4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ
|
|
- Jan Bařtipán
- před 10 lety
- Počet zobrazení:
Transkript
1 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu vyhodocováí efektivosti ivestičích projektů, která za efekt z ivestice považuje peěží příjem z ivestice, jehož základ tvoří očekávaý zisk po zdaěí, odpisy, evetuálě ostatí příjmy. Můžeme ji defiovat jako rozdíl mezi diskotovaými peěžími příjmy z ivestice a kapitálovým výdajem. Jestliže se kapitálový výdaj uskutečňuje delší dobu, pak je čistá současá hodota rozdíl mezi diskotovaými peěžími příjmy z ivestice a diskotovaými kapitálovými výdaji v jedotlivých letech. Matematicky můžeme čistou současou hodotu vyjádřit ve dvou podobách (Hrdý, 008): a) V rozviuté podobě: P P ( ( P... ( = Č čistá současá hodota, P,,.., peěží příjem z ivestice v jedotlivých letech její životosti, i požadovaá výosost (úrok v % / 00), doba životosti ivestice, K kapitálový výdaj. b) Zjedodušeě: jedotlivá léta životosti. = P = ( ěkdy je možé se setkat s úpravou čisté současé hodoty, kdy se peěží toky aktualizují k okamžiku uvedeí ivestice do provozu, ikoliv k okamžiku zahájeí výstavby. V tomto případě se počítá budoucí hodota kapitálových výdajů k okamžiku uvedeí projektu do provozu a současá hodota peěžích příjmů k témuž okamžiku. Mezi jedotlivými způsoby aktualizace (k zahájeí výstavby, k uvedeí do provozu, ke koci životost platí tyto vztahy (Valach, 005): Č ZP = Č ZV U V Č KŽ = Č ZV U VP DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ
2 78 Č ZP čistá současá hodota, aktualizovaá k začátku provozu, Č ZV čistá současá hodota, aktualizovaá k začátku výstavby, Č KŽ čistá současá hodota, aktualizovaá ke koci životosti, U V úročitel pro požadovaou výosost a počet let výstavby, U P úročitel pro požadovaou výosost a počet let provozu, úročitel pro požadovaou výosost a souhr let výstavby a provozu. U VP S čistou současou hodotou ivestičího projektu těsě souvisí idex ziskovosti (retability). Představuje relativí ukazatel, vyjadřující poměr očekávaých diskotovaých peěžích příjmů z ivestice k počátečím kapitálovým výdajům: Z = = P ( K Z idex ziskovosti (retability). Upraveá čistá současá hodota Jedá se o takovou čistou současou hodotu, která zahruje, kromě základí čisté současé hodoty, také současé hodoty fiačích důsledků, vyplývajících z přijetí ivestičího projektu. Současé hodoty fiačích důsledků ivestičích projektů mohou být kladé ebo záporé. Upraveá čistá současá hodota (Č U ) se tedy skládá ze dvou částí: a) základí čisté současé hodoty projektů (Č Z ), b) souhru současých hodot všech fiačích důsledků projektu (F). Č U = Č Z F ebo Č U = Č Z F Dalším specifický případ může astat v meziárodích podmíkách, kde se apř. promítají vlivy změy směých kursů. Vliv meziárodích aspektů je řeše v samostaté kapitole. Vliv iflace Za předpokladu vyššího tempa iflace je uté brát v úvahu i růst ce. esmíme však opomeout fakt, že u ivestic s delší dobou životosti má i relativě ízká míra iflace začý vliv zejméa a peěží příjmy. Díky této skutečosti je pak ovlivěa i výše čisté současé hodoty a vitřího výosového proceta. flace způsobuje především růst kapitálových výdajů. Vliv iflace je evidetí zejméa u stavebích ivestic s delší dobou pořízeí, během které může dojít ke zvýšeí ce (Hrdý, 008). U ivestic, které jsou pořizováy bezprostředě ákupem, vliv iflace a kapitálové výdaje ehraje podstatou roli. flace pochopitelě ovlivňuje i peěží příjmy z projektu. Rostou cey výrobků, které budou produkováy, ale zároveň dochází i k růstu cey spotřebovaého materiálu, k růstu mzdových a dalších ákladů. Velmi často se zjedodušeě předpokládá, že růst ce vstupů a růst ce realizace je stejý. V takovém případě potom mluvíme o tzv. eutrálí iflaci. Vlivem iflace je zatížea i diskotí sazba, která se používá pro vyjádřeí časové hodoty peěz. Výše diskotí sazby stoupá, a vziká tak diferece mezi omiálí a reálou sazbou. Růstem diskotí sazby dochází ke sižováí předpokládaých diskotovaých peěžích příjmů z projektu. Při propočtech čisté současé hodoty je možé vliv iflace ilustrovat dvěma způsoby (Valach, 008): a) s použitím omiálí diskotí sazby, b) s použitím reálé diskotí sazby. FAČÍ ŘÍZEÍ
