0508 oproti miulému roku, se spočítá: 8,6 mil. t 1,0508 = 6,4 mil. t 1, = 9,05 mil. t Uvědomíme si: To, že podle průměrého idexu řetězového ročí výroba obilovi roste průměrě o 5,08 %, ezameá stejý přírůstek výroby. o Jde o árůst o 5,08 % z hodoty vždy vyšší. o Tím, že průměrý idex řetězový je větší ež 1, základ 100 % je stále vyšší číslo. o Ročí výroba podle průměrého idexu řetězového stoupá podle geometrické řady s kvocietem q > 1 (u ás q = 1,0508, expoeciálí árůst). Kdyby podle průměrého idexu řetězového sledovaá veličia klesala, o průměrý idex řetězový by byl meší ež 1, základ 100 % by se stále sižoval. o Veličia podle průměrého idexu řetězového by klesala podle geometrické řady s kvocietem q < 1 (expoeciálí pokles). Vyplěá tabulka 10.10, yí tabulka 10.11, vypadá takto: Tabulka 10.11: Sklizeň obilovi v ČR Ukazatel Rok Výroba v mil. tu 6,4 7,1 8,4 7,8 6,9 8, x Idex základí v % 100,0 110,9 131,3 11,9 107,8 18,1 x Idex základí 1,000 1,109 1,313 1,19 1,078 1,81 x Idex řetězový v % x 110,9 118,3 9,9 88,5 118,8 x Idex řetězový x 1,109 1,183 0,99 0,885 1,188 x Tempo přírůstku v % x 10,9 18,3-7,1-11,5 18,8 x Tempo přírůstku x 0,109 0,183-0,071-0,115 0,188 x Výroba dle průměrého idexu řetězového 6,40 6,73 7,07 7,43 7,80 8,0 8,6 Ad e) Formulujeme odpověď pro odhad výroby obilovi v roce 01.

9 Středí hodoty, geometrický průměr Aleš Drobík straa 9 V roce 01 je odhad výroby obilovi v ČR asi 8,6 mil. t. Úkol 10.8: Z výsledovek firmy DURA Blatá jsme do tabulky 10.1 vypsali časovou řadu obratů. a) Pamatujete si z ekoomiky, co je to obrat? Jak se liší od tržby? b) Idex základí. Porovejme, a kolik procet se změil obrat v úoru, březu, dubu až květu 01 oproti obratu v prvím uvedeém měsíci ledu 01. V jakém měsíci byl ejvyšší obrat a v jakém měsíci byl ejižší obrat? c) Idex řetězový. Porovejme, a kolik procet se změil obrat v úoru, březu, dubu až květu 01 oproti obratu v předchozím měsíci? V jakém měsíci byl ejvyšší meziměsíčí árůst obratu a v jakém měsíci ejvyšší meziměsíčí pokles obratu? d) Tempo přírůstku. Porovejme, o kolik procet se změil obrat v každém měsíci vždy oproti předchozímu měsíci. e) Pro posledí měsíc květe 01 formulujme odpověď typu a kolik %, o kolik % a kolikrát pro idex základí a řetězový. f) Vypočteme průměrý měsíčí obrat za měsíce lede až květe a formulujeme odpověď. g) Vypočítáme průměrý idex řetězový obratu. h) Pro průměrý idex řetězový formulujeme odpověď typu a kolik %, o kolik % a kolikrát. i) Do tabulky 10.1 doplíme, jaká by byl v uvedeých měsících obrat, kdyby se vyvíjel podle průměrého idexu řetězového. Vypočteme odhad a červe 01. j) Formulujeme odpověď pro obrat v červu 01. Tab. 10.1: Časový vývoj měsíčích obratů fi DURA Blatá za lede až květe 01 Ukazatel Měsíc Obrat v mil. Kč Idex základí v % Idex základí Idex řetězový v % Idex řetězový Tempo přírůstku v % Tempo přírůstku Obrat podle průměrého idexu řetězového

10 Středí hodoty, geometrický průměr Aleš Drobík straa 10 PŘÍKLADY V EXCELU Propočítejte si příklady: 6GeometrickyPrumerNeresee.xlsx zde je eřešeý příklad. 6GeometrickyPrumerResee.xlsx zde je te samý příklad řešeý. 6GeometrickyPrumerUkol.xlsx zde je ový eřešeý příklad. OPAKOVACÍ OTÁZKY 1. Jaký je vzorec pro výpočet prostého aritmetického průměru?. Jaký je vzorec pro výpočet geometrického průměru? 3. V jakém případě se v ekoomické praxi setkáme s výpočtem geometrického průměru? 4. Jak lze v časové řadě pomocí geometrického průměru staovit odhad veličiy do budouca? 5. Pokud ekoomická veličia v časové řadě stoupá (ebo klesá) podle průměrého idexu řetězového, jsou hodoty součástí aritmetické řady, aebo geometrické řady? 6. Jak souvisí průměrý idex řetězový veličiy s parametrem (kvocietem) geometrické řady q?

