4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ"

Transkript

1 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu vyhodocováí efektivosti ivestičích projektů, která za efekt z ivestice považuje peěží příjem z ivestice, jehož základ tvoří očekávaý zisk po zdaěí, odpisy, evetuálě ostatí příjmy. Můžeme ji defiovat jako rozdíl mezi diskotovaými peěžími příjmy z ivestice a kapitálovým výdajem. Jestliže se kapitálový výdaj uskutečňuje delší dobu, pak je čistá současá hodota rozdíl mezi diskotovaými peěžími příjmy z ivestice a diskotovaými kapitálovými výdaji v jedotlivých letech. Matematicky můžeme čistou současou hodotu vyjádřit ve dvou podobách (Hrdý, 008): a) V rozviuté podobě: P P ( ( P... ( = Č čistá současá hodota, P,,.., peěží příjem z ivestice v jedotlivých letech její životosti, i požadovaá výosost (úrok v % / 00), doba životosti ivestice, K kapitálový výdaj. b) Zjedodušeě: jedotlivá léta životosti. = P = ( ěkdy je možé se setkat s úpravou čisté současé hodoty, kdy se peěží toky aktualizují k okamžiku uvedeí ivestice do provozu, ikoliv k okamžiku zahájeí výstavby. V tomto případě se počítá budoucí hodota kapitálových výdajů k okamžiku uvedeí projektu do provozu a současá hodota peěžích příjmů k témuž okamžiku. Mezi jedotlivými způsoby aktualizace (k zahájeí výstavby, k uvedeí do provozu, ke koci životost platí tyto vztahy (Valach, 005): Č ZP = Č ZV U V Č KŽ = Č ZV U VP DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ

2 78 Č ZP čistá současá hodota, aktualizovaá k začátku provozu, Č ZV čistá současá hodota, aktualizovaá k začátku výstavby, Č KŽ čistá současá hodota, aktualizovaá ke koci životosti, U V úročitel pro požadovaou výosost a počet let výstavby, U P úročitel pro požadovaou výosost a počet let provozu, úročitel pro požadovaou výosost a souhr let výstavby a provozu. U VP S čistou současou hodotou ivestičího projektu těsě souvisí idex ziskovosti (retability). Představuje relativí ukazatel, vyjadřující poměr očekávaých diskotovaých peěžích příjmů z ivestice k počátečím kapitálovým výdajům: Z = = P ( K Z idex ziskovosti (retability). Upraveá čistá současá hodota Jedá se o takovou čistou současou hodotu, která zahruje, kromě základí čisté současé hodoty, také současé hodoty fiačích důsledků, vyplývajících z přijetí ivestičího projektu. Současé hodoty fiačích důsledků ivestičích projektů mohou být kladé ebo záporé. Upraveá čistá současá hodota (Č U ) se tedy skládá ze dvou částí: a) základí čisté současé hodoty projektů (Č Z ), b) souhru současých hodot všech fiačích důsledků projektu (F). Č U = Č Z F ebo Č U = Č Z F Dalším specifický případ může astat v meziárodích podmíkách, kde se apř. promítají vlivy změy směých kursů. Vliv meziárodích aspektů je řeše v samostaté kapitole. Vliv iflace Za předpokladu vyššího tempa iflace je uté brát v úvahu i růst ce. esmíme však opomeout fakt, že u ivestic s delší dobou životosti má i relativě ízká míra iflace začý vliv zejméa a peěží příjmy. Díky této skutečosti je pak ovlivěa i výše čisté současé hodoty a vitřího výosového proceta. flace způsobuje především růst kapitálových výdajů. Vliv iflace je evidetí zejméa u stavebích ivestic s delší dobou pořízeí, během které může dojít ke zvýšeí ce (Hrdý, 008). U ivestic, které jsou pořizováy bezprostředě ákupem, vliv iflace a kapitálové výdaje ehraje podstatou roli. flace pochopitelě ovlivňuje i peěží příjmy z projektu. Rostou cey výrobků, které budou produkováy, ale zároveň dochází i k růstu cey spotřebovaého materiálu, k růstu mzdových a dalších ákladů. Velmi často se zjedodušeě předpokládá, že růst ce vstupů a růst ce realizace je stejý. V takovém případě potom mluvíme o tzv. eutrálí iflaci. Vlivem iflace je zatížea i diskotí sazba, která se používá pro vyjádřeí časové hodoty peěz. Výše diskotí sazby stoupá, a vziká tak diferece mezi omiálí a reálou sazbou. Růstem diskotí sazby dochází ke sižováí předpokládaých diskotovaých peěžích příjmů z projektu. Při propočtech čisté současé hodoty je možé vliv iflace ilustrovat dvěma způsoby (Valach, 008): a) s použitím omiálí diskotí sazby, b) s použitím reálé diskotí sazby. FAČÍ ŘÍZEÍ