3 Je však uté vždy dodržet toto pravidlo: Při diskotováí omiálích peěžích příjmů používáme omiálí diskotí sazbu, při diskotováí reálých peěžích příjmů diskotujeme reálou diskotí sazbu. Při dodržeí tohoto postupu je výsledek promítáí iflace do staoveí čisté současé hodoty totožý. Velmi často se setkáváme s případy, kdy doba životosti projektu je ěkolik let. V takových situacích je uté kalkulovat s růzou ročí iflací během doby životosti. Růzou iflaci je proto uté vzít v potaz i při kvatifikaci čisté současé hodoty (Hrdý, 008): 79 P P P3 P =... i ) ( i ) ( i ) ( i ) ( i ) ( i ) ( i ) ( i )... ( i ) ( 3 Č čistá současá hodota zohledňující růzou mírou iflace, P. omiálí peěží příjmy z ivestice v jedotlivých letech životosti, i.. omiálí diskotí koeficiet v jedotlivých letech životosti, K kapitálový výdaj. Jestliže se idex iflace během doby životosti měí, můžeme pro propočet čisté současé hodoty zobrazující růzou míru iflace v jedotlivých letech použít i průměrý ročí idex iflace. Při aplikaci tohoto postupu si však musíme uvědomit, že průměrý ročí idex iflace je vyjádře geometrickým průměrem růzých ročích idexů iflace, ikoliv průměrem aritmetickým. počet let, idex iflace v jedotlivých letech vyjádřeá ve tvaru,xx. Ve všech výše uvedeých situacích jsme vycházeli z předpokladu eutrálího vlivu iflace. Ve skutečosti však iflace emusí všechy peěží příjmy ovlivňovat stejou měrou. Jedá se o typickou situaci apř. u odpisů, které jsou kostruováy a bázi stálých ce. Při této charakteristice odpisů je možé vzorec pro výpočet čisté současé hodoty odvodit takto: = ( T ) Z O u = ( ir ) = ( Výše uvedeý vzorec představuje vyjádřeí v omiálích hodotách. Čistá současá hodota zohledňující iflaci Č bude mít po převodu a reálé hodoty ásledující podobu: = ( T ) Z ( ) u = ( ir ) ( ) = ( ( ) O koeficiet ročí iflace. Vzhledem k tomu, že čistá současá hodota beroucí v úvahu iflaci dosahuje ižší úrově ež čistá současá hodota bez iflace, je zřejmé, že dokoce i v případě eutrálí iflace dochází ke sížeí efektivosti projektu v důsledku egativího vlivu iflace a odpisový daňový štít. Čím vyšších hodot abývá iflace, tím větší existuje diferece mezi čistou současou hodotou bez iflace a čistou současou hodotou beroucí iflaci v úvahu. Mohou astat případy, že Č bude větší ež ula a Č bude meší ež ula. Taková situace představuje momet, kdy projekt bez iflace, který by měl být přijat, přijat ebude, jestliže iflace bude bráa v úvahu. Čím bude projekt kapitálově áročější, tím větší budou odpisy a tím více bude projekt pod vlivem iflace. Z výše uvedeých skutečostí je patré, že rozhodováí o výběru zaměitelých projektů je do DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ
4 80 jisté míry závislé i a míře iflace. Proto je ezbyté odhadout vliv míry iflace předtím, ež dojde k výběru vzájemě zaměitelých projektů. Díky míře iflace dochází od určitého stupě ke změě pohledu a efektivost projektů, jejich přijatelost a výběr. Kromě vlivu iflace a ČSH je třeba ještě ošetřit vliv fiacováí a výpočet ČSH. Zde fiačí teorie doporučuje (Valach, 005) počítat ČSH bez vlivu způsobu fiacováí a tuto záležitost promítout teprve dodatečě a staovit tzv. upraveou čistou současou hodotu: Č(u) upraveá čistá současá hodota, F fiačí důsledky. Č(u) = Č ( ) F Tyto fiačí důsledky mohou být pozitiví, apř. přiděleá dotace v příslušém roce, ebo egativí, apř. emisí áklady při fiacováí emisí akcií ebo obligací. Příklad 4. Vypočítejte ČSH ivestičího projektu pomocí omiálích i reálých veliči, jestliže jedorázový kapitálový výdaj a počátku životosti ivestice = Kč, reálý peěží příjem a koci. roku = Kč, reálý peěží příjem a koci. roku = Kč, omiálí úroková míra = 6 %, iflace. rok = 5 %, iflace. rok = 4 % (Hrdý, 008). Řešeí: a) provedeme výpočet pomoci omiálích hodot: P(om.) = P(reál.) ( ) P(om. l. rok) = ,05 = Kč P(om.. rok) = ,04 = Kč Diskotovaé omiálí peěží příjmy = ,9434 [odúročitel (6 %, l rok)] ,89 [odúročitel (6 %, roky)] = = Kč ČSH = = Kč b) provedeme výpočet pomocí reálých veliči = = K Obě ČSH by měly vyjít stejě, což se potvrdilo. Drobý rozdíl je způsobe použitím odúročitelů v případě a), které jsou zaokrouhlováy. Poz.: Je možé rověž při výpočtu použít průměré ročí tempo iflace. ( p) =,05,04 =, Tj. průměrá iflace čií 4,4988 %. FAČÍ ŘÍZEÍ
5 Příklad 4. 8 Posuďte vliv iflace a výpočet ČSH, jestliže předpokládáme růzý dopad iflace a strukturu peěžího příjmu. Doba životosti ivestice čií rok, Z(u)r = Kč, O = K = , i() = 0 %, = 4 %, daňová sazba 5 % (Hrdý, 008). Řešeí: Při růzém dopadu iflace a strukturu peěžího příjmu vycházíme z reálých hodot, proto ejprve provedeme převod omiálí úrokové míry a reálou. yí provedeme výpoet SH bez vlivu iflace: A dále pak výpoet SH s vlivem iflace: K Růzý dopad iflace a strukturu peěžího příjmu sížil ČSH o = = 7 7 Kč. Příklad 4.3 Vypočítejte ČSH ivestice a zhodoťte její efektivost, jestliže předpokládáme lieárí odpisy, daňovou sazbu 35 % a miimálí požadovaou výosost 5 % za předpokladu, že podik hodlá ivestici fiacovat prostředictvím emisí obligací, což bude představovat emisí áklady ve výši 6 % z hrubého výtěžku emise. Celková pořizovací cea ivestice čií 00 mil. Kč, přičemž v důsledku uvedeí ivestice do provozu dojde k trvalému přírůstku oběžého majetku ve výši 5 mil. Kč a zároveň ke zvýšeí krátkodobých závazků ve výši 5 mil. Kč. Po dobu pětileté životosti předpokládáme stabilí ročí výši zisku před zdaěím ve výši 8 mil. Kč (Hrdý, 008). Řešeí: K = přírůstek čistého pracovího kapitálu = 00 (5 5) = 0 mil. Kč P = čistý Z O = 8 ( 0,35) 0 = 38, mil. Kč Diskotovaý P = 38, mil. 3,35 [zásobitel (5 %, 5let)] = 8 mil. Kč ČSH = diskotovaý P K = 8 0 = 8 mil. Kč ČSH(u) = ČSH F = ČSH emisí áklady Vzhledem k emisím ákladům je uté emitovat obligace za (0 : 94) 00 = 7 mil. Kč Emisí áklady = 7 0 = 7 mil.kč ČSH(u) = 8 7 = mil. Kč ČSH je kladá, projekt je přijatelý. DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ
Pojem času ve finančním rozhodování podniku
Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé
I. Výpočet čisté současné hodnoty upravené
I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě
Finanční řízení podniku. Téma: Časová hodnota peněz
Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při
I. Výpočet čisté současné hodnoty upravené
I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě
2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II
2,3 ČTYŘI STADARDÍ METODY I, ČTYŘI STADARDÍ METODY II 1.1.1 Statické metody a) ARR - Average Rate of Retur průměrý ročí čistý zisk (po zdaěí) ARR *100 % ( 20 ) ivestic do projektu V čitateli výrazu ( 20
2. Finanční rozhodování firmy (řízení investic a inovací)
2. Fiačí rozhodováí firmy (řízeí ivestic a iovací) - fiačí rozhodováí je podmožiou fiačího řízeí (domiatí) - kompoety = složky: výběr optimálí variaty zdrojů fiacováí užití získaých prostředků uvážeí vlivu
ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu
ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období
10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR
PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy
ÚROKOVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY
ÚROKOVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY 1. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(r) úrok v % z hodoty kapitálu za časové
Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad
Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.
Využití čisté současné hodnoty při posuzování investičních projektů
Bakoví istitut vysoká škola Praha Matematika a statistika Využití čisté současé hodoty při posuzováí ivestičích projektů Bakalářská práce Autor: Jiří Buk Bakoví maagemet, komerčí bakovictví Vedoucí práce:
(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)
(variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110
DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ
DURACE A INVESTIČNÍ HORIZONT PŘI INVESTOVÁNÍ DO DLUHOPISŮ Ivestičí horizot IH: doba, po kterou má ivestor v daé ivestici vázáy své peíze. Při ivestici do dluhopisu jsme vystavei riziku změy výosů Uvažujme
Přehled vztahů k problematice jednoduchého úročení a úrokové sazby
Přehled vztahů k poblematice jedoduchého úočeí a úokové sazby Pozámka: Veškeé úokové sazby /předlhůtí i polhůtí/, diskotí sazby, míy iflace a sazby daě z příjmů je do uvedeých vzoců uto dosazovat v jejich
Deskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
Využití účetních dat pro finanční řízení
Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející
Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic
Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí
Metodika projektů generujících příjmy
Příloha: 9 Metodka projektů geerujících příjmy Účost: 23. 1. 2009 Verze č. 6.0 1. Výchozí podmíky - Obecá pravdla Postup u projektů geerujících příjmy vychází z čláku 55 Obecého ařízeí č. 1083/2006 a vyplývá
Meze využití prosté doby návratnosti při formování garantovaných výkupních cen #
Meze využití prosté doby ávratosti při formováí garatovaých výkupích ce # Úvod Josef Valach Eergetická politika řady evropských zemí v oblasti obovitelých zdrojů eergie se v posledí době silě opírá o dlouhodobé
PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů
Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý
8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
Příloha č. 9 PPŽP Metodika projektů generujících příjmy
Příloha č. 9 PPŽP Metodika projektů geerujících příjmy Účiost: 1. 4. 2010 Verze č. 11.0 ~ 1 ~ 1. Výchozí podmíky - Obecá pravidla Postup u projektů geerujících příjmy vychází z čláku 55 Obecého ařízeí
Závislost slovních znaků
Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví
Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná
Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ
8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
II. METODICKÉ PŘÍKLADY SESTAVENÍ VÝKAZU PAP
Istituce i zazameaé operace jsou fiktiví. Ukázkové případy - sezam Případ Vykazující účetí Vykázaé Části I až XIII Straa jedotka (zkráceě až 3) A Půjčka od baky Město, v roce +1, T2 v roce +1, T7, T8,
Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.
Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví
PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)
Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím
Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
České účetní standardy 006 Kurzové rozdíly
České účetí stadardy METODICKÝ ig. u Vykazováí v Vymezeí w Oceňováí Odpisováí, postup účtováí y Ivetarizace z Aalytická evidece { Podrozvahová evidece Zveřejňováí České účetí stadardy 2017 2 22 1 v Vymezeí
Jednokriteriální metody hodnocení obecné finanční metody hodnocení
Jedokriteriálí metody hodoceí obecé fiačí metody hodoceí Cíl kapitoly Jaa Soukopová Cílem kapitoly je sezámit čteáře obecými metodami hodoceí veřejých projektů. Patří mezi ě statické i dyamické metody.
PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)
Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím
OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.
OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá
Vzorový příklad na rozhodování BPH_ZMAN
Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha
PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)
Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím
cenný papír, jehož koupí si investor zajistí předem definované peněžní toky, které obdrží v budoucnosti
DLUHOPISY ceý papír, jehož koupí si ivestor zajistí předem defiovaé peěží toky, které obdrží v budoucosti podle doby splatosti ~ 1 rok dlouhodobé dluhopisy Pokladičí poukázky
INFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT
INFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT VLIV ENVIRONMENTÁLNÍ LEGISLATIVY NA HODNOTU TECHNICKÝCH ZAŘÍZENÍ PODNIKU Paseka P., Mareček J. Departmet of
1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
EFEKTIVNOST ENVIRONMENTÁLNÍCH INVESTIC
EFEKTIVNOST ENVIRONMENTÁLNÍCH INVESTIC Marcela Kožeá Uiverzita Pardubice, Fakulta ekoomicko-správí, Ústav ekoomiky a maagemetu Abstract: Ivestmet decisio makig belogs to the most importat decisio of eterprise
PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)
Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím
PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)
Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím
1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu
1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou
D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n
/9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x
Současnost a budoucnost provozní podpory podle zákona POZE
Současost a budoucost provozí podpory podle zákoa POZE ENERGETICKÝ REGULAČNÍ ÚŘAD Odbor podporovaých zdrojů poze@eru.cz Ig. Kristiá Titka 20. 11. 2018 Frymburk Rada ERÚ od 1. 8. 2018 JUDr. PhDr. Vratislav
Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/
Teto projekt je spolufiacová Evropským sociálím fodem a Státím rozpočtem ČR IoBio CZ..07/2.2.00/28.008 Připravil: Ig. Vlastimil Vala, CSc. Metody zkoumáí ekoomických jevů Kapitola straa 3 Metoda Z řeckého
Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254
Evropský sociálí fod Praha & EU: Ivestujeme do vaší budoucosti Teto materiál vzikl díky Operačímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Maažerské kvatitativí metody II - předáška č.1 - Dyamické
4EK311 Operační výzkum. 4. Distribuční úlohy LP část 2
4EK311 Operačí výzkum 4. Distribučí úlohy LP část 2 4.1 Dopraví problém obecý model miimalizovat za podmíek: m z = c ij x ij i=1 j=1 j=1 m i=1 x ij = a i, i = 1, 2,, m x ij = b j, j = 1, 2,, x ij 0, i
12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
-1- Finanční matematika. Složené úrokování
-- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí
Spojitost a limita funkcí jedné reálné proměnné
Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v
SH = BH*( 1 + i) n nebo
PEKS 2 Literatura Syek PEK 4. vydáí Faktor času v peěžím vyjádřeí Peěží jedotka Kč přijata ebo vyplacea v růzých časových okamžicích má rozdílou hodotu. Deší korua je ceější, ež korua získaá později apř.
523/2006 Sb. VYHLÁŠKA
523/2006 Sb. VYHLÁŠKA ze de 21. listopadu 2006, kterou se staoví mezí hodoty hlukových ukazatelů, jejich výpočet, základí požadavky a obsah strategických hlukových map a akčích pláů a podmíky účasti veřejosti
VYSOCE PŘESNÉ METODY OBRÁBĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,
4EK212 Kvantitativní management 4. Speciální úlohy lineárního programování
4EK212 Kvatitativí maagemet 4. Speciálí úlohy lieárího programováí 3. Typické úlohy LP Úlohy výrobího pláováí (alokace zdrojů) Úlohy fiačího pláováí (optimalizace portfolia) Směšovací problémy Nutričí
Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
Makroekonomie cvičení 1
Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké
Optimalizace portfolia
Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
základním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ
3..- 4.. 2009 DIVYP Bro, s.r.o., Filipova, 635 00 Bro, http://www.divypbro.cz UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ autoři: prof. Ig. Mila Holický, PhD., DrSc., Ig. Karel Jug, Ph.D., doc. Ig. Jaa Marková,
dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko
dáliced3 a rychlostí silice R3 Praha Tábor České Budějovice Rakousko w w obsah základí iformace 3 dálice D3 a rychlostí silice R3 PrahaTáborČeské BudějoviceRakousko 3 > základí iformace 4 > čleěí dálice
P2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
Sekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb
Příloha č. 7 Dodatku ke Smlouvě o službách Systém měřeí kvality Služeb Dodavatel a Objedatel se dohodli a ahrazeí Přílohy C - Systém měřeí kvality Služeb Obchodích podmíek Smlouvy o službách touto Přílohou
FINANČNÍ MATEMATIKA SBÍRKA ÚLOH
FINANČNÍ MATEMATIKA SBÍRKA ÚLOH Zpracováo v rámci projektu " Vzděláváí pro kokureceschopost - kokureceschopost pro Třeboňsko", registračí číslo CZ.1.07/1.1.10/02.0063 Gymázium, Třeboň, Na Sadech 308 Autor:
Příklady k přednášce 9 - Zpětná vazba
Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat
Vliv tváření za studena na pevnostní charakteristiky korozivzdorných ocelí Ing. Jan Mařík
stavebí obzor 9 10/2014 125 Vliv tvářeí za studea a pevostí charakteristiky korozivzdorých ocelí Ig. Ja Mařík Ig. Michal Jadera, Ph.D. ČVUT v Praze Fakulta stavebí Čláek uvádí výsledky tahových zkoušek
Vyjadřují se v procentech z hodnoty vloženého kapitálu. Někdy se pro jejich označení používá termín cena kapitálu.
1. Cena kapitálu Náklady kapitálu představují pro podnik výdaj, který musí zaplatit za získání různých forem kapitálu (tj. za získání např. různých forem dluhů, akciového kapitálu, nerozděleného zisku
Finanční management. Co je inflace? Reálný a nominální diskont. Zahrnutí inflace do výpočtu NPV
Fačí maageme Zahuí flace do výpoču NPV Co je flace? defce měřeí pomocí CPI, PPI, defláou eálá a omálí velča měřeí v peěžích jedokách ebo v kupí síle běžé a sálé cey Reálý a omálí dsko zaedbáme-l daě (Fshe):
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
MATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
IAJCE Přednáška č. 12
Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích
23. Mechanické vlnění
3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze
2.4. INVERZNÍ MATICE
24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:
Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv
3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací 6.-7. září 006 tegrace hodot Value-at-Risk lieárích subportfolií a bázi vícerozměrého ormálího
Teorie kompenzace jalového induktivního výkonu
Teorie kompezace jalového iduktivího výkou. Úvod Prvky rozvodé soustavy (zdroje, vedeí, trasformátory, spotřebiče, spíací a jistící kompoety) jsou obecě vzato impedace a jejich áhradí schéma můžeme sestavit
3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
8. Základy statistiky. 8.1 Statistický soubor
8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě
Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
Experimentální postupy. Koncentrace roztoků
Experimetálí postupy Kocetrace roztoků Kocetrace roztoků možství rozpuštěé látky v roztoku. Hmotostí zlomek (hmotostí proceta) Objemový zlomek (objemová proceta) Molárí zlomek Molarita (molárí kocetrace)
M - Posloupnosti VARIACE
M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,
veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
Tab. č. 1 Druhy investic
Investiční činnost Investice představuje vydání peněz dnes s představou, že v budoucnosti získáme z uvedených prostředků vyšší hodnotu. Vzdáváme se jisté spotřeby dnes, ve prospěch nejistých zisků v budoucnosti.
8.2.7 Geometrická posloupnost
87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob
13 Popisná statistika
13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický
PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test varianta H)
Přijímací řízeí pro akademický rok 2011/2012 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test variata H) U každé otázky či podotázky
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
Hodnocení ekonomické efektivnosti projektů Průměrný výnos z investice, doba návratnosti, ČSH, VVP
Hodnocení ekonomické efektivnosti projektů Průměrný výnos z investice, doba návratnosti, ČSH, VVP Investice je charakterizována jako odložená spotřeba. Podnikové investice jsou ty statky, které nejsou
Čistá současná hodnota a vnitřní výnosové procento
Čistá současná hodnota a vnitřní výnosové procento Co je to čistá současná hodnota? Čistá současná hodnota představuje rozdíl mezi diskontovanými peněžními příjmy z určité činnosti a výdaji na tuto činnost.
Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.
Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový
STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ
Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý
VLIV DISKONTNÍ SAZBY NA ÚROKOVÉ SAZBY KOMERČNÍCH BANK
UNIVERZITA PARDUBICE Fakulta ekoomicko-správí VLIV DISKONTNÍ SAZBY NA ÚROKOVÉ SAZBY KOMERČNÍCH BANK Moika Pazderová Bakalářská práce 009 Prohlašuji: Tuto práci jsem vypracovala samostatě. Veškeré literárí
Metodický postup pro určení úspor primární energie
Metodický postup pro určeí úspor primárí eergie Parí protitlaká turbía ORGRZ, a.s., DIVIZ PLNÉ CHNIKY A CHMI HUDCOVA 76, 657 97 BRNO, POŠ. PŘIHR. 97, BRNO 2 z.č. Obsah abulka hodot vstupujících do výpočtu...3
Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem
Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme
Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006
8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko
14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou
4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,