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( ) DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Vyšší mocniny. Předpoklady: Doplň místo obdélníčků správné číslo. a) ( 2) 3. = c) ( ) = 1600 = e) ( 25) 2 0,8 0, 64.

Vyšší mocniny. Předpoklady: Doplň místo obdélníčků správné číslo. a) ( 2) 3. = c) ( ) = 1600 = e) ( 25) 2 0,8 0, 64. 81 Vyšší mociy Předpoklady: 0081 Př 1: Doplň místo obdélíčků správé číslo a) ( ) = b) = 0, 0000 e) ( ) = 0, ( 0) = 100 = f) ( ) = 8 a) ( ) = 8 b) 0, 0 0, 0000 = ( ) 0,8 0, 0 = 100 = e) ( ) = f) ( ) = 8

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Konec srandy!!! Mocniny s přirozeným mocnitelem I. Předpoklady: základní početní operace

Konec srandy!!! Mocniny s přirozeným mocnitelem I. Předpoklady: základní početní operace Koec srady!!!.6. Mociy s přirozeým mocitelem I Předpoklady: základí početí operace Pedagogická pozámka: Zápis a začátku kapitoly je víc ež je srada. Tato hodia je prví v druhé části studia. Až dosud ehrálo

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Derivace součinu a podílu

Derivace součinu a podílu 5 Derivace součiu a podílu Předpoklad: Pedagogická pozámka: Následující odvozeí jsem převzal a amerického fzikálího kursu Mechaical Uiverse Možá eí dostatečě rigorózí, ale mě osobě se strašě líbí spojitost

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU

5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU Druhy poměrných čísel Aleš Drobník strana 1 5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU Poměrná čísla neboli poměrní ukazatelé : Získáme srovnáním (podílem) 2 veličin stejnorodých. Srovnávaná veličina (čitatel)

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n /9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

1.2. NORMA A SKALÁRNÍ SOUČIN

1.2. NORMA A SKALÁRNÍ SOUČIN 2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;

Více

8.1.3 Rekurentní zadání posloupnosti I

8.1.3 Rekurentní zadání posloupnosti I 8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím

Více

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být

Více

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů .8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti

cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti DLUHOPISY ceý papír, jehož koupí si ivestor zajistí předem defiovaé peěží toky, které obdrží v budoucosti podle doby splatosti ~ 1 rok dlouhodobé dluhopisy Pokladičí poukázky

Více

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH

FINANČNÍ MATEMATIKA SBÍRKA ÚLOH FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

1 Uzavřená Gaussova rovina a její topologie

1 Uzavřená Gaussova rovina a její topologie 1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

1.7.4 Těžiště, rovnovážná poloha

1.7.4 Těžiště, rovnovážná poloha 74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

Mocninné řady - sbírka příkladů

Mocninné řady - sbírka příkladů UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Mocié řady - sbírka příkladů Vedoucí bakalářské práce: Mgr. Iveta Bebčáková, Ph.D.

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Komplexní čísla, komplexně sdružená čísla, opačná komplexní čísla, absolutní hodnota (modul) komplexního čísla. z 2 z 1

Komplexní čísla, komplexně sdružená čísla, opačná komplexní čísla, absolutní hodnota (modul) komplexního čísla. z 2 z 1 Komplexí čísla, komplexě sdružeá čísla, opačá komplexí čísla, absolutí hodota (modul) komplexího čísla Defiice komplexího čísla Komplexí číslo je uspořádaá dvojice reálých čísel = (, ) (, ). je reálá,

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb

Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb Příloha č. 7 Dodatku ke Smlouvě o službách Systém měřeí kvality Služeb Dodavatel a Objedatel se dohodli a ahrazeí Přílohy C - Systém měřeí kvality Služeb Obchodích podmíek Smlouvy o službách touto Přílohou

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky.

Návod pro výpočet základních induktorů s jádrem na síťové frekvenci pro obvody výkonové elektroniky. Návod pro cvičeí předmětu Výkoová elektroika Návod pro výpočet základích iduktorů s jádrem a síťové frekveci pro obvody výkoové elektroiky. Úvod V obvodech výkoové elektroiky je možé většiu prvků vyrobit

Více

HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU

HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU Ja SKOLIL 1*, Štefa ČORŇÁK 2*, Ja ULMAN 3 1* Velvaa, a.s., 273 24 Velvary, Česká republika 2,3 Uiverzita obray v Brě, Kouicova

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

Posloupnosti a řady. Obsah

Posloupnosti a řady. Obsah Poslouposti řdy Poslouposti řdy Obsh. Poslouposti... 8. Úvod do posloupostí... 8. Aritmetická geometrická posloupost... 9. Limit poslouposti... 9. Řdy... 0. Nekoečá geometrická řd... 0 Strák 7 Poslouposti

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7]

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7] 6. Fukce a poslouposti ) Rozoděte, která z dvojic [ ;9[, 0; [, ; patří fukci daé předpisem y +. [všecy ) Auto má spotřebu 6 l beziu a 00 km. Na začátku jízdy mělo v plé ádrži 6 l beziu. a) Vyjádřete závislost

Více