Model spotřeby soukromého sektoru (domácností)

Rozměr: px
Začít zobrazení ze stránky:

Download "Model spotřeby soukromého sektoru (domácností)"

Transkript

1 Makokonomická analýza přdnáška Modl spořby soukomého skou (domácnosí) Přdpoklady Exisují pouz domácnosi j. uvažujm pouz spořbu nxisují žádné invsic. Exisuj pouz jdn yp spořbního saku. Exisují pouz dvě období dns a zía. Pvní období pznuj současnos duhé období pznuj clou budoucnos. Nxisuj žádné období přd dnškm budm dy přdpokláda ž počáční bohasví (počáční akiva) soukomého skou jsou nulová. Zkoumaná konomika má vlasnosi malé ovřné konomiky: álná úoková mía j dminována okolním svěm na úovni konomika můž (jako clk) vsupova do úvěových vzahů s zahaničím. Rálná úoková mía j vyjádřna jako množsví spořbních saků ké j nuno zaplai zía za jdn sak vypůjčný dns (navíc nad spláku jisiny). Čím j dminována álná úoková mía o nní zaím podsané a bud o odvozno později. Domácnosi mají v každém období jisý álný příjm Y sp. Y álný příjm j vyjádřn jako množsví spořbních saků. Původ ohoo přijmu j po uo chvíli npodsaný. Exisuj zv. pznaivní domácnos což znamná ž vím-li jak (a poč) s chová ao domácnos můžm z oho odvodi chování všch domácnosí j.clé konomiky. Podmínky xisnc (sp. důkaz xisnc) pznaivního konomického subjku jsou niviální a přsahují ámc ohoo přdměu. Tvoba očkávání Modl spořby j posavn na dynamických (inmpoálních mzičasových) základch - konomické subjky bou při ozhodování o svém chování do úvahy njn současnos al i clou očkávanou budoucnos. Tno pincip j uváděn jako hypoéza pmannního důchodu nbo živoního cyklu. Po akový modl j nuné nadfinova způsob jakým voří konomické subjky svoj očkávání o budoucnosi. Označím Y + očkávání vyvořné v čas o hodnoě vličiny Y v čas +. Všobcně přijímanou hypoézou jsou v současné makokonomii zv. acionální očkávaní ká lz shnou jako Y + Y + = ε kd ε j náhodná vličina s nulovou sřdní hodnoou končným ozpylm a séiově nkolovaná j. Eε = 0 Dε < Eε ε i = 0 po i =... Po konomické sánc o znamná ž konomické subjky ndělají při vobě svých očkávání žádnou sysmaickou chybu v půměu s sfují do skučných hodno plus minus nějaké končně vlké odchylky. hyba kou udělali vča v očkávaní dnšní hodnoy nmá žádný vliv na chybu kou udělají dns v svých očkáváních o zířjší hodnoě (jdnolivé chyby z ůzných období jsou nkolované).

2 Makokonomická analýza přdnáška Jako zjdnodušní ké odbouává sochasickou (náhodnou) složkou s časo používá zv. dokonalá přdpověď (pfc fosigh) v vau Y + = Y + j. konomické subjky voří svoj očkávaní bz chyby disponují dokonalou přdpovědí budoucnosi. V pincipu dávají acionální očkávání a dokonalá přdpověď oožné výsldky. V oickém dovozování modlu budm používa nsochasickou dokonalou přdpověď. Rozpočové omzní soukomého skou Jsliž připusím xisnci kladných či záponých úspo v pvním období Y ké jsou půjčny zbyku svěa nbo naopak vypůjčny od zbyku svěa za danou úokovou míu a jsliž všchny závazky a pohldávky jsou nakonc (j. njpozději v posldním j. duhém období) vyovnány můžm po spořbu v duhém období psá = Y + ( Y )( + ) Po úpavě j ozpočové omzní soukomého skou Y + = Y + = Ω + + j. diskonovaná clková spořba (současná hodnoa všch příomných a očkávaných spořb) s musí ovna diskonovanému clkovému příjmu (současné hodnoě všch příomných a očkávaných příjmů). Pavou sanu nazvm bohasvím soukomého skou a označím Ω. Rozpočové omzní j gaficky znázoněno v ob. Přímka ozpočového omzní vždy pochází bodm daným souřadnicmiy Y má sklon ( + ) Bod A na ob. odpovídá siuaci Y = Y = bod B odpovídá kladným úspoám v pvním období a dy zvýšné spořbě v duhém období. Bod odpovídá zvýšné současné spořbě a adkváně snížné budoucí ak aby bylo možno splai dluh z pvního období. Vzdálnos 0D udává bohasví soukomého skou Ω.

3 Makokonomická analýza přdnáška 3 Na ob. j znázoněn zv. odříznuí od úvěu (cdi aioning) domácnosi nmají možnos si půjči na vyšší současnou spořbu jjich ozpočové omzní j dáno podmínkami + = Ω + Y 0 Užiková funkc Do užikové funkc domácnosí U vsupuj současná a budoucí spořba. Budm přdpokláda ž současná spořba sjného množsví spořbních saků j cněna (alspoň ochu) víc nž spořba v budoucnosi (konomické subjky jsou npělivé) užiková funkc j zv. časově spaovalná j. mía užiku z současné spořby nní ovlivněna vlikosí budoucí spořby mzní užik j kladný al klsající (jak z spořby současné ak budoucí). Všchny yo přdpoklady lz shnou do analyického vau užikové funkc u ( ) ( ) ( ) U = u + + ρ u ( ) > 0 u ( ) < 0 ρ > 0 kd ρ j fako vyjadřující npělivos (míu upřdnosňování současné přd budoucí spořbou; vyšší npělivos znamná vyšší ρ ). Gaficky lz užikovou funkci zachyi sousavou izokvan j. ča spojujících mísa kd nabývá užiková funkc danou (konsanní) hodnou. Budm přdpokláda obvyklé konvxní izokvany viz.ob.3. Řšní opimalizačního poblému Soukomý sko bud hlda akové ozložní spořby do současnosi a do budoucnosi aby mu při daném ozpočovém omzní přinslo co njvyšší užik. Fomálně vyjádřno řší opimalizační poblém max U ( ) j. ( ) u( ) max u + + ρ

4 Makokonomická analýza přdnáška 4 Na množině bohasví soukomého skou + + = Ω ( ) u Příslušný langangián j L = u( ) + λ + Ω + ρ + Po konomickou inpaci sačí vyjádři opimalizační podmínky pvního řádu vzhldm k a : = λ = 0 = λ = 0 + ρ + Dosazním λ obdžím = + ρ + Za podmínky ž fako npělivosi ρ j ovn álné úokové míř (což j docla přiozná podmínka ká bud objasněna později) dosávám = nboli = Soukomý sko s dy snaží vyhladi svoji spořbu přs všchna uvažovaná období; např. konomika s nízkým současným příjmm al vysokým (očkávaným) budoucím s zadlužní spořbuj dns o něco víc a v budoucnu dluh splaí j. omzí svoji spořbu. Obvyklé gafické řšní opimalizačního poblému j na ob.4. Případ kdy a případ kdy očkávání budoucího příjmu Y nní dokonalá + ρ + přdpověď nýbž acionální očkávání bud pobán na cviční.

5 Makokonomická analýza přdnáška 5 Vliv změny bohasví Ω na spořbu Vliv změny Ω na výši současné a budoucí spořby odvodím opě z opimalizačních podmínk pvního řádu za zjdnodušujícího přdpokladu =. Pvní dvě podmínky + ρ + už byly shnuy do ovnic = ří podmínkou j = + Ω = 0 λ + j. ří podmínka udává přímo ozpočové omzní + = Ω + K zvýšní Ω můž při dané dojí zvýšním současného příjmuy zvýšním očkávaného budoucího příjmu Y kombinací obou. V každém případě j za uvdných ří opimalizačních podmínk zřjmé ž současná i budoucí spořba vzosou jsliž Ω vzos dy spořbní funkci soukomého skou můžm psá jako = = ( Ω) > 0 Ω Vliv změny álné úokové míy na spořbu Vliv álné úokové míy j njdnoznačný závisí na om zda j soukomý sko v pvním období věřilm nbo dlužníkm (zda má kladné nbo záponé úspoy). Analyické odvozní j poněkud náočnější a poo jj vynchám. Opimalizac v případě odříznuí od úvěu Tno případ j okomnován pouz gaficky. Odříznuí od úvěu můž za jisých podmínk samozřjmě ovlivni opimální úovň současné a budoucí spořby (jisé kombinac s sanou ndosupné) - viz. Ob.5. V případě dosupného úvěu by byla opimální kombinac a v bod E při odříznuí od úvěu j njlpší dosupnou kombinací bod F. Dnšní spořba j ak učna dnšním příjmm Y a j nižší nž v případě dosupného úvěu.

Úhrada za ústřední vytápění bytů II

Úhrada za ústřední vytápění bytů II Úhrada za úsřdní vyápění byů II Anoac Článk j druhým z séri příspěvků, krými jsou prsnovány dlouholé výsldky prác na Tchnické univrziě v Librci v oblasi rozpočíávání nákladů na vyápění pomocí poměrových

Více

MECHANICKÉ KMITÁNÍ TLUMENÉ

MECHANICKÉ KMITÁNÍ TLUMENÉ MECHNICKÉ KMITÁNÍ TLUMENÉ V skučnosi s čás nrgi u všch mchanických pohybů přměňuj vlivm řní a odporu prosřdí na plo, a nní dy využia V om případě s vlikosi po sobě jdoucích ampliud zmnšují a kmiající sousava

Více

PJS Přednáška číslo 2

PJS Přednáška číslo 2 PJS Přdnáška číslo Jdnoduché lkromagncké přchodné děj Přdpoklady: onsanní rychlos všch očvých srojů (časové konsany dlší nž u l.-mg. dějů) a v důsldku oho frkvnc lkrckých vlčn. Pops sysému bud provdn pomocí

Více

SP2 01 Charakteristické funkce

SP2 01 Charakteristické funkce SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía:

Více

8.1 Systémy vytápění a chlazení a mikroklima budov

8.1 Systémy vytápění a chlazení a mikroklima budov 100+1 příklad z chniky posřdí 8.1 Sysémy vyápění a chlazní a mikoklima budov Úloha 8.1.1 Uč ozdíl opaivní ploy v dvou zadaných mísch (křslo) mísnosi s daným ozložním povchových plo. ploa vzduchu 21, ploa

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

= 1, což však má oprávnění jen v určitých situacích. V takovémto případě lze chování produkce vystihnout závislostí K L

= 1, což však má oprávnění jen v určitých situacích. V takovémto případě lze chování produkce vystihnout závislostí K L 3 lasické funkční vary v orii produkc 3. COBB- DOUGASova produkční funkc Tno funkční var popisuj vzah mzi produkcí a výrobními fakory prác a kapiál mocninným vyjádřním j. (3.) kd s pro paramry zpravidla

Více

Časové řady typu I(0) a I(1)

Časové řady typu I(0) a I(1) Aca oconomca pragnsa 6: (2), sr. 7-, VŠE Praha, 998. ISSN 572-343 (Rukops) Časové řady ypu I() a I() Josf Arl Úvod Př analýz konomckých časových řad má smysl rozlšova saconární a nsaconární časové řady.

Více

11. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 0

11. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 0 11. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA slid 0 Přdmětm přdnášky jsou tři modly agrgátní nabídky, v ktrých v krátkém období výstup pozitivně závisí na cnové hladině. Krátkodobý invrzní vztah mzi inflací

Více

L HOSPITALOVO PRAVIDLO

L HOSPITALOVO PRAVIDLO Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o

Více

1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV

1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV 8 Rovnoměně ychlený pohyb v příkladech IV Předpoklady: 7 Pedagogická ponámka: Česká škola v současné době budí ve sudenech předsavu, že poblémy se řeší ásadně najednou Sudeni ak mají obovské poblémy v

Více

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t) čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie

základní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází

Více

SPOLUPRÁCE SBĚRAČE S TRAKČNÍM VEDENÍM

SPOLUPRÁCE SBĚRAČE S TRAKČNÍM VEDENÍM SPOLUPRÁCE SBĚRAČE S TRAKČNÍM VEDENÍM Josf KONVIČNÝ Ing. Josf KONVIČNÝ, Čské dráhy, a. s., Tchnická ústřdna dopravní csty, skc lktrotchniky a nrgtiky, oddělní diagnostiky a provozních měřní, nám. Mickiwicz

Více

Skupinová obnova. Postup při skupinové obnově

Skupinová obnova. Postup při skupinové obnově Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi

Více

10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 1

10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA. slide 1 10. AGREGÁTNÍ NABÍDKA A PHILLIPSOVA KŘIVKA slid 1 Přdmětm přdnášky jsou tři modly agrgátní nabídky, v ktrých v krátkém období výstup pozitivně závisí na cnové hladině. Krátkodobý invrzní vztah mzi inflací

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

Digitální učební materiál

Digitální učební materiál Číslo projku Názv projku Číslo a názv šablony klíčové akvy Dgální učbní marál CZ..07/.5.00/4.080 Zkvalnění výuky prosřdncvím CT / novac a zkvalnění výuky prosřdncvím CT Příjmc podpory Gymnázum, Jvíčko,

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních

Více

El2.C. Podle knihy A Blahovec Základy elektrotechniky v příkladech a úlohách zpracoval ing. Eduard Vladislav Kulhánek

El2.C. Podle knihy A Blahovec Základy elektrotechniky v příkladech a úlohách zpracoval ing. Eduard Vladislav Kulhánek Spš lko PŘÍKOPY El. viční z základů lkochniky. očník Podl knihy Blahovc Základy lkochniky v příkladch a úlohách zpacoval ing. Eduad ladislav Kulhánk yšší odboná a sřdní půmyslová škola lkochnická Faniška

Více

Aplikace VAR ocenění tržních rizik

Aplikace VAR ocenění tržních rizik Aplkac VAR ocnění tržních rzk Obsah: Zdroj rzka :... 2 Řízní tržního rzka... 2 Měřní tržního rzka... 3 Modly... 4 Postup výpočtu... 7 Nastavní modlu a gnrování Mont-Carlo scénářů... 7 Vlčny vyjadřující

Více

Koncepce penzijní reformy hledání základních parametrů

Koncepce penzijní reformy hledání základních parametrů Analýza říjen 2004 Koncepce penzijní efomy hledání základních paameů Téma penzí neusále nabývá na významu. Takzvaný důchodový úče nespasily ani změny paameů povedené v ámci efomy veřejných ozpočů a hlavní

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

ε, budeme nazývat okolím bodu (čísla) x

ε, budeme nazývat okolím bodu (čísla) x Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž

Více

Modely veličin spojitých v čase funkce spojité v čase Binární matematické operace konvoluce a korelace

Modely veličin spojitých v čase funkce spojité v čase Binární matematické operace konvoluce a korelace Modly vličin spojiých v čas funkc spojié v čas Binární mamaické oprac konvoluc a korlac Základní informac Na konvoluci lz nahlíž jako na nudnou mamaickou opraci mzi dvěma funkcmi s jjími vlasnosmi a zákoniosmi.

Více

Beton C25/30: charakteristická pevnost betonu v tlaku f ck. návrhová pevnost betonu v tlaku. střední pevnost betonu v tahu modul pružnosti

Beton C25/30: charakteristická pevnost betonu v tlaku f ck. návrhová pevnost betonu v tlaku. střední pevnost betonu v tahu modul pružnosti Příklad P9 Výpočt šířky thln - dka D Zadání příkladu U topní dky D z přílohy C pouďt mzní tav omzní šířky thln přímým výpočtm, dl N 99-- čl 7 Zatížní, kytí, výztuž na ohyb apod uvažujt dl přdhozíh příkladů

Více

0.1 reseny priklad 4. z

0.1 reseny priklad 4. z Uvadim dva rsn priklad, abch pokud mozno napravil zmak na cvicni. Js o okomnuju pris.. rsn priklad 4. z 9.. Najd sandardni fundamnalni maici pro Cauchho ulohu = 7 + + 5 = Prislusna maic j 7 5 a jji vlasni

Více

část 8. (rough draft version)

část 8. (rough draft version) Gntika v šlchtění zvířat TGU 006 9 Odhad PH BLUP M část 8. (rough draft vrsion V animal modlu (M s hodnotí každé zvíř samostatně a současně v závislosti na užitkovosti příbuzných jdinců hodnocné populac.

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP NVEZTA PADBCE FAKLTA CHEMCKO-TECHNOLOGCKÁ Kadra fyzky ZÁKLADY FYZKY Pro obory DMML, TŘD a AD prznčního suda DFJP NDr. Jan Z a j í c, CSc., 005 3. ELEKTCKÝ POD 3. ZÁKLADNÍ POJMY Pod pojmm lkrcký proud chápm

Více

296/2015 Sb. VYHLÁKA

296/2015 Sb. VYHLÁKA 296/2015 Sb. VYHLÁKA z dn 26. října 2015 o chnicko-konomických paramrch pro sanovní výkupních cn pro výrobu lkřiny a zlných bonusů na plo a o sanovní doby živonosi výrobn lkřiny a výrobn pla z obnovilných

Více

Rentgenová strukturní analýza

Rentgenová strukturní analýza Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé

Více

3.3. Derivace základních elementárních a elementárních funkcí

3.3. Derivace základních elementárních a elementárních funkcí Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců

Více

4. Přechodné děje. 4.1 Zapínání střídavého obvodu

4. Přechodné děje. 4.1 Zapínání střídavého obvodu 4. Přhoné ě Exisí-li v lkriké obvo rvky shoné aklova nrgii, noho v obvo robíha ě, ři nihž by vznikaly skokové zěny éo aklované nrgi. To ovš znaná, ž o ob, ky ohází k zěně nrioiké fory nrgi nahroaěné v

Více

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

NA POMOC FO. Pád vodivého rámečku v magnetickém poli NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním

Více

1.3.4 Rovnoměrně zrychlený pohyb po kružnici

1.3.4 Rovnoměrně zrychlený pohyb po kružnici 34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb

Více

Cvičení č. 9 Lineární zobrazení. Jádro a obor hodnot. Matice lineárního zobrazení.

Cvičení č. 9 Lineární zobrazení. Jádro a obor hodnot. Matice lineárního zobrazení. Ciční z linání lg 4 Ví Vonák Ciční č 9 Linání zozní Jáo oo hono Mi lináního zozní Linání zozní ini Zozní V U k U V jso kooé oso s nzýá linání jsliž U U Množin šh lináníh zozní U o V znčím V L U říkl ozhoně

Více

STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA

STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA Martin Radina a, Ivo Schindlr a, Tomáš Kubina a, Ptr Bílovský a Karl Čmil b Eugniusz Hadasik c a) VŠB Tchnická univrzita Ostrava,

Více

Radek Hendrych. Stochastické modelování v ekonomii a financích. 18. října 2010

Radek Hendrych. Stochastické modelování v ekonomii a financích. 18. října 2010 Sochasické modelování v ekonomii a financích 18. října 21 Program 1 2 3 4 Úroková míra R, T ) Uvažujme bezrizikový bezkuponový dluhopis s mauriou T a nominální hodnoou 1 $, jeho cenu v čase budeme nadále

Více

Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina

Funkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina Přdnáša č 6 Náhodné vličiny pro analyticou statistiu Při výpočtch v analyticé statistic s používají vhodné torticé vličiny, tré popisují vlastnosti vytvořných tstovacích charatristi Mzi njpoužívanější

Více

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění

FYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt

Více

SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaiser, Emil Košťál xkaiserj@feld.cvut.cz

SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaiser, Emil Košťál xkaiserj@feld.cvut.cz SROVNÁNÍ KOLORIMETRICKÝCH ZKRESLENÍ SNÍMACÍCH SOUSTAV XYZ A RGB Jan Kaisr, Emil Košťál xkaisrj@fld.cvut.cz ČVUT, Fakulta lktrotchnická, katdra Radiolktroniky Tchnická 2, 166 27 Praha 6 1. Úvod Článk s

Více

8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice prvního řádu separovatelná, homogenní, lineární, Bernoulliova, exaktní...

8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice prvního řádu separovatelná, homogenní, lineární, Bernoulliova, exaktní... Sbírka úloh z mamaik 8. Občjné difrnciální rovnic 8. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE... 94 8.. Difrnciální rovnic prvního řádu sparovalná homognní linární Brnoulliova akní... 94 8... Sparovalná difrnciální

Více

2. Ze sady 28 kostek domina vytáhnu dvě. Kolika způdoby to mohu provést tak, aby ony dvě kostičky šly k sobě přiložit podle pravidel domina?

2. Ze sady 28 kostek domina vytáhnu dvě. Kolika způdoby to mohu provést tak, aby ony dvě kostičky šly k sobě přiložit podle pravidel domina? 1. Do anečního kroužku chodí 15 chlapů a 20 dívek. Kolik různých párů z nich můžeme vyvoři? 2. Ze sady 28 kosek domina vyáhnu dvě. Kolika způdoby o mohu provés ak, aby ony dvě kosičky šly k sobě přiloži

Více

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný,

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný, VLASTNOSTI GRAFENU TLOUŠŤKA: Při tloušťc 0,34 nanomtru j grafn milionkrát tnčí nž list papíru. HMOTNOST: Grafn j xtrémně lhký. Kilomtr čtvrčný tohoto matriálu váží jn 757 gramů. PEVNOST: V směru vrstvy

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

Stavba atomu. 4πε 1. RUTHERFORDŮV MODEL ATOMU

Stavba atomu. 4πε 1. RUTHERFORDŮV MODEL ATOMU Stavba atou. UTEFODŮV MODEL ATOMU Skutčnost, ž xistují subatoání částic - lktony - s záponý lktický náboj, ž hotnost lktonu j jn vli alý zlok clkové hotnosti atou, a ž pakticky všká hotnost atou j soustřděna

Více

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Základní ransformace časových řad Veškeré násroje základní korelační analýzy, kam paří i lineární regresní (ekonomerické) modely

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Interakce měnové a fiskální politiky v malé otevřené ekonomice v systému s autonomní měnovou politikou a fiskálním pravidlem

Interakce měnové a fiskální politiky v malé otevřené ekonomice v systému s autonomní měnovou politikou a fiskálním pravidlem Inakc měnové a fiskální poliiky v malé ovřné konomic v sysému s auonomní měnovou poliikou a fiskálním pavidlm David Pušvic břzn 2007 daf vsion 0.2 Příspěvk k XII. očníku mzináodní konfnc TEORETICKÉ A PRAKTICKÉ

Více

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění Vlv prostupů tpla mz byty na spravdlvost rozúčtování nákladů na vytápění Anotac Fnanční částky úhrady za vytápění mz srovnatlným byty rozpočítané frmam používajícím poměrové ndkátory crtfkované podl norm

Více

6.3.6 Zákon radioaktivních přeměn

6.3.6 Zákon radioaktivních přeměn .3. Zákon radioakivních přeměn Předpoklady: 35 ěkeré nuklidy se rozpadají. Jak můžeme vysvěli, že se čás jádra (například čásice 4 α v jádře uranu 38 U ) oddělí a vyleí ven? lasická fyzika Pokud má čásice

Více

k 1 P R 2 A t = 0 c A = c A,0 = A,0 c t Poměr rychlostí vzniku produktů P a R je konstantní a je roven poměru příslušných rychlostních konstant.

k 1 P R 2 A t = 0 c A = c A,0 = A,0 c t Poměr rychlostí vzniku produktů P a R je konstantní a je roven poměru příslušných rychlostních konstant. Ra simulánní Ra bočné (onurnční) Njjnoušší přípa - vě monomolulární ra: ro časovou změnu onnra láy plaí ( + ) + Řšním éo ifrniální rovni pro počáční pomínu R osanm závislos na čas v varu 0,0 ( ) +,0 (analogi

Více

Metody ešení. Metody ešení

Metody ešení. Metody ešení Mtod šní z hldiska kvalit dosažného výsldku ) p ř sné mtod p ř ímé ř šní difrnciálních rovnic, většinou pro jdnoduché konstrukc nap ř. ř šní ohbu prutu p ř ímou intgrací ) p ř ibližné mtod náhrada hldané

Více

Praktické aspekty implementace jednoduchých číslicových regulátorů

Praktické aspekty implementace jednoduchých číslicových regulátorů raicé aspy implmnac jdnodchých číslicových rgláorů racical implmnaion aspcs of simpl digial conrollrs Bc. Gajdůšová Monia iplomová prác ABSRA Náplní diplomové prác j simlační ověřní vybraných ypů číslicových

Více

Phillipsova křivka a její vypovídací schopnost v podmínkách české ekonomiky v letech

Phillipsova křivka a její vypovídací schopnost v podmínkách české ekonomiky v letech Phillipsova křivka a jjí vypovídací schopnos v podmínkách čské konomiky v lch 1993-005. Karl Škr Absrak Tao prác má za cíl analyzova vzah mzi nzaměsnanosí a inflací v Čské rpublic za období 1993 005. První

Více

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)

INTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál) INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc

Více

KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD

KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD 40 KIRSTEN BIEDERMANNOVÁ ANDERS FLORÉN PHILIPPE JEANJACQUOT DIONYSIS KONSTANTINOU CORINA TOMAOVÁ TLAKEM POD POD TLAKEM míč, hmotnost, rovnováha, pumpička, tlak, idální plyn, pružná srážka, koficint rstituc

Více

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 )

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 ) Stvbní mchnik A1 K132 SMA1 Přdnášk č. 3 Příhrdové konstrukc Co nás čká v čtvrté přdnášc? Příhrdové konstrukc Zákldní přdpokldy Sttická určitost/nurčitost Mtody výpočtu Obcná mtod styčných bodů Nulové pruty

Více

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)

Úloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5) pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku

Více

7. Soustavy lineárních diferenciálních rovnic.

7. Soustavy lineárních diferenciálních rovnic. 7 837 4:3 Josf Hkrdla sousavy liárích difrciálích rovic 7 Sousavy liárích difrciálích rovic Příklad 7 3 + 5 + ( ) ξ 3 + ( ) ξ Maicový zápis 3 5 + 3 ( ) ξ ( ) ξ Dfiic 7 (sousava liárích difrciálích rovic

Více

APLIKACE INDEXU DAŇOVÉ PROGRESIVITY V PODMÍNKÁCH ČESKÉ REPUBLIKY

APLIKACE INDEXU DAŇOVÉ PROGRESIVITY V PODMÍNKÁCH ČESKÉ REPUBLIKY APLIKACE INDEXU DAŇOVÉ PROGRESIVIT V PODMÍNKÁCH ČESKÉ REPUBLIK Ramanová Ivea ABSTRAKT Příspěvek je věnován problemaice měření míry progresiviy zdanění pomocí indexu daňové progresiviy, kerý vychází z makroekonomických

Více

1. Okrajové podmínky pro tepeln technické výpo ty

1. Okrajové podmínky pro tepeln technické výpo ty 1. Okrajové podmínky pro tpln tchncké výpo ty Správné stanovní okrajových podmínk j jdnou z základních součástí jakéhokol tchnckého výpočtu. Výjmkou njsou an tplně tchncké analýzy. V násldující kaptol

Více

347/2012 Sb. VYHLÁŠKA

347/2012 Sb. VYHLÁŠKA 347/2012 Sb. VYHLÁŠKA z dn 12. října 2012, ktrou s stanoví tchnicko-konomické paramtry obnovitlných zdrojů pro výrobu lktřiny a doba životnosti výrobn lktřiny z podporovaných zdrojů Změna: 350/2013 Sb.

Více

ČSN EN OPRAVA 2

ČSN EN OPRAVA 2 ČESKÁ TECHNICKÁ NORMA ICS 3.00.40 Črvn 006 Ntopné tlakové nádoby Část 3: Konstrukc a výpočt ČSN EN 3445-3 OPRAVA 69 545 idt EN 3445-3:00/Cor.:004-+ EN 3445-3:00/Cor.:004-+ EN 3445-3:00/Cor.3:005-03 Corrigndum

Více

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy

Více

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 Vniřní jednoka pro sysém epelných čerpadel vzduch-voda EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1 EKHBRD014ACY1

Více

a polohovými vektory r k

a polohovými vektory r k Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,

Více

Aplikace analýzy citlivosti při finačním rozhodování

Aplikace analýzy citlivosti při finačním rozhodování 7 mezinárodní konference Finanční řízení podniků a finančních insiucí Osrava VŠB-U Osrava Ekonomická fakula kaedra Financí 8 9 září 00 plikace analýzy cilivosi při finačním rozhodování Dana Dluhošová Dagmar

Více

Signálky V. Signálky V umožňují světelnou signalizaci jevu.

Signálky V. Signálky V umožňují světelnou signalizaci jevu. Signalizace a měření Signálky V funkce echnické údaje Signálky V umožňují svěelnou signalizaci jevu. v souladu s normou: ČS E 60 947-5-1, ČS E 60 073 a IEC 100-4 (18327); jmenovié napěí n: 230 až 400 V

Více

1.3 Derivace funkce. x x x. . V každém bodě z definičního oboru má každá z těchto funkcí vlastní derivaci. Podle tabulky derivací máme:

1.3 Derivace funkce. x x x. . V každém bodě z definičního oboru má každá z těchto funkcí vlastní derivaci. Podle tabulky derivací máme: rivc unkc 9 Vpočtět drivci unkc nou unkci lz přpst v tvru součt tří unkcí Zřjmě ji můžm chápt jko kd Ihnd vidím ž V kždém bodě z diničního oboru má kždá z těchto unkcí vlstní drivci Podl tbulk drivcí mám:

Více

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY - 54-10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY (V.LYSENKO) Základní princip analogově - číslicového převodu Analogové (spojié) y se v nich ransformují (převádí) do číslicové formy. Vsupní spojiý (analogový) doby

Více

2. Frekvenční a přechodové charakteristiky

2. Frekvenční a přechodové charakteristiky rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č.3 MECHATRONIKA Ing. Jana Kovářová Co je o mechaonika? Inedisciplinání obo Mechanika Elekonika Řízení Výpočení echnika Obsah Waův eguláo Základní pojmy Výuka mechaoniky

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

REGULACE. Akční členy. Měřicí a řídicí technika přednášky LS 2006/07. Blokové schéma regulačního obvodu MRT-07-P4 1 / 13.

REGULACE. Akční členy. Měřicí a řídicí technika přednášky LS 2006/07. Blokové schéma regulačního obvodu MRT-07-P4 1 / 13. Měřicí a řídicí chnika přdnášky LS 26/7 REGULACE (pokračoání) přnosoé csy akční člny rguláory rgulační pochod Blokoé schéma rgulačního obodu z u rguloaná sousaa y akční čln měřicí čln úsřdní čln rguláoru

Více

5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova)

5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova) Punčochář, J: AEO; 5. kapitola 1 5. kapitola: Vysokofrkvnční zsilovač (rozšířná osnova) Čas k studiu: 6 hodin íl: Po prostudování této kapitoly budt umět dfinovat pracovní bod BJT a FET určit funkci VF

Více

I. MECHANIKA 8. Pružnost

I. MECHANIKA 8. Pružnost . MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

10. Elektromagnetická indukce

10. Elektromagnetická indukce . Jv kromagncká ndukc. Ekromagncká ndukc Magncké po cívky () posupuj cívkou (). Př zapnuí a vypnuí obvodu () zaznamnám na vomru výchyku. Př změnách poohy cívky () s éž objví výchyka. př zvyšování nbo snžování

Více

Cvičení č. 14 Vlastní čísla a vlastní vektory. Charakteristický mnohočlen a charakteristická rovnice. Lokalizace spektra. Spektrální rozklad.

Cvičení č. 14 Vlastní čísla a vlastní vektory. Charakteristický mnohočlen a charakteristická rovnice. Lokalizace spektra. Spektrální rozklad. Cičení z lineání algeby 7 Ví Vondák Cičení č 4 Vlasní čísla a lasní ekoy Chaakeisický mnohočlen a chaakeisická onice Lokalizace speka Spekální ozklad Vlasní čísla a lasní ekoy maice Nechť je dána čecoá

Více

IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ

IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ Doc. Ing. Dalibor Biolk, CSc. K 30 VA Brno, Kounicova 65, PS 3, 6 00 Brno tl.: 48 487, fax: 48 888, mail: biolk@ant.f.vutbr.cz Abstract: Basic idas concrning immitanc dscription

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07 Měřicí a řídicí echnika přednášky LS 26/7 SIMULACE numerické řešení diferenciálních rovnic simulační program idenifikace modelu Numerické řešení obyčejných diferenciálních rovnic krokové meody pro řešení

Více

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů

Metodika zpracování finanční analýzy a Finanční udržitelnost projektů OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Meodika zpracování finanční analýzy a Finanční udržielnos projeků PŘÍLOHA

Více

MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity

MA1: Cvičné příklady funkce: D(f) a vlastnosti, limity MA: Cvičné příklady funkc: Df a vlastnosti, ity Stručná řšní Na zkoušc j samozřjmě nutné své kroky nějak odůvodnit. Rozsáhljší pomocné výpočty s tradičně dělají stranou, al bývá také moudré nějak naznačit

Více

5. Modifikovaný exponenciální trend

5. Modifikovaný exponenciální trend 5. Modifikovaný exponenciální rend Tvar rendu Paraer: α, β, Tr = + α β, =,..., n ( β > 0) Hodí se k odelování rendu s konsanní podíle sousedních diferencí Aspoick oezen (viz obr., α < 0,0 < β 0) α

Více

4. Střední radiační teplota; poměr osálání,

4. Střední radiační teplota; poměr osálání, Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

ZPRAVODAJSTVÍ. Newsletter ISSUE N 04 ÚNOR 2009 STRANA 2 & 4 NOVINKY Z BRUSELU STRANA 3 & 5 ČESKÉ PŘEDSEDNICTVÍ A ZLÍNSKÝ KRAJ

ZPRAVODAJSTVÍ. Newsletter ISSUE N 04 ÚNOR 2009 STRANA 2 & 4 NOVINKY Z BRUSELU STRANA 3 & 5 ČESKÉ PŘEDSEDNICTVÍ A ZLÍNSKÝ KRAJ SPECIÁLNĚ ZAMĚŘENO NA PŮLROK ČESKÉHO PŘEDSEDNICTVÍ ZPRAVODAJSTVÍ STRANA 2 & 4 NOVINKY Z BRUSELU Několik akcí dostalo Zlínský kraj v Bruslu na scénu! Na jdn týdn si události připravné zastoupním monopolizovali

Více

Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy

Navazující magisterské studium MATEMATIKA 2016 zadání A str.1 Z uvedených odpovědí je vždy Navazující magistrské studium MATEMATIKA 16 zadání A str.1 Příjmní a jméno: Z uvdných odpovědí j vžd právě jdna správná. Zakroužkujt ji! V násldujících dsti problémch j z nabízných odpovědí vžd právě jdna

Více

USE OF ELASTICITY CATEGORY IN FORMING OF PERSPECTