Numerické metody pro nalezení

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Numerické metody pro nalezení"

Transkript

1 Masarykova univerzita Brno Fakulta přírodovědecká Katedra aplikované matematiky Numerické metody pro nalezení vlastních čísel matic Diplomová práce květen 006 Alena Baštincová

2 Poděkování V úvodu bych ráda poděkovala vedoucí diplomové práce Prof. RNDr. Ivaně Horové, CSc. z katedry aplikované matematiky PřF MU v Brně za pečlivé přečtení textu, cenné rady, připomínky k práci a za trpělivost. Dále bych chtěla poděkovat svým rodičům za veškerou podporu, které se mi v průběhu studia dostalo.

3 Prohlášení Čestně prohlašuji, že jsem svou diplomovou práci vypracovala samostatně a použila jsem pouze uvedenou literaturu. V Brně dne 0. května 006

4 Obsah 1 Základní kapitola 7 Typy metod pro hledání vlastních čísel 8 3 Klasické metody určení koeficientů charakteristického polynomu Krylovova metoda Faddějevova-Leverrierova metoda Poloha a odhad vlastních čísel Geršgorinovy věty Metody výpočtu dominantního vlastního čísla Mocninná metoda Metoda Rayleighova podílu Výpočet dalších vlastních čísel mocninnou metodou Metody pro výpočet vlastních čísel a vlastních vektorů symetrických matic Jacobiho metoda Householderova matice zrcadlení Givensova-Householderova metoda Householderova metoda Givensova metoda QR-rozklad Konstrukce QR-rozkladu QR-rozklad pomocí Gram-Schmidtova algoritmu QR-rozklad pomocí Householderovy matice QR-rozklad pomocí Givensovy matice Srovnání algoritmů QR-rozklad a vlastní čísla matice A QR-algoritmus Podmíněnost problému vlastních čísel Globální číslo podmíněnosti Odhad chyby vypočítaného vlastního čísla Relativní chyba vypočítaného vlastního čísla

5 Úvod Cílem mé diplomové práce je popsat numerické metody pro nalezení vlastních čísel matic. Vlastní čísla a vlastní vektory mají velmi široké spektrum aplikací, například se používají při hledání řešení diferenciálních rovnic a jejich soustav a to jak u obyčejných difarenciálních rovnic, tak u parciálních diferenciálních rovnic a jejich soustav. Totéž platí i pro diferenční rovnice a jejich soustavy. Mnohé technické problémy se dají popsat pomocí diferenciálních nebo diferenčních rovnic a jejich soustav, jako například popis obvodů v elektrotechnice.pokud má obvod větší počet prvků, dostáváme soustavu diferenciálních rovnic vyššího řádu. Pro jejich řešení potřebujeme znát vlastní čísla matice soustavy. Odtud je zřejmá duležitost úlohy o nalezení vlastních čísel matice. Přímé metody hledání vlastních čísel jsou mnohdy neefektivní a proto je nutné řešit tuto úlohu numericky. Při numerickém řešení se sice dopouštíme určité chyby, ale současně se dostaneme k řešení, alespoň přibližnému, v relativně kratším čase s požadovanou přesností. Ve své práci nejdříve definuji základní pojmy, nevěnuji se přímým metodám výpočtu vlastních čísel a zabývám se numerickými metodami jejich určení. Postupně uvádím řadu způsobů nalezení vlastních čísel a jim příslušným vlastním vektorům. Nejdříve uvádím klasické metody určení kořenů charakteristického polynomu, dále se věnuji odhadu polohy vlastních čísel, poté následují metody výpočtu dominantního vlastního čísla. Nejvíce místa věnuji metodám pro výpočet vlastních čísel symetrických matic. Závěrečná kapitola je věnována problému podmíněnosti vlastních čísel. Nevěnovala jsem se rozboru jednotlivých algoritmů při jejich zpracování na počítači, protože tato problematika závisí na volbě programovacího jazyka a softwarovém vybavení počítače. 5

6 Označení N množina přirozených čísel Z množina celých čísel R množina reálných čísel C množina komplexních čísel p n (x) polynom n-tého stupně proměnné x A m,n matice typu m,n (s m řádky a n sloupci) A = (a ij ) matice s prvky a ij I jednotková matice e i jednotkový vektor s 1 na i-tém místě O nulová matice o nulový vektor det A = A determinant matice A A 1 matice inverzní k matici A hod (A) hodnost matice A tr(a) stopa matice A ρ(a) spektrální poloměr matice A A H matice hermitovsky sdružená, tj.a H = ĀT (R n, +,.) vektorový prostor všech uspřádaných n-tic dimp dimenze prostoru P. <, > standardní skalární součin x norma vektoru x x eukleidovská norma vektoru x A norma matice A A euklidovská norma matice A A krychlová norma matice A konec důkazu 6

7 Kapitola 1 Základní kapitola Definice Necht A je čtvercová matice řádu n. Její vlastní čísla λ 1,...,λ n jsou kořeny rovnice det(a λi) = 0, zvané charakteristická rovnice. Ke každému vlastnímu číslu λ i existuje aspoň jedno nenulové řešení soustavy rovnic Ax = λ i x. Toto řešení x i, kde x T i = (x (1) i,x () i,...,x (n) i ), nazveme pravým vlastním vektorem matice A. (Všude v dalším bude pojem vlastní vektor značit výhradně pravý vlastní vektor.) Levý vlastní vektor y i odpovídající vlastnímu číslu λ i je řešením rovnice y T A = λ i y T. Levý vlastní vektor matice A je tedy vlastním vektorem transponované matice A T a snadno lze ukázat, že odpovídá-li levý vlastní vektor y k vlastnímu číslu λ k a pravý vlastní vektor x i vlastnímu číslu λ i a platí λ k λ i jsou vektory y k a x i ortogonální. (Ve většině dále uvedených příkladů se budou vyskytovat reálné matice, budeme předpokládat, pokud nebude řečeno jinak, že matice A je reálná. Mnohé věty budou však platit i pro komplexní matice nebo budeme-li předpokládat symetrii, pro hermitovské matice, (důkazy následujících vět viz. [8]). Věta Jsou-li λ 1,...,λ n vlastní čísla matice A, má matice A k vlastní čísla λ k 1,...,λ k n. Obecněji, je-li p(x) libovolný polynom, má matice p(a) vlastní čísla p(λ 1 ),...,p(λ n ). Věta Je-li matice A reálná a symetrická, jsou všechna její vlastní čísla a všechny příslušné vlastní vektory reálné. Kromě toho vlastní vektory příslušné různým vlastním číslům jsou ortogonální a levý vlastní vektor a pravý vlastní vektor příslušné témuž vlastnímu číslu jsou si rovny. Věta Podobnostní transformace PAP 1 nemění vlastní čísla matice A. Věta (Cayley-Hamilton) Necht je f(λ) = det(a λi) = 0 charakteristická rovnice matice A. Pak platí f(a) = 0. Věta Vlastní čísla horní (dolní) trojúhelníkové matice jsou prvky na její diagonále. Věta Libovolná matice A je podobná diagonální matici D právě tehdy, když má matice Akompletní soubor n lineárně nezávislých vlastních vektorů. 7

8 Kapitola Typy metod pro hledání vlastních čísel Podle základní definice víme, že vlastní čísla dané matice jsou kořeny jejího charakteristického polynomu. Z algebraické teorie víme, že kořeny polynomu stupně n > 4 nemůžeme algebraicky (tj. pomocí operací ±,,, ) vyjádřit ve tvaru vzorce. Proto se obecně nedají získat vlastní čísla přesně ( až na zaokrouhlovací chyby) po konečném počtu operací. K řešení našeho problému můžeme přistupovat více způsoby. 1. Použijeme-li libovolnou metodu na hledání kořenů charakteristického polynomu p(λ). Pro jednoduchý kořen můžeme použít Newtonovu metodu c i+1 = c i p(c i )/p (c i ) i = 1,,..., při vhodné volbě počáteční aproximace c 0, metodu sečen, metodu půlení intervalu atd. Modifikovaná Newtonova metoda se dá použít i na hledání násobných kořenů. V případě komplexně sdružené dvojice kořenů můžeme použít např. Bairstowovu metodu. Hledání velkého počtu kořenů tímto způsobem je však dost náročné a problém bývá nestabilní.. Získání vlastních čísel bez znalostí charakteristického polynomu, při využívání vlastností podobných matic. Cílem je najít podobnou matici v jednodušším tvaru, ze kterého se dá vlastní číslo určit (například z diagonální nebo trojúhelníkové matice). Takovou matici (někdy jen některé její vlastní číslo) můžeme získat jako limitu posloupnosti podobnostních transformací. Výběr těchto transformací bývá založen na speciálních vlastnostech matic a jejich vlastních vektorů. 3. Nelineární přístup, vlastní problém (A λi)x = 0 uvažujeme jako soustavu n rovnic pro n + 1 neznámých x 1,...,x n,λ, kterou doplníme normovanou podmínkou například x i = 1 na soustavu n + 1 nelineárních rovnic. Tato soustava se dá řešit například Newtonovou metodou. Přitom se však nevyužívají algebraické vlastnosti soustavy, které můžou výpočet značně ulehčit. Proto je tento postup značně neefektivní. Poznámka.0.1. Pod pojmem úplný problém vlastních čísel se rozumí úloha najít všechna vlastní čísla a případně i příslušné vlastní vektory. 8

9 Pojem částečný problém vlastních čísel znamená najít jedno nebo více vlastních čísel spolu s příslušnými vlastními vektory. Úplný a částečný problém vystupují jako naprosto odlišné úlohy nejen oborem aplikací, ale i metodami řešení. Řešení úplného problému je náročnější. Neexistuje univerzální algoritmus, který by byl stejně efektivní pro všechny typy matic. 9

10 Kapitola 3 Klasické metody určení koeficientů charakteristického polynomu Dříve se většina metod na výpočet vlastních čísel zakládala právě na výpočtu koeficientů charakteristického polynomu. Jejich výpočet pomocí součtu hlavních minorů je však nerentabilní. Existují mnohem jednodušší metody na určení koeficientů, které mají stejný charakter (tj. při výpočtu bez zaokrouhlování získáme po konečném počtu kroků přesné koeficienty). Zaokrouhlovací chyby však můžou vypočítané koeficienty hodně oddálit od jejich přesných hodnot. Proto se tyto metody moc nepoužívají. 3.1 Krylovova metoda Charakteristickou rovnici můžeme zapsat ve tvaru Z Cayleyovy Hamiltonovy věty plyne Tedy pro každý vektor y platí n 1 p(λ) = λ n + b i λ i = 0. i=0 n 1 A n + b i A i = 0. i=0 n 1 A n y + b i A i y = O. (3.1) Rovnice (3.1) je soustava n lineárních rovnic pro n neznámých b 0,...,b n 1. i=0 Poznámka K výpočtu vektoru A i y podle rovnice A i y = A(A i 1 y) je třeba n násobení, takže k sestavení soustavy (3.1) je třeba řádově n 3 operací. 10

11 3. Faddějevova-Leverrierova metoda Metoda se opírá o fakt, že součet vlastních čísel libovolné matice je roven její stopě. Algoritmus Faddějěvovy-Leverrierovy metody počítá jednoduchým způsobem kořeny charakteristické rovnice. Algoritmus 1. Je dána matice A řádu n. Krok 1: Položme B 1 = A pak p 1 = tr(b 1 ) Krok : B = A(B 1 p 1 I) a p = 1 tr(b ). Krok n: B n = A(B n 1 p n 1 I) a p n = 1 n tr(b n) Krok n+1: Charakteristický polynom je ve tvaru p(λ) = λ n p 1 λ n 1... p n 1 λ p n. Poznámka Pro inverzní matici A 1 platí A 1 = 1 p n (B n 1 p n 1 I). Poznámka 3... Důkazy konvergence popsaných metod v této kapitole a analýzu chyb můžeme najít v literatuře, viz.[1],[10]. Příklad Najděte koeficienty charakteristického polynomu užitím F.-L. metody pro matici A = B 1 = A tr(b 1 ) = 30 p 1 = 30, B = A(B 1 30I) = p = 1 tr(b ) = 1 ( 638) = 319,, B 3 = A(B + 319I) = , p 3 = 1 3 tr(b 3) = = 1470, 3 B 4 = A(B I) =

12 p 4 = 1 tr(b 4) = 1 ( 855) = 138, 4 p(λ) = λ 4 30λ λ 1410λ Poznámka F.-L. metoda je i přes jednoduchý algoritmus méně výhodná než Krylovova metoda, protože vyžaduje skutečně počítat matice A k pro k = 1,...,n. 1

13 Kapitola 4 Poloha a odhad vlastních čísel 4.1 Geršgorinovy věty Přesná znalost vlastních čísel dané matice nás v některých praktických aplikacích nemusí zajímat a stačí znát polohu vlastních čísel v určitých oblastech komplexní roviny. Tyto informace můžeme získat i bez přímých výpočtů vlastních čísel dané matice. K nalezení polohy vlastních čísel lze použít následující větu. Věta Geršgorinova věta Necht A = {a ij } je čtvercová matice řádu n. Definujme r i := j=1,j i a ij, i = 1,...,n. (4.1) Potom každé vlastní číslo λ matice A splňuje aspoň jednu z následujících nerovností λ a ii r i, i = 1,...,n. (4.) Jinými slovy, všechna vlastní čísla matice A leží v oblasti n K = R i, (4.3) kde R i jsou kruhy o poloměru r i a středu a ii. i=1 Důkaz. Necht λ je vlastní číslo matice A a x je vlastní vektor odpovídajíci vlastnímu číslu λ. Potom ze vztahu Ax = λx nebo ze vztahu (A λi) = 0 dostaneme (λ a ii )x i = a ij x j, j=1,j i i = 1,...,n kde x i je i-tý prvek vektoru x. Necht x k je největší prvek vektoru x (v absolutní hodnotě). Protože x j / x k 1 pro j k, je λ a kk a kj ( x j / x k ) a kj. (4.4) j=1 j=1,j k Tedy λ leží v kruhu {λ : λ a kk r k }. 13

14 Definice Kruhy R i := {z : z a ii r i }, i = 1,...,n, se nazývají Geršgorinovy kruhy v komplexní rovině. Poznámka Věta nám nezaručuje, že v každém kruhu bude nějaké vlastní číslo, pouze nám říká, že vlastní čísla matice A leží ve sjednocení Geršgorinových kruhů. Následující věta polohu vlastních čísel upřesňuje. Věta Geršgorinova zobecněná věta Necht r Geršgorinových kruhů je disjunktních. Pak právě r vlastních čísel matice A leží ve sjednocení těchto kruhu. Důkaz. V důkazu této věty se používa vlastností z komplexní analýzy, viz []. Poznámka Určení polohy vlastního čísla dané matice pomocí Geršgorinových vět je poměrně jednoduché. Pro zajímavost uvedeme ještě jednu větu, která sice také určuje polohu vlastních čísel, ale její použití je už složitějsí a v určitých příkladech nepraktické. Věta Necht A je čtvercová (obecně komplexní) matice n-tého řádu, necht α je (komplexní) číslo, pro které stopa matice tr((αi A) 1 ) 0. Pak v každém uzavřeném kruhu obsahujícim číslo α a α, kde n α = α tr((αi A) 1 ), leží alespoň jedno vlastní číslo matice A. n (α α) Definujme r =, pak v kruhu o středu a poloměru r leží alespoň tr((αi A) 1 ) jedno vlastní číslo matice A. Poznámka Tato věta není obecně známa a vyplýva z vět o kořenech polynomiální rovnice.důkaz viz.[9] Příklad Užitím Geršgorinových vět určete přibližnou polohu vlastních čísel komlexní matice 1 1/ 1/4 1/4 1/4 1 + i 0 1/4 1/ 1/4 1 1/ 1/4 1/ 1/ i Řešení 1. r 1 = n i=1,i 1 a 1i = 1/ + 1/4 + 1/ = 1 r = n i=1,i a i = 1/ /4 = 1/ r 3 = n i=1,i 3 a 3i = 1/ + 1/4 + 1/ = 5/4 r 4 = n i=1,i 4 a 4i = 1/4 + 1/ + 1/ = 5/4 R 1 = {z : z 1} R = {z : z 1 i 1/} R 3 = {z : z + 1 5/4} R 4 = {z : z + + i 5/4} 14

15 R R 3 R R 4 Obrázek 4.1: Geršgorinovy kruhy Podle Geršgorinových vět tedy leží jedno vlastní číslo v kruhu R 1, jedno v kruhu R a zbylá dvě ve sjednocení kruhů R 3 R4. viz obr(4.1). Uved me přesnou hodnotu vlastních čísel: λ 1 = i λ = i.0678 λ 3 = i λ 4 =.069 i což přesně odpovídá poloze určené pomocí Geršgorinových kruhů. Poznámky ke Geršgorinově větě 1. Ze vztahu (4.4) pro maximální souřadnici x i můžeme získat odhad λ i a ii j i a ij min( a kk a kj ) k j i a min λ i ( a ii a ij ). i j i Pro matici s převládající diagonálou platí 0 < min( a ii i j i a ij ) λ i max i a ij = A j i 15

16 . K matici A můžeme pomocí jednoduché podobnostní transformace D 1 AD = B (D je diagonální) získat podobnou matici B, která má jiné Geršgorinovy kruhy. Potom všechna vlastní čísla leží v oblasti K A K B. Cílem těchto transformací je rozklad oblasti K na souvislé komponenty, případná izolace jednoho kruhu, ve kterém pak můžeme zaručit existenci právě jednoho vlastního čísla. 3. Pokud det(λi A) = det(λi A T ), můžeme vytvořit Geršgorinovy kruhy i pro matici A T a získat oblast K A K A T.,ve které vlastní čísla leží. ( ) ( ) 3 3 Příklad Matice A 1 = resp. A 1 1 = mají stejné oblasti K 1 1 A1 = K A := K A. Na obr. vidíme, že v případě matice A, žádný z malých kruhů neobsahuje vlastní číslo. Obrázek 4.: Použité značení: Hranice oblasti K A je značena přerušovaně Hranice oblasti K A T je značena plnou čarou Šedou barvou je značena hranice oblasti K A K A T vlastní čísla A 1 λ 1, = ± 3 vlatní čísla A λ 1, = ± i 16

17 Kapitola 5 Metody výpočtu dominantního vlastního čísla Úmluva: Očíslujeme-li vlastní čísla dané matice A tak, aby platilo λ 1 λ... λ n (každé číslo píšeme tolikrát, kolik činí jeho násobnost), pak budeme vlastní číslo λ 1 nazývat dominantní vlastní číslo. 5.1 Mocninná metoda Mocninná metoda je nejčastěji používanou metodou pro nalezení dominantního vlastního čísla a příslušného vlastního vektoru dané matice. Metoda je obzvlaště vhodná pro řídké matice, protože spočívá pouze v násobení sloupcových vektorů dané matice. Základní předpoklad k užití této metody je, že daná matice má dominantní vlastní číslo λ 1 a že nemá nelineární elementární dělitele, tj. že existuje n lineárně nezávislých vlastních vektorů této matice, kde n je řád matice. Konstrukce: Necht x je libovolný vektor, x R n, za předpokladu, že {v 1,...,v n } je množina lineárně nezávislých vlastních vektorů, můžeme vektor x vyjádřit jako lineární kombinaci vektorů v i,i = 1,...,n x = α i v i. (5.1) i=1 Násobením obou stran rovnice (5.1) maticemi A,A,...,A k dostaneme systém rovnic Ax = α i Av i = α i λ i v i, A x = A k x = i=1 α i A v i = i=1 α i A k v i = i=1 17 i=1 α i λ iv i, (5.) i=1. α i λ k iv i. i=1

18 Pro λ k 1, které jsme vypočítali ze systému (5.), dostáváme A k x = λ k 1 i=1 α i ( λ i λ 1 ) k v i. Z předpokladu, že λ 1 je dominantní vlastní číslo a tedy λ 1 > λ j j =,...,n, plyne, že lim (λ j ) k = 0 k λ 1 a tedy lim k Ak x = lim λ k k 1α 1 v 1. (5.3) Tento postup bude konvergovat k nule, jestliže λ 1 < 1 a divergovat, jestliže λ 1 1, ovšem za předpokladu, že α 1 0. Poznámka Popsaná konstrukce je i důkazem následující věty. Věta Von Mises Jestliže matice A má n lineárně nezávislých vektorů a je-li vlastní číslo λ 1 dominantní a pro vektor x 0 R n platí, že x 0,v 1 0.Pak x 0 lim k (Ak ) = α 1 v 1. (5.4) λ k 1 Důsledek Je-li y libovolný vektor, který není ortogonální k vlastnímu vektoru v 1, plyne z věty 5.1.1,že λ 1 = lim k ( yt x k+1 y T x k ), kde x k+1 = Ax k = A k x 0. Definice Čísla yt x k+1 = y T Ax k se nazývají Schwarzovými konstantami. Algoritmus. Je zadána matice A Krok 1: Zvolíme x 0 Krok : Použijeme iterační formuli x k+1 = Ax k Krok 3: x k+1 = max{ x k+1 (j) x (j) λ k+1 } 1 = max j=1,...,n { x j n }. Krok n: Zastavení výpočtu po n krocích λ (j) 1 = max j=1,...,n { x (j) n } nebo zastavení výpočtu pro λ (k+1) 1 λ (k) 1 < δ. 18

19 Poznámka Nejčastější volbou počátečního vektoru x 0 je vektor x 0 = (1,...,1) T. Příklad Najděte dominantní vlastní číslo matice A = Řešení. Zvolíme x 0 = (1, 1, 1, 1, 1) T x 1 = Ax 0 = , 17 λ(1) 1 = 17 x 1 = , 1 x = Ax 1 = , λ() 1 = x = , x 10 = , 1 Vlastní čísla matice A jsou x 11 = Ax 10 = , 1.97 λ(11) 1 = λ 1 = 1.97,λ = ,λ 3 = ,λ 4 = i Takže je vidět,že po jedenácti krocích jsme dostali přesné řešení zadaného příkladu. 19

20 Příklad Pro matici A = však metoda nebude konvergovat, protože číselné hodnoty budou oscilovat. λ 1 = λ,3 = ± i.5118 λ,3 =.66 Absolutní hodnoty vlastních čísel jsou si rovny a tedy mocninná metoda nedokáže určit dominantní vlastní číslo. Poznámka Nevýhody mocninné metody: odhad chyby konvergence (obvykle v praxi nevíme, zda jsou splněny předpoklady mocninné metody) volba x 0 (bude-li vektor x 0 takovou lineární kombinací vlastních vektorů, že koeficient u vlastního vektoru odpovídajícího dominantnímu vlastnímu číslu bude roven 0, potom mocninná metoda nevypočte dominantní vlastní číslo). Poznámka Rychlost konvergence mocninné metody závisí hlavně na volbě vektoru x 0 a na velikosti podílu λ λ Metoda Rayleighova podílu Metoda Rayleighova podílu je modifikovanou mocninnou metodou a zaměřuje se na výpočet dominantního vlastního čísla symetrické matice. Pro tuto část tedy budeme vždy předpokládát, že matice A je symetrická. Potom vlastní vektory musí být ortonornální (tj. v T i v j = 0 pro i j, v T i v i = 1). Odvození: 1. Zvolíme x 0 jako lineární kombinaci vlastních vektorů x 0 = α i v i. i=1. Sestrojíme posloupnost x k = Ax k 1, x k = A k x 0, x k = α 1 A k v α n A k v n. 0

21 3. Platí Av i = λ i v i, potom x k = α 1 λ k 1v 1 + α λ k v α n λ k nv n, kde λ 1 je dominantní vlastní číslo. 4. Dostaneme x k = λ k 1[α 1 v 1 + i= α i ( λ i λ 1 )v i ]. Sumu n i= α i( λ i λ 1 )v i ] definujme jako w k, w k o. 5. Analogicky x k+1 6. Vyjádříme součin x T k x k, x T kx k = λ k 1[α 1 v 1 + i= α i ( λ i λ 1 )v T i ]λ k 1[α 1 v 1 + i= λ k 1 [α 1 + w T kw k ] α i ( λ i λ 1 )v i ] = λ k 1 [α 1 + i= α i( λ i λ 1 ) k ] = a součin x T k x k+1 Dostáváme x T kx k+1 = λ k 1[α 1 v T 1 + λ k+1 1 [α 1 + x T k lim Ax k k x T k x k i= i= α i ( λ i λ 1 ) k v T i ]λ k+1 1 [α 1 v 1 + i= α i( λ i λ 1 ) k+1 ] = λ k 1 [α 1 + w T kw k+1 ]. = lim k x T k Ax k+1 x T k x k = λk+1 λ k α i ( λ i λ 1 ) k+1 v i ] = 0 { }} { w T kw k+1 ) 1 (α1 + 1 (α1 + w T } kw {{ k+1 ) } 0 = λ 1. Poznámka Součin w T k w k konverguje k nule pro k dvakrát rychleji než w k k nulovému vektoru, z toho vyplývá, že metoda Raleighova podílu bude rychlejší než mocninná metoda. Příklad Metodou Rayleighova podílu určete dominantní vlastní číslo matice A =

22 Řešení 3. x 0 = (1 1 1) T Vlastní čísla matice A jsou x 1 = Ax 0 = 3, λ (1) 1 = xt 0x 1 =.3333, x T 0x 0 5 x = Ax 1 = 7, λ () 1 = xt 1x =.4118, x 5 T 1x 1 1 x 3 = Ax = 17, λ (3) 1 = xt x 3 =.414. x 1 T x λ 1 =.414,λ = 1,λ 3 = Tedy už po třech krocích jsme dostali přesné řešení. 5.3 Výpočet dalších vlastních čísel mocninnou metodou Pokud již známe vlastní číslo λ 1 matice A a k němu příslušný vlastní vektor v 1, můžeme vypočítat následující vlastní číslo λ a vlastní vektor v opět mocninnou metodou, kterou použijeme na redukovanou matici. Věta O redukci Necht λ 1 0 je vlastní číslo matice A s vlastním vektorem v 1 a vektor x je libovolný vektor s vlastností x T v 1 = 1. Potom vlastní čísla matice B = A λ 1 v 1 x T jsou 0,λ,...,λ n (kde λ 1,λ,...,λ n jsou vlastní čísla matice A). Důkaz. Necht J = V 1 AV = λ 1 δ λ δ......, δ n λ n je Jordanův tvar matice, kde δ i {0, 1}, i = 1,...,n 1. Jsou-li v 1,...,v n sloupce matice V, potom matice C = V 1 BV má tvar C = J λ 1 V 1 v 1 x T V = J λ 1 e 1 (x T v 1,...,x T v n ) =

23 ( ) 1 x = J λ T v...x T v n 1 = 0 1,n 1 0 n 1,n 1 0 δ 1 λ 1 x T v λ 1 x T v 3 λ 1 x T v n 0 λ δ 0 = δ n λ n což větu dokazuje (vlastní čísla jsou na diagonále). Výběr vektoru x: Věta o redukci zaručuje široký výběr vektoru x. Např. 1. Wielandtova redukce Výhoda této metody je v tom, že v každé další fázi pracujeme s menší maticí a provádíme méně výpočtů. Položíme x = 1 λ 1 v j 1r T j kde r j je j-tý řádek matice A a v j 1 0. Index j vybereme tak, aby odpovídal největší složce vektoru x.. Hotellingova redukce Zde položíme x = y 1, kde y 1 je levý vlastní vektor k λ 1 a je normalizován, tak, že platí y T 1 x = 1. Protože y 1 obvykle neznáme, používá se tato metoda nejsnadněji u symetrických matic, v tomto případě je x i = v i. 3

24 Kapitola 6 Metody pro výpočet vlastních čísel a vlastních vektorů symetrických matic 6.1 Jacobiho metoda Jacobiho metoda může najít všechna vlastní čísla a jim odpovídající vlastní vektory symetrické matice A. Metoda je vhodná hlavně pro plné matice. Necht A je symetrická, potom existuje ortonormální báze složená z vlastních vektorů A = M T DM λ i jsou reálná vlastní čísla matice A, D = diag(λ 1,...,λ n ) a T je ortogonální matice. Při prvním kroku Jacobiho metody položíme A = A 1 a sestrojíme posloupnost {S k } k 1 elementárních ortogonálních matic takovou, aby A k+1 = S T ka k S k = (S 1...S k ) T A(S 1...S k ) k = 1,,... konvergující k D. Protože A k+1 jsou podobné matici A, mají stejná vlastní čísla. Necht S je matice tvaru cosα sin α 0 S = sin α cos α (tzn. matice rovinné rotace nebo Givensova transformace) kde prvky cosα jsou na pozcích (p,p) a (q,q),sinα na pozici (p,q) a sin α na pozici (q,p). Pak platí věta Věta Necht p,q jsou přirozená čísla, 1 p < q n, α je reálné číslo, necht S je ortogonální matice. 4

25 1. Je-li A = (a ij ) symetrická, je B = S T AS = (b ij ) symetrická a b ij = i,j=1 i,j=1. Je-li a pq 0, existuje jediné α π/4, 0) (0,π/4) tak, že kde α je jediné řešení rovnice b pq = 0, a ij cotg α = a qq a pp a pq Důkaz. ležící v této množině. Potom b ii = i=1 a ii + a pq. i=1 1. Protože A = SBS T a víme, že pro dvě matice K,L platí tr(kl) = tr(lk), máme a ij = tr(a T A) = tr(sb T S T SBS T ) = i,j= tr(sb T BS T ) = tr(s T SB T B) = tr(b T B) = i,j= b ij.. Transformace na pozicích (p,q);(q,q);(p,p);(q,p) má tvar a tedy [ ] [ ] [ ] [ ] bpp b pq cos α sin α app a = pq cos α sin α b qp b qq sin α cosα a qp a qq sin α cos α [ ] [ ] app cos α a = pq sin α a pq cos α a qq sin α cos α sin α a pp sin α + a pq cos α a pq sin α + a qq cos α sin α cos α b pp = a pp cos α a pq sin α cos α + a qq sin α a pp cos α + a qq sin α a pq sin α 5

26 b pq = b qp = a pp cos α sin α + a pq sin α + a pq cos α a qq sin α cos α = a pq cos α + 1/(a pq a qq ) sin α b qq = a pp sin α + a pq sin α cos α + a qq cos α a pp sin α + a qq cos α + a pq sin α Stejně jako v části (1) pro libovolné α. Zvolíme-li α tak, aby platilo je b pq = b qp = 0 a tedy ostatní a ii = b ii pro i p,q. Poznámka a pp + a qq + a pq = b pp + b qq + b pq cotg α = a pp a qq a pq b pp + b qq = a pp + a qq + a pq Při transformaci A B = S T A S se mění pouze p-té a q-té řádky a sloupce, přesněji pro libovolné α : b ij = a ij pro i p,q a j p,q b pi = b ip = a pi cos α a qi sin α pro i p,q b qi = b iq = a pi sin α a qi cos α pro i p,q b pp = a pp cos α + a qq sin α a pq sin α b qq = a pp sin α + a qq cos α + a pq sin α b pq = b qp = a pq cos α + 1 (a pp a qq ) sin α Použijeme-li vztahy mezi goniometrickými funkcemi, lze prvky matice B vyjádřit pomocí prvků matice A. 6

27 Postup výpočtu: Nejprve položíme Označíme-li t = tg α je t = K = a qq a pp a pq (= cotg α) { kořen t + Kt 1 pro K 0 1 pro K = 0 Dále c = t (= cosα) s = t 1 + t (= sinα) Pro prvky matice B platí vztahy: b pi = b ip = c a pi s a qi b qi = b iq = c a qi + s a pi i p,q i p,q b pi = b ip = a pp t a pq b pi = b ip = a qq + t a pq Uved me odvození např. pro b qq Protože a dále čitatel je b qq = a pp sin α + a qq (1 sin α) + a pq sin α = a qq (a qq + a pp ) sin α + a pq sin α = a qq + a pq (sin α cotg α sin α). cot α sin α + sin α = sin α cos α sin α sin α cos α 4 sin α cos α sin α cos α + sin 4 α = sin α(sin α + cos α) = sin α b qq = a qq + sin α cos α a pq = a qq + t a pq. Jeden krok Jacobiho metody: Máme-li sestrojenou matici A k = [a (k) ij ], vybereme (p,q) tak, aby a (k) p,q 0. Sestrojíme S k jako ve větě 6.1.1, určíme α ( π/4, 0) (0,π/4) tak, aby položíme cotg α k = a(k) qq a (k) pp, a (k) pq A k+1 = S T kas k = [a (k+1) ij ]. 7

28 Strategie pro volbu (p,q): 1. Klasická Jacobiho metoda: Zvolíme (p,q) taková, aby platilo a (k) pq = max i j a(k) ij a (p,q) se mění pro různá k.. Cyklická Jacobiho metoda: Nulují se všechny nediagonální prvky cyklickou smyčkou, např. (p,q) volíme (1, ) (1, 3)... (1,n); (, 3)... (,n);... ; (n 1,n). Zřejmě, je-li některý prvek nulový, postupujeme dále (tj. volíme α k = 0 nebo S k = I) 3. Prahová Jacobiho metoda: Postupujeme jako u cyklické Jacobiho metody, ale nediagonální prvky, které jsou v absolutní hodnotě menší než jistá mez, která se zmenšuje s každou smyčkou, se neanuluje. Poznámka Co se týče konvergence, ukážeme myšlenku důkazu pro nejjednodušší případ. Označíme P n množinu všech permutací čísel 1,,...,n. Věta Posloupnost matic {A k } k=1 získaných klasickou Jacobiho metodou je konvergentní, lim A k = diag(λ s(i) ) k pro jistou permutaci s P n. K důkazu potřebujeme následující lemma. Lemma Bud X konečnědimenzionální normovaný vektorový prostor, {x k } ohraničená posloupnost v X, která má pouze konečný počet hromadných bodů, necht Potom je posloupnost {x k } konvergentní. lim x k+1 x k = 0. k Důkaz. věty 6.1. Označme A k = [a (k) ij ] = D k + B k, D k = diag(a (k) ii ). Nejprve dokážeme, že lim k B k = 0. Označme Ω k = i j a (k) ij. Pak platí Ω k n(n 1) a (k) pq 8

29 nebot máme n(n-1) nediagonálních prvků a číslo a (k) pq je maximální. Dále podle věty Ω k+1 = Ω k a (k) ij, tedy tj. Ω k+1 (1 n(n 1) )Ω k lim Ω k = 0. k Nyní dokážeme, že lim k (D k+1 D k ) = O. Pro diagonální prvky matice A k+1 platí 0, i p,q, a (k+1) ii a (k) ii = (tg α k )a (k) pq, i = p, (tg α k )a (k) pq, i = q. Protože α k π/4 a lim k a (k) pq = 0 je důkaz proveden. Necht {D k } je posloupnost, která konverguje k matici D, potom také lim k A k = D, protože A k = D k + B k a lim k B k = 0. Tedy Matice A k det(λi D) = lim det(λi A k k ) = det(λi A). a A jsou podobné, tedy det(λi A k ) = det(λi A) pro všechna k. Takže D a A mají stejné charakteristické polynomy, tedy i stejná vlastní čísla. D proto musí být diagonální, D = diag(λ s(i) ) Posloupnost {D k }, kde D k je vektor dimenze n, je ohraničená, nebot D k = ( i,j=1 d (k) ij ) 1/ ( A k = A i,j=1 a (k) ij ) 1/ = Jsou tedy splněny předpoklady lemmatu a posloupnost {A k } konverguje. Příklad Klasickou Jacobiho metodou určete všechna vlastní čísla matice A = ,

30 Řešení 4. Maximální nediagonální prvek (v absolutní hodnotě) je 3 na pozici (1,3) p = 1 q = 3 K = a 33 a 11 a 13 t je kořen (s menší absolutní hodnotou) polynomu c = t = 0, = t = , t = s = t 1 + t = b 13 = b 31 = 0 b 11 = a 11 t a 13 = , b 33 = a 33 + t a 13 = , b 1 = c a 1 s a 3 = = b 1, b 14 = c a 14 s a 34 = = b 41, b 3 = c a 3 + s a 1 = = b 3, b 34 = c a 34 + s a 14 = = b 43, b = a b 44 = a 44 b 4 = b 4 = a 4. Pak dostaneme matici Nyní opět vybereme maximální prvek a stejným způsobem postupujeme dál. Po 7 krocích se dostamene k matici B = o Zde už je vidět, že nediagonální prvky konvergují k nule.po dalších sedmi krocích už dostaneme diagonální matici B = , kde diagonální prvky odpovídají vlastním číslům zadané matice A. 30

31 Nyní se budeme zabývat konvergencí vlastních vektorů klasické Jacobiho metody, kterou dokážeme pomocí následující věty. Připomeňme, že kde Q k = S 1...S k. A k+1 = S T ka k S k = Q T kaq k Věta Předpokládejme, že všechna vlastní čísla matice A jsou vzájemně různá. Potom posloupnost matic Q k, k = 1,..., konstruovaných klasickou Jacobiho metodou konverguje k ortogonální matici, jejíž sloupce tvoří ortogonální množinu vlastních vektorů matice A. Důkaz. Opět použijeme lemma 6.1.1, ověříme jeho předpoklady. {Q k } má pouze konečný počet hromadných bodů, které jsou nutně ve tvaru [±p s(1) ± p s() ±... ± p s(n) ], s P n, kde p 1,...,p n jsou sloupce ortonormální matice Q, pro níž Q T AQ = diag(λ i ). Necht {Q k } je podposloupnost posloupnosti {Q k }, Q k Q k. Podle věty 6.1. existují s P n tak, že diag(λ s(i) ) = lim k A k = lim k (QT k A k Q k ) = QT k A k Q k což bylo dokázáno. Všechna vlastní čísla jsou různá, tedy existuje pouze konečně mnoho hromadných bodů. Pro úhly určující S k máme tg α k = a(k) pq, α a (k) qq a (k) k π/4. pp Podle věty 6.1. odtud plyne, že existuje l tak, že pro k l je a (k) qq a (k) pp 1 min i j λ i λ j > 0. Protože se dvojice (p,q) mění s k, nemůžeme dokázat, že posloupnosti a (k) qq konvergují. Ale lim k a(k) pq = 0, tedy lim α k = 0 a lim S k = I k k Q k+1 Q k = Q k (S k I) 0. A konečně posloupnost {Q k } je ohraničená, protože Q k = 1. a a (k) pp Poznámka Při výpočtu můžeme průběžně kontrolovat výsledky tím, že po každém kroku zjišt ujeme, zda a (k+1) pp + a (k+1) qq = a (k) pp + a (k) qq. Nebo vypočítáme matici SDS T, která by se měla rovnat matici A. 31

32 Poznámka Přesnost Jacobiho metody závisí na tom, jak přesně se vypočítají odmocniny pro určení sinα k a cos α k. Poznámka Ačkoliv se Jacobiho metoda používá převážně pro symetrické matice, pracuje často dobře i v případě nesymetrických matic. V tomto případě ovšem konverguje k trojúhelníkové matici a má-li výchozí matice komplexní vlastní čísla, je nutné použít místo matic S k vhodné unitární matice. 6. Householderova matice zrcadlení Definice Matice tvaru H(u) : = I uut u T u = I uut u se nazývá Householderova matice (někdy též elementární zrcadlení nebo Householderova transformace). Vlastnosti: označení matice zrcadlení se používá proto, že aplikujeme-li matici H(u) pro nějaké u na vektor x R n, pak je vektor H(u)x souměrný s vektorem x podle nadroviny ortogonální k vektoru v. Obrázek 6.1: Householderova transformace matice I je speciální případ Householderovy transformace. Pro u = o je H(o) = I. Hx = x pro každé x R n, tj. zrcadlení tedy nemění délku vektoru. Hy = y pro každé y P = {v R n v T u = 0}. 3

33 H má jednoduchou vlastní hodnotu -1 a (n 1)-násobnou vlastní hodnotu 1. Důkaz. Protože y P = {v R n v T u = 0} má n 1 lineárně nezávislých vektorů y 1,..., y n 1 a Hy i = y i pro i = 1,,..., n 1, pak 1 je (n 1)-násobná vlastní hodnota a H také zrcadlí u na -u, tj. Hu = u. Takže -1 je vlastní hodnota matice H, která musí být jednoduchá, nebot H má pouze n vlastních hodnot. z věty o spektrálním rozkladu plyne Matice H je ortogonální a symetrická. det(h) = ( 1)1 1 = 1, Důkaz. Symetrie plyne z Dále platí H (u) = a proto je matice H(u) ortogonální. ( uu H T (u) = I T T ) T uu T = I u T u u = H(u). ) (I )(I uut uut = I 4 uut u T u u T u u + uu T 4uuT = I, u 4 Věta Pro každé dva vektory y, z R n takové, že y z a y = z, platí y = H(y - z)z. Jinými slovy, každé dva různé vektory o stejné normě lze převést jeden na druhý Householderovou transformací. Důkaz. Platí H(y z)z = (I (y z)(y z)t y z = z + y + z y T z y z ) z = z yt z z (y z) = y z (y z) = z + y z (y z) = y. y z Důsledek Jsou-li y, z dva vektory o stejné normě, potom existuje ortogonální matice Q taková, že y = Qz. Důkaz. Pro y z stačí vzít Q = H(y z), jinak Q = I. 33

34 Věta 6... Pro každé x R n je { H(x + sgn(x 1 ) x e 1 ), pro x 1 x, H = I, pro x 1 = x, ortogonální matice s vlastností Hx = x e 1. Nebo-li, aplikujeme-li vhodnou matici H na vektor x, dostaneme vektor, který má všechny složky až na první nulové. Důkaz. Je-li x 1 = x, potom z x 1 = x x n plyne, že x = = x n = 0. Tedy x = x 1 e 1 = x e 1 = Ix = Hx. Je-li x 1 x, potom x + sgn(x 1 ) x e 1 0, takže vektory y = sgn(x 1 ) x e 1 a z = x jsou různé a platí pro ně y = x = z, a odtud je y = sgn(x 1 ) x e 1 = H(y z)z = H( x sgn(x 1 ) x e 1 )x. Poznámka Pro vektor určující Householderovu matici lze volit bud + x e 1 nebo x e 1. Z důvodu minimalizace numerických chyb volíme stejné znaménko jako u první složky vektoru x. Věta Pro každé x takové, že x = 1, je { H(x + sgn(x 1 )w 1 ), pro x e 1, H = I, pro x = e 1. ortogonální matice, jejímž prvním sloupcem je vektor x. Důkaz. Pro x = e 1 je zřejmý. Necht tedy x e 1. Protože x = 1 = e 1, je podle Věty 6.. což je tvrzením věty. x = H(x + sgn(x 1 )e 1 ) = He 1 = H 1, Díky těmto větám tedy umíme najít vektor u tak, že daný nenulový vektor x se transformuje na vektor, který má nenulovou pouze první složku. Příklad Lze x = ( 1,, 7) T H(u) (α, 0, 0) T? Protože x = 3 6, položíme u = x x e 1 = ( 1 3 6,, 7) T a u = 6( ). Dále uu T = ( ,, 7) = , takže H(u) = Snadno lze ověřit, že ( ) H(u)x = (3 6, 0, 0) T. 34.

35 6.3 Givensova-Householderova metoda Jedná se o metodu speciálně vhodnou k hledání některých vlastních čísel symetrických matic, např. všech vlastních čísel obsažených v předem zadaném intervalu. Umožňuje počítat vlastní čísla s různou přesností. Na druhé staně nám neposkytuje informace o vlastních vektorech. Má dvě etapy: Householderova metoda pro redukci symetrické matice na třídiagonální tvar. Givensova metoda (metoda bisekce) pro výpočet vlastních čísel symetrické třídiagonální matice Householderova metoda Necht A je symetrická matice, postupně se určuje n ortogonálních matic H 1,...,H n, tak, aby matice A k = H T k 1 A k 1 H k 1 = byly ve tvaru Tudíž matice (H 1...H k 1 ) T A (H 1...H k 1 ), k = 1,...,n a T k A k = a k A n 1 = (H 1...H n ) T A (H 1...H n ) je třídiagonální a také podobná matici A. Každá transformace A k A k+1 = H T k A k H k se provádí pomocí matice [ ] Ik 0 H k =, 0 Hk kde H k = H(ṽ k ), kde ṽ k byl zvolen tak, aby pouze první složka H(v k )a k byla nenulová. 35

36 Potom zřejmě a T H k k H T k A k H k =, H T k a k tj.po vhodné volbě ṽ k máme další část třídiagonální matice. Matici H k můžeme popsat také jako Householderovu matici příslušnou vektoru Máme dvě možné volby vektoru v k : v k = [0,...,0,ṽ k ] T. v k = [0,...,0,a (k) k+1,k ± ( i=k+1 a (k) ik ) 1/,a (k) k+,...,a(k) n,k ]T, znaménko se volí stejné jako je znaménko u a (k) k+1,k. Máme-li určen vektor v k, prvky a (k+1) k + 1 i, j n matice A k+1 = [a (k+1) ij ] určíme následovně: Postupně určíme vektory w k = (v T kv k ) 1/ v k, jejichž složky označíme w (k) i q k = (I w k w T k )A k w k,, q (k) i. Potom matice A k+1 má tvar A k+1 = A k w k q T k q k w T k ij, tj. k + 1 i,j n. a (k+1) ij = a (k) ij w (k) i q (k) j q (k) i w (k) j Příklad Householderovou transfornací převed te matici 4 1 A = na třídiagonální tvar. 36

37 Řešení 5. v 0 = ( 0 + ( ) 1 ) T, w 0 = (v T 0v 0 ) 1 v0 = ( ) T, q 0 = (I w 0 w T 0 )Aw 0 = ( ) T, A 1 = A w 0 q T 0 q 0 w T 0 = , v 1 = ( ( 1.8) 1.8 ), w 1 = ( ) T, q 1 = ( ) T, A = A 1 w 1 q T 1 q 1 w T 1 = Givensova metoda Metoda slouží k určení vlastních čísel symetrické třídiagonální matice b 1 c 1 c 1 b c B = c n b n 1 c n 1 Pokud je některé z čísel c i nula, rozpadá se matice B na dvě třídiagonální matice stejného typu. Tedy bez újmy na obecnosti můžeme předpokládat, že c i 0, (i = 1,...,n 1). Označme b 1 c 1 c 1 b c B i = , c i 1 b i 1 c i 1 c i b i i = 1,...,n c n 1 Věta Polynomy p i (λ), λ R, definované pro i = 1,...,n rekurentně p 0 (λ) = 1 b n mají následující vlastnosti: p 1 (λ) = b 1 λ p i (λ) = (b i λ)p i 1 (λ) c i 1p i (λ), i n 37

38 1. Polynom p i je charakteristický polynom matice B i (p i (λ) = det(b i λi)).. lim p i(λ) = +, λ i = 1,...,n 3. Jestliže p i (λ 0 ) = 0, potom p i 1 (λ 0 )p i+1 (λ 0 ) < 0, i = 1,...,n 1 4. Polynom p i má vzájemně i různých kořenů, které oddělují i + 1 kořenů polynomu p i+1, i = 1,...,n. Důkaz. 1. Plyne z rozvoje det(b i λi). p i (λ) = ( 1) i λ i... pro λ 3. Necht p i (λ 0 ) = 0 pro nějaké i, i = 1,...,n 1, z definice p i plyne p i+1 (λ 0 ) = c i p i 1 (λ 0 ). Protože c i 0, dostaneme bud p i 1 (λ 0 ) p i+1 (λ 0 ) < 0 nebo p i 1 (λ 0 ) = p i (λ 0 ) = p i+1 (λ 0 ) což by indukcí vedlo k tomu, že p i (λ 0 ) = p i 1 (λ 0 ) =... = p 1 (λ 0 ) = p 0 (λ 0 ), což je spor, protože p 0 (λ 0 ) = Plyne z a 3. Poznámka Posloupnost polynomů splňující -4 se nazývá Sturmova posloupnost (používá se při výpočtu kořenu polynomů). Příklad Pomocí charakteristického polynomu určete vlastní čísla třídiagonální matice A z příkladu A =

39 Řešení 6. p 0 (λ) = 1 p 1 (λ) = 4 λ p (λ) = ( λ)(4 λ) 9 p 3 (λ) = ( 1.4 λ)[( λ)(4 λ) 9] 10(4 λ) p 4 (λ) = (1.4 λ)[( 1.4 λ)[( λ)(4 λ) 9] 10(4 λ)] 0.04[( λ)(4 λ) 9] = Kořeny polynomu p 4 (λ) jsou λ 4 λ 3 9λ + 58λ λ 1 = λ = λ 3 = λ 4 = Věta Bud i přirozené číslo, 1 i n. Pro dané µ R položme { sgnp i (µ) je-li p i (µ) 0, sgnp i (µ) = sgnp i 1 (µ) je-li p i (µ) = 0. Potom N(i, µ), což je počet znaménkových změn v posloupnosti po sobě jdoucích prvků uspořádané množiny N(i,µ) = {+, sgnp 1 (µ),...,sgnp i (µ)} se rovná počtu kořenů polynomu p i, které jsou menší než µ. Tato věta umožňuje aproximaci (s libovolnou přesností) vlastních čísel matice B = B n a dokonce přímý výpočet vlastního čísla na dané pozici. Předpokládejme například, že chceme aproximaci i-tého vlastního čísla λ (n) i = λ i matice B ( jako předtím předpokládáme, že λ 1,...,λ n jsou vzájemně různá a uspořádaná sestupně). Krok 1: Určíme interval a 0,b 0, v němž leží žádané vlastní číslo, např. a 0 = b 0 = B. Krok : c 0 = a 0 + b 0, spočteme N(n,c 0 ). Potom bud N(n,c 0 ) i a λ i < a 0,c 0 ) nebo N(n,c 0 ) < i a λ i < c 0,b 0 > tím získáme interval < a 1,b 1 >, v němž leží kořen λ i. Postupně získáme posloupnost intervalů < a k,b k >, k 0 takových, že λ i < a k,b k > a b k a k = k (b 0 a 0 ), k 0. 39

40 6.4 QR-rozklad Definice Dvojici matic Q a R nazveme QR-rozkladem matice A, pokud platí, že A = QR, přičemž Q je ortogonální matice a R je horní trojúhelníková matice. Nyní uvedeme věty o existenci QR-rozkladu a jeho jednoznačnosti. Věta K libovolné reálné matici A R m n, kde m n, existuje ortogonální matice Q R m m a horní trojúhelníková matice R R m n tak, že platí A = QR. Věta Jsou-li sloupce matice A R m n, m n, lineárně nezávislé, potom v QRrozkladu jsou matice R a prvních n sloupců matice Q určeny až na znaménko jednoznačně. Důkazy obou vět viz [] 6.5 Konstrukce QR-rozkladu QR-rozklad pomocí Gram-Schmidtova algoritmu Věta (Gram-Schmidtův QR-rozklad). K libovolné reálné matici A R m n, kde m n, existuje ortogonální matice Q R m m a horní trojúhelníková matice R R m n s nezápornými prvky na diagonále tak, že platí A = QR. V případě lineárně nezávislých sloupců matice A jsou prvky na diagonále kladné. Základní myšlenka důkazu: Máme-li matici A R m n, pak aplikací zobecněného Gram- Schmidtova ortogonalizačního procesu na sloupce matice A (ty mohou být lineárně závislé i nezávislé) a doplněním těchto vektorů na bázi v R m získáme sloupce matice Q. Uvažujme matici A = (a 1... a n ) složenou ze sloupcových vektorů. Pak u 1 = a 1, e 1 = u 1 u 1, u = a p e1 a, e = u u, u 3 = a 3 p e1 a 3 p e a 3, e 3 = u 3 u 3,. k 1 u k = a k p ej a k, j=1 e k = u k u k, 40

41 kde p u v = <v, u> <v, v> u. Po úpravě obdržíme vzorce pro vektory a i a 1 = e 1 u 1, a = p e1 a + e u, a 3 = p e1 a 3 + p e a 3 + e 3 u 3,. k 1 a k = p ej a k + e k u k. j=1 Označme Q = (e 1... e n ). Nyní máme < e 1, a 1 > < e 1, a > < e 1, a 3 > < e 1, a n > 0 < e, a > < e, a 3 > < e, a n > R = Q T A = 0 0 < e 3, a 3 > < e 3, a n >, < e n, a n > nebot QQ T = I a < e j, a j >= u j, < e j, a k >= 0 pro j > k Příklad Proved me QR-rozklad matice A = Řešení 7. Gram-Schmidtovým procesem dostaneme U = (u 1 u u 3 ) = Matici Q potom získáme jako Q = ( u1 u 1 u u ) u 3 = u 3 6/7 69/175 58/175 3/7 158/175 6/175. /7 6/35 33/35 A = QQ T A = QR, takže Algoritmus Mějme matici A. Položme R = Q T A = r 11 = a 1, q 1 = a 1 r 11, 41

42 pro k =,..., n spočítejme: r jk = < q j, a k > pro j = 1,..., k 1, k 1 z k = a k r jk q j, j=1 r kn = < z k, z n > q k = z k r kk. Metodu lze také upravit tak, že zaměníme pořadí operací. Tedy položme Pak pro k =,..., n, spočtěme r kk = a (k 1) k, A 0 A. q k = a(k 1) k, r kk r ki = q T ka (k 1) i pro i = k + 1,..., n, A (k) = A (k 1) q k r T k. Z formálního hlediska jde o změnu pořadí operací, ovšem z numerického hlediska obdržíme kvalitativně různé výsledky QR-rozklad pomocí Householderovy matice Věta 6.5. (Householderův QR-rozklad). Každou matici A R m n lze pomocí s = min{n, m 1} Householderových matic rozložit na součin QR, a to tak, že platí ( R1 ) 0 m > n, H s H H 1 A = Q T A = (R 1, 0) m < n, R m = n. Důkaz. Konstrukce QR-rozkladu Mějme reálnou matici A a 11 a 1n a 1 a n A = a m1 a mn Krok 1.: Zkonstruujme Householderovu matici H 1 tak, aby H 1 A měla v prvním sloupci pouze samé 0 s výjimkou pozice (1, 1), tj. aby 0 H 1 A =

43 K tomu stačí získat vektor u n (dle předchozího) tak, že pro platí H 1 H 1 = I u nu T n u T nu n a 11 a 1. a m1 = Označme A (1) : = H 1 A. A (1) je tvaru a 11 A (1) 0 =... 0 Krok.: Zkonstruujme Householderovu matici H tak, že H A (1) má ve druhém sloupci 0 pod pozicí (, ) při zachování požadavku prvního kroku, tj. 0 A () : = H A (1) = Matici H získáme tak, že nejdříve zkonstruujeme Householderovu matici o rozměru (m 1) (n 1) takovou, že a definujme Tím získáme matici A () = H A (1). Analogicky pokračujeme dále. Ĥ : = I n 1 u n 1u T n 1 u T n 1u n 1 Ĥ a a 3. a m = 0., H : = 0. Ĥ 0 Pro k s. Krok k-tý: Obecně vytváříme Householderovu matici. Ĥ k : = I n k+1 u n k+1u T n k+1 u T n k+1 u n k+1 43

44 o rozměru (m k + 1) (n k + 1) takovou, že a kk Ĥ k. = 0.. a mk 0 Definujeme čili můžeme spočítat A (k) = H k A (k 1). ( ) Ik 1 0 H k : =, 0 Ĥ k Tímto způsobem po s krocích obdržíme matici A (s), která bude v horním trojúhelníkovém tvaru a bude právě maticí R. Protože A (k) = H k A (k 1) k =,..., s, máme Položme R = A (s) = H s A (s 1) = H s H s 1 A (s ) = = H s H s 1 H H 1 A. Q T = H s H s 1 H H 1. Máme hledanou ortogonální matici (nebot každá z H i je ortogonální). Celkem tj. R = Q T A, A = QR. (Zopakujme si, že Q = H T 1 H T H T s = H 1 H H s.) Příklad Uvažme matici Řešení 8. Krok 1.: Konstrukce H A = H = Potom tedy dle Příkladu 6..1 spočteme 0 u 3 = = 1, takže H 1 = I 3 u 3u T 3 u T 3u 3 = =

45 Určeme 3 A (1) = H 1 A = Krok.: Zkonstruujeme ( ) ( ) 0, 071 Ĥ = =, 1, ( ) ( ) ( ) 0, , 4318 u = 1, 47 =, 1, , 071 ( ) 0, , 9856 Ĥ =, 0, , 1691 tzn H = 0 0, , 9856, 0 0, , 1691 a spočítáme 1, 414, 113, 884 A () = H A (1) = H H 1 A = 0 1, 47 1, 6330 = R 0 0 0, 5774 Pro Q nyní platí 0 0, , 5774 Q = H H 1 = 0, , 408 0, , , 408 0, 5774 Celkem tedy A = 1 3 = , , , 414, 113, 884 0, , 408 0, , 47 1, 6330 = QR. 0, , 408 0, ,

46 6.5.3 QR-rozklad pomocí Givensovy matice Definice Matice tvaru c s 0 G(i, j, c, s) : = = I+(c 1)(e i e it +e j e jt )+s(e i e it e j e jt ), 0 s c kde c + s = 1, se nazývá Givensova matice, která nám mezi jinými popisuje Givensovu transformaci. Obrázek 6.: Geometrický význam Givensovy rotace Givensovu matici značíme G(i, j, α). Opět chceme setrojit matice Q 1, Q,..., Q s tentokrát však pomocí Givensových matic tak, aby A (1) = Q 1 A měla nuly pod prvkem (1, 1) v prvním sloupci, matice A () = Q A (1) měla nuly pod prvkem (, ) ve druhém sloupci, atd. Každou z matic Q i lze sestrojit jako součin Givensových matic ten je možné sestrojit takto: Bud s = min{m 1, n}. Pak Q 1 : = G(1, m, α)g(1, m 1, α) G(1, 3, α)g(1,, α) Q : = G(, m, α)g(, m 1, α) G(, 3, α). R = A (s) = Q s A (s 1) = = Q s Q s 1 Q Q 1 A = Q T A. Nyní máme A = QR, kde Q T = Q s Q Q 1. To lze zformulovat do následující věty. 46

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

NUMERICKÉ METODY. Josef Dalík

NUMERICKÉ METODY. Josef Dalík NUMERICKÉ METODY Josef Dalík Zdroje chyb Při řešení daného technického problému numerickými metodami jde zpravidla o zjištění některých kvantitativních charakteristik daného procesu probíhajícího v přírodě

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

Masarykova univerzita Brno. Katedra aplikované matematiky. maticemi

Masarykova univerzita Brno. Katedra aplikované matematiky. maticemi Masarykova univerzita Brno Fakulta přírodovědecká Katedra aplikované matematiky Lineární systémy se speciálními maticemi Diplomová práce květen 2006 Jaroslava Benáčková Poděkování V úvodu bych ráda poděkovala

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

Více

Numerické metody. Autoři textu: RNDr. Rudolf Hlavička, CSc.

Numerické metody. Autoři textu: RNDr. Rudolf Hlavička, CSc. FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Numerické metody Garant předmětu: doc. RNDr. Libor Čermák, CSc. Autoři textu: Mgr. Irena Růžičková RNDr. Rudolf Hlavička, CSc. Ústav matematiky

Více

A 9. Počítejte v radiánech, ne ve stupních!

A 9. Počítejte v radiánech, ne ve stupních! A 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti...

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti... Poznámky k ekonomickému ukazateli IRR (Remarks on the economic criterion the Internal Rate of Return ) Carmen Simerská IRR... vnitřní míra výnosnosti, vnitřní výnosové procento, výnos do splatnosti...

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Robust 2014, 19. - 24. ledna 2014, Jetřichovice

Robust 2014, 19. - 24. ledna 2014, Jetřichovice K. Hron 1 C. Mert 2 P. Filzmoser 2 1 Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta, Univerzita Palackého, Olomouc 2 Department of Statistics and Probability Theory Vienna University

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

1a. Metoda půlení intervalů (metoda bisekce, Bisection method) Tato metoda vychází z vlastnosti mezihodnoty pro spojité funkce.

1a. Metoda půlení intervalů (metoda bisekce, Bisection method) Tato metoda vychází z vlastnosti mezihodnoty pro spojité funkce. Hledání kořenů Úloha: Pro danou funkci f(x) máme najít číslo r tak, aby f(r) = 0. Pozor, počítač totiž kořen nepozná! Má jistou přesnost výpočtu δ > 0 a prohlásí f(r) = 0 pokaždé, když f(x) < δ. Není ovšem

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.1 Matematické principy vícerozměrných metod statistické analýzy

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom.

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. @213 17. Speciální funkce Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. Nyní si řekneme něco o třech

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C,

[1] Důkaz: Necht p(x) = a n x n +... + a 1 x + a 0 = 0 pro všechna x C, Výsledky operací jsou tedy popsány pomocí svých koeficientů algoritmicky. Na vstupu do algoritmu jsou koeficienty polynomů, které sčítáme resp. násobíme. S proměnnou x algoritmy nepracují. Polynomy Polynom

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více