3 Je však uté vždy dodržet toto pravidlo: Při diskotováí omiálích peěžích příjmů používáme omiálí diskotí sazbu, při diskotováí reálých peěžích příjmů diskotujeme reálou diskotí sazbu. Při dodržeí tohoto postupu je výsledek promítáí iflace do staoveí čisté současé hodoty totožý. Velmi často se setkáváme s případy, kdy doba životosti projektu je ěkolik let. V takových situacích je uté kalkulovat s růzou ročí iflací během doby životosti. Růzou iflaci je proto uté vzít v potaz i při kvatifikaci čisté současé hodoty (Hrdý, 008): 79 P P P3 P =... i ) ( i ) ( i ) ( i ) ( i ) ( i ) ( i ) ( i )... ( i ) ( 3 Č čistá současá hodota zohledňující růzou mírou iflace, P. omiálí peěží příjmy z ivestice v jedotlivých letech životosti, i.. omiálí diskotí koeficiet v jedotlivých letech životosti, K kapitálový výdaj. Jestliže se idex iflace během doby životosti měí, můžeme pro propočet čisté současé hodoty zobrazující růzou míru iflace v jedotlivých letech použít i průměrý ročí idex iflace. Při aplikaci tohoto postupu si však musíme uvědomit, že průměrý ročí idex iflace je vyjádře geometrickým průměrem růzých ročích idexů iflace, ikoliv průměrem aritmetickým. počet let, idex iflace v jedotlivých letech vyjádřeá ve tvaru,xx. Ve všech výše uvedeých situacích jsme vycházeli z předpokladu eutrálího vlivu iflace. Ve skutečosti však iflace emusí všechy peěží příjmy ovlivňovat stejou měrou. Jedá se o typickou situaci apř. u odpisů, které jsou kostruováy a bázi stálých ce. Při této charakteristice odpisů je možé vzorec pro výpočet čisté současé hodoty odvodit takto: = ( T ) Z O u = ( ir ) = ( Výše uvedeý vzorec představuje vyjádřeí v omiálích hodotách. Čistá současá hodota zohledňující iflaci Č bude mít po převodu a reálé hodoty ásledující podobu: = ( T ) Z ( ) u = ( ir ) ( ) = ( ( ) O koeficiet ročí iflace. Vzhledem k tomu, že čistá současá hodota beroucí v úvahu iflaci dosahuje ižší úrově ež čistá současá hodota bez iflace, je zřejmé, že dokoce i v případě eutrálí iflace dochází ke sížeí efektivosti projektu v důsledku egativího vlivu iflace a odpisový daňový štít. Čím vyšších hodot abývá iflace, tím větší existuje diferece mezi čistou současou hodotou bez iflace a čistou současou hodotou beroucí iflaci v úvahu. Mohou astat případy, že Č bude větší ež ula a Č bude meší ež ula. Taková situace představuje momet, kdy projekt bez iflace, který by měl být přijat, přijat ebude, jestliže iflace bude bráa v úvahu. Čím bude projekt kapitálově áročější, tím větší budou odpisy a tím více bude projekt pod vlivem iflace. Z výše uvedeých skutečostí je patré, že rozhodováí o výběru zaměitelých projektů je do DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ

4 80 jisté míry závislé i a míře iflace. Proto je ezbyté odhadout vliv míry iflace předtím, ež dojde k výběru vzájemě zaměitelých projektů. Díky míře iflace dochází od určitého stupě ke změě pohledu a efektivost projektů, jejich přijatelost a výběr. Kromě vlivu iflace a ČSH je třeba ještě ošetřit vliv fiacováí a výpočet ČSH. Zde fiačí teorie doporučuje (Valach, 005) počítat ČSH bez vlivu způsobu fiacováí a tuto záležitost promítout teprve dodatečě a staovit tzv. upraveou čistou současou hodotu: Č(u) upraveá čistá současá hodota, F fiačí důsledky. Č(u) = Č ( ) F Tyto fiačí důsledky mohou být pozitiví, apř. přiděleá dotace v příslušém roce, ebo egativí, apř. emisí áklady při fiacováí emisí akcií ebo obligací. Příklad 4. Vypočítejte ČSH ivestičího projektu pomocí omiálích i reálých veliči, jestliže jedorázový kapitálový výdaj a počátku životosti ivestice = Kč, reálý peěží příjem a koci. roku = Kč, reálý peěží příjem a koci. roku = Kč, omiálí úroková míra = 6 %, iflace. rok = 5 %, iflace. rok = 4 % (Hrdý, 008). Řešeí: a) provedeme výpočet pomoci omiálích hodot: P(om.) = P(reál.) ( ) P(om. l. rok) = ,05 = Kč P(om.. rok) = ,04 = Kč Diskotovaé omiálí peěží příjmy = ,9434 [odúročitel (6 %, l rok)] ,89 [odúročitel (6 %, roky)] = = Kč ČSH = = Kč b) provedeme výpočet pomocí reálých veliči = = K Obě ČSH by měly vyjít stejě, což se potvrdilo. Drobý rozdíl je způsobe použitím odúročitelů v případě a), které jsou zaokrouhlováy. Poz.: Je možé rověž při výpočtu použít průměré ročí tempo iflace. ( p) =,05,04 =, Tj. průměrá iflace čií 4,4988 %. FAČÍ ŘÍZEÍ

5 Příklad 4. 8 Posuďte vliv iflace a výpočet ČSH, jestliže předpokládáme růzý dopad iflace a strukturu peěžího příjmu. Doba životosti ivestice čií rok, Z(u)r = Kč, O = K = , i() = 0 %, = 4 %, daňová sazba 5 % (Hrdý, 008). Řešeí: Při růzém dopadu iflace a strukturu peěžího příjmu vycházíme z reálých hodot, proto ejprve provedeme převod omiálí úrokové míry a reálou. yí provedeme výpoet SH bez vlivu iflace: A dále pak výpoet SH s vlivem iflace: K Růzý dopad iflace a strukturu peěžího příjmu sížil ČSH o = = 7 7 Kč. Příklad 4.3 Vypočítejte ČSH ivestice a zhodoťte její efektivost, jestliže předpokládáme lieárí odpisy, daňovou sazbu 35 % a miimálí požadovaou výosost 5 % za předpokladu, že podik hodlá ivestici fiacovat prostředictvím emisí obligací, což bude představovat emisí áklady ve výši 6 % z hrubého výtěžku emise. Celková pořizovací cea ivestice čií 00 mil. Kč, přičemž v důsledku uvedeí ivestice do provozu dojde k trvalému přírůstku oběžého majetku ve výši 5 mil. Kč a zároveň ke zvýšeí krátkodobých závazků ve výši 5 mil. Kč. Po dobu pětileté životosti předpokládáme stabilí ročí výši zisku před zdaěím ve výši 8 mil. Kč (Hrdý, 008). Řešeí: K = přírůstek čistého pracovího kapitálu = 00 (5 5) = 0 mil. Kč P = čistý Z O = 8 ( 0,35) 0 = 38, mil. Kč Diskotovaý P = 38, mil. 3,35 [zásobitel (5 %, 5let)] = 8 mil. Kč ČSH = diskotovaý P K = 8 0 = 8 mil. Kč ČSH(u) = ČSH F = ČSH emisí áklady Vzhledem k emisím ákladům je uté emitovat obligace za (0 : 94) 00 = 7 mil. Kč Emisí áklady = 7 0 = 7 mil.kč ČSH(u) = 8 7 = mil. Kč ČSH je kladá, projekt je přijatelý. DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

Využití účetních dat pro finanční řízení

Využití účetních dat pro finanční řízení Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

SH = BH*( 1 + i) n nebo

SH = BH*( 1 + i) n nebo PEKS 2 Literatura Syek PEK 4. vydáí Faktor času v peěžím vyjádřeí Peěží jedotka Kč přijata ebo vyplacea v růzých časových okamžicích má rozdílou hodotu. Deší korua je ceější, ež korua získaá později apř.

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko dáliced3 a rychlostí silice R3 Praha Tábor České Budějovice Rakousko w w obsah základí iformace 3 dálice D3 a rychlostí silice R3 PrahaTáborČeské BudějoviceRakousko 3 > základí iformace 4 > čleěí dálice

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky ELEKTRICKÉ POHONY. pro kombinované a distanční studium Vysoká škola báňská - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky ELEKTRICKÉ POHONY pro kombiovaé a distačí studium Ivo Neborák Václav Sládeček Ostrava 004 1 Doc. Ig. Ivo Neborák, CSc.,

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005 Patří slovo BUSINESS do zdravotictví?. 23. 6. 2005 Společost Deloitte Společost Deloitte v České republice má více ež 550 zaměstaců a kaceláře v Praze a Olomouci. Naše česká pobočka je součástí aší regioálí

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Vyjadřují se v procentech z hodnoty vloženého kapitálu. Někdy se pro jejich označení používá termín cena kapitálu.

Vyjadřují se v procentech z hodnoty vloženého kapitálu. Někdy se pro jejich označení používá termín cena kapitálu. 1. Cena kapitálu Náklady kapitálu představují pro podnik výdaj, který musí zaplatit za získání různých forem kapitálu (tj. za získání např. různých forem dluhů, akciového kapitálu, nerozděleného zisku

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

SPOŘENÍ. Spoření krátkodobé

SPOŘENÍ. Spoření krátkodobé SPOŘENÍ Krátkodobé- doba spořeí epřesáhe jedo úrokové období (obvykle 1 rok). Úroky jsou přpsováy a koc doby spořeí. Jedotlvé složky jsou úročey a základě jedoduchého úročeí. Dlouhodobé doba spořeí bude

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

DLUHOPISY. Třídění z hlediska doby splatnosti

DLUHOPISY. Třídění z hlediska doby splatnosti DLUHOISY - dlouhodobý obchodovatelý ceý papír - má staoveou dobu splatost - vyadřue závaze emteta oblgace (dlužía) vůč matel oblgace (věřtel) Tříděí z hledsa doby splatost - rátodobé : splatost do 1 rou

Více

Výroční zpráva. k 31. 12. 2006. Pioneer investiční společnost, a.s.

Výroční zpráva. k 31. 12. 2006. Pioneer investiční společnost, a.s. Výročí zpráva k 31. 12. 26 Pioeer ivestičí společost, a.s. Obsah Úvodí slovo geerálího ředitele 3 Pioeer ivestičí společost, a.s. 4 Údaje o čleech představestva, dozorčí rady a portfolio maažerech 6 Údaje

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC Jří HŘEBÍČEK, Mchal HEJČ, Jaa SOUKOPOVÁ ECO-Maagemet,

Více

Investičníčinnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investičníčinnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Investičníčinnost Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie Podnikové pojetí investic Klasifikace investic v podniku 1) Hmotné (věcné, fyzické, kapitálové) investice 2) Nehmotné

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Analýza návratnosti investic/akvizic

Analýza návratnosti investic/akvizic Analýza návratnosti investic/akvizic Klady a zápory Hana Rýcová Charakteristika investice: Investice jsou ekonomickou činností, kterou se subjekt (stát, podnik, jednotlivec) vzdává své současné spotřeby

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

ČASOVÁ HODNOTA PENĚZ. Manažerská ekonomika obor Marketingová komunikace. 8. přednáška Ing. Jarmila Ircingová, Ph.D.

ČASOVÁ HODNOTA PENĚZ. Manažerská ekonomika obor Marketingová komunikace. 8. přednáška Ing. Jarmila Ircingová, Ph.D. ČASOVÁ HODNOTA PENĚZ Manažerská ekonomika obor Marketingová komunikace 8. přednáška Ing. Jarmila Ircingová, Ph.D. Časová hodnota peněz Každou peněžní operaci prováděnou v současnosti a zaměřenou do budoucnosti

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

Základní údaje. Ing. Zdeněk Jindrák JUDr. Dana Musalová. n Vznik společnosti 29.9.1997. n Obchodní název HYDRA a.s.

Základní údaje. Ing. Zdeněk Jindrák JUDr. Dana Musalová. n Vznik společnosti 29.9.1997. n Obchodní název HYDRA a.s. Základí údaje Vzik společosti 29.9.1997 Obchodí ázev HYDRA a.s. Sídlo: Na Zámecké 1518, 140 00 Praha 4 IČO/DIČ 25610562 / CZ25610562 Předmět podikáí Výroba kodezátorů Provozovy: Průmyslová 1110, Jičí Hradecká

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR)

Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR) Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR) (Aktualizovaná verze 04/05) Úvodní charakteristika předmětu: Cílem jednosemestrálního předmětu Investiční a finanční

Více

Čistá současná hodnota a vnitřní výnosové procento

Čistá současná hodnota a vnitřní výnosové procento Čistá současná hodnota a vnitřní výnosové procento Co je to čistá současná hodnota? Čistá současná hodnota představuje rozdíl mezi diskontovanými peněžními příjmy z určité činnosti a výdaji na tuto činnost.

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

Nepředvídané události v rámci kvantifikace rizika

Nepředvídané události v rámci kvantifikace rizika Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

z z z Úvodní slovo generálního ředitele Vážení partneři České exportní banky,

z z z Úvodní slovo generálního ředitele Vážení partneři České exportní banky, Výročí zpráva 2O13 z z z Úvodí slovo geerálího ředitele Vážeí parteři České exportí baky, jistě jste již zazameali, že ai miulý rok ebyl pro baku lehký. Věřím však, že většia z vás pochopila pravou podstatu

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Model péče o duševně nemocné

Model péče o duševně nemocné Model péče o duševě emocé v regiou hlavího města Prahy Zázam jedáí závěrečé koferece projektu Vzděláváí odboríků, státí správy a samosprávy v oblasti trasformace istitucioálí péče o duševě emocé Praha,

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy:

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy: HODNOCENÍ INVESTIC Podstatou hodnocení investic je porovnání vynaloženého kapitálu (nákladů na investici) s výnosy, které investice přinese. Jde o rozpočtování jednorázových (investičních) nákladů a ročních

Více

Pojem investování a druhy investic

Pojem investování a druhy investic Investiční činnost Pojem investování a druhy investic Rozhodování o investicích Zdroje financování investic Hodnocení efektivnosti investic Metody hodnocení investic Ukazatele hodnocení efektivnosti investic

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman ASYNCHRONNÍ STROJE Obsah. Pricip čiosti asychroího motoru. Náhradí schéma asychroího motoru. Výko a momet asychroího motoru 4. Spouštěí trojfázových asychroích motorů 5. Řízeí otáček asychroích motorů

Více

Využití Markovových řetězců pro predikování pohybu cen akcií

Využití Markovových řetězců pro predikování pohybu cen akcií Využití Markovových řetězců pro predikováí pohybu ce akcií Mila Svoboda Tredy v podikáí, 4(2) 63-70 The Author(s) 2014 ISSN 1805-0603 Publisher: UWB i Pilse http://www.fek.zcu.cz/tvp/ Úvod K vybudováí

Více

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu Apliace margiálích áladů Oceňováí ztrát v distribučím rozvodu Učebí text předmětu MES Doc. Ig. J. Vastl, CSc. Celové ročí álady a ztráty N P ( T ) z z sj z wj Kč de N z celové ročí álady a ztráty *Kč+

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

Strukturální model nekryté úrokové parity a jeho empirická verifikace 1

Strukturální model nekryté úrokové parity a jeho empirická verifikace 1 5. meziárodí koferece Fiačí řízeí podiku a fiačích isiucí Osrava VŠB-TU Osrava, Ekoomická fakula, kaedra Fiací 7.-8. září 2005 Srukurálí model ekryé úrokové pariy a jeho empirická verifikace 1 Jaroslava

Více

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. září 2007 číslo 7 ročník 7

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. září 2007 číslo 7 ročník 7 VOX PEDIATRIAE časopis praktických lékařů pro děti a dorost září 2007 číslo 7 ročík 7 Diagostika a léčba ádorů v zadí jámě lebí Nádory III. komory a supraselárí oblasti Diagostika ádorů CNS v dětském věku

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

Tab. č. 1 Druhy investic

Tab. č. 1 Druhy investic Investiční činnost Investice představuje vydání peněz dnes s představou, že v budoucnosti získáme z uvedených prostředků vyšší hodnotu. Vzdáváme se jisté spotřeby dnes, ve prospěch nejistých zisků v budoucnosti.

Více

Pro likvidaci uniklých látek. Příručka Pro Prevenci a HavariJní situace Při PrÁci s nebezpečnými látkami

Pro likvidaci uniklých látek. Příručka Pro Prevenci a HavariJní situace Při PrÁci s nebezpečnými látkami sorpčí ProstřeDkY a ProDuktY Pro likvidaci uiklých látek Příručka Pro Preveci a HavariJí situace Při PrÁci s ebezpečými látkami záchyté ProstřeDkY / sorbety / likvidace uiklých látek všude tam, kde jsou

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Zaměřuje na obnovu a rozšíření: Dlouhodobého hmotného, nehmotného a finančního majetku Trvalý přírůstek oběžného majetku

Zaměřuje na obnovu a rozšíření: Dlouhodobého hmotného, nehmotného a finančního majetku Trvalý přírůstek oběžného majetku Zaměřuje na obnovu a rozšíření: Dlouhodobého hmotného, nehmotného a finančního majetku Trvalý přírůstek oběžného majetku Investice představují peněžní výdaje, u nichž se očekává jejich přeměna na budoucí

Více

Vlastní hodnocení školy

Vlastní hodnocení školy Vlastí hodoceí školy dle vyhlášky 15/2005 Sb., v platém zěí, kterou se staoví áležitosti dlouhodobých záměrů, výročích zpráv a vlastí hodoceí školy. Škola: Základí umělecká škola Plzeň, Sokolovská 30,

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

INTELLIGENT DRIVESYSTEMS, WORLDWIDE SERVICES ŘEŠENÍ POHONŮ PRO SERVO-APLIKACE

INTELLIGENT DRIVESYSTEMS, WORLDWIDE SERVICES ŘEŠENÍ POHONŮ PRO SERVO-APLIKACE INTELLIGENT DRIVESYSTEMS, WORLDWIDE SERVICES CZ ŘEŠENÍ POHONŮ PRO SERVO-APLIKACE NORD DRIVESYSTEMS Itelliget Drivesystems, Worldwide Services SERVO-APLIKACE DYNAMICKÉ POLOHOVÁNÍ Regálový sklad v logistickém

Více

Metodika implementace Průřezového tématu Environmentální výchova I

Metodika implementace Průřezového tématu Environmentální výchova I Elektroická publikace Metodika implemetace Průřezového tématu Evirometálí výchova I Zpracovaly: Bc. Jaroslava Rozprýmová a Mgr. Milica Sedláčková Témata: 1. Zemědělství a životí prostředí 2. Ekologické

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

POJIŠŤOVNICTVÍ A POJISTNÁ MATEMATIKA

POJIŠŤOVNICTVÍ A POJISTNÁ MATEMATIKA VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra ateatiky a katedra ekooických studií POJIŠŤOVNICTVÍ A POJISTNÁ MATEMATIKA STUIJNÍ MATERIÁL LENKA LÍZALOVÁ, RAEK STOLÍN 04 Recezovali: RNr. Ig. Haa Kotoučková,

Více

ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ

ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročík LVII 28 Číslo 5, 2009 ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ L. Papírík

Více

OPRAVENKA MANAŽERSKÉ FINANCE (1.vydání 2009)

OPRAVENKA MANAŽERSKÉ FINANCE (1.vydání 2009) str. 24 odkaz před kapitolou 3.4 => kapitole 15 Dividendová politika str. 58, příklad 5.1 správné zadání zní: Akciová společnost Belladona a. s. se základním kapitálem ve výši 35 mil. Kč, který je rozdělen

Více

Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností

Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností . Základí cheické výpočty toová hotostí jedotka, relativí atoové a olekulové hotosti toová hotostí jedotka u se používá k relativíu porováí hotostí ikročástic, atoů a olekul a je defiováa jako hotosti

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

Informační systémy o platu a služebním příjmu zahrnují:

Informační systémy o platu a služebním příjmu zahrnují: Katalog datových prvků a dalších položek používaých v Iformačích systémech o platu a služebím příjmu (ISPSP) verze 2014-6 16. 4. 2014 ISPSP Iformačí systémy o platu a služebím příjmu zahrují: ISP Iformačí

Více

Jan Zahradník, Pedagogická fakulta Jihočeské univerzity v Českých Budějovicích

Jan Zahradník, Pedagogická fakulta Jihočeské univerzity v Českých Budějovicích Pohled do historie fiačí matematiky Ja Zahradík, Pedagogická fakulta Jihočeské uiverzity v Českých Budějovicích Úvod Častým tématem diskusí současých ekoomů je ízká úroveň fiačí gramotosti ašich občaů.

Více

Penze vládní politika kontra teorie

Penze vládní politika kontra teorie březe 2011 Jaroslav Vostatek: Peze vládí politika kotra teorie Václav Klaus: Reforma důchodů je epromyšleá Václav Klaus: Nespojujme důchodovou reformu se zvýšeím DPH Václav Klaus: Proč ahradit stejé (skoro)

Více

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. březen 2011 číslo 3 ročník 11. Vrozené vývojové vady uropoetického traktu

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. březen 2011 číslo 3 ročník 11. Vrozené vývojové vady uropoetického traktu VOX PEDIATRIAE časopis praktických lékařů pro děti a dorost březe 2011 číslo 3 ročík 11 Vrozeé vývojové vady uropoetického traktu Základí vyšetřeí fukcí uropoetického traktu Nejčastější kýly v dětském

Více

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. říjen 2008. číslo 8. ročník 8. Přehled terapie revmatických onemocnění u dětí

VOX PEDIATRIAE. časopis praktických lékařů pro děti a dorost. říjen 2008. číslo 8. ročník 8. Přehled terapie revmatických onemocnění u dětí VOX PEDIATRIAE časopis praktických lékařů pro děti a dorost říje 2008 číslo 8 ročík 8 Přehled terapie revmatických oemocěí u dětí Primárí systémové vaskulitidy u dětí Nadměrá kloubí volost u dětí A Té

Více

Kapitálová struktura podniku. cv. 5

Kapitálová struktura podniku. cv. 5 Kapitálová struktura podniku cv. 5 Kapitálová struktura Struktura zdrojů, z nichž vznikl majetek podniku. Vlastní kapitál vložil majitel a je nositelem rizika. Cizí kapitál vložili věřitelé. Vlastní zdroje

Více

Kapitálová struktura a její optimalizace

Kapitálová struktura a její optimalizace Kapitálová struktura a její optimalizace Kapitálová struktura Charakteristika: V ČR: - Je charakterizována mnoha způsoby - Prof. Valach ji definuje jako strukturu dlouhodobého kapitálu podniku - Někteří

Více

Informační systémy o platu a služebním příjmu zahrnují:

Informační systémy o platu a služebním příjmu zahrnují: Katalog datových prvků a dalších položek používaých v Iformačích systémech o platu a služebím příjmu (ISPSP) verze 2015-06 2. 3. 2015 ISPSP Iformačí systémy o platu a služebím příjmu zahrují: ISP Iformačí

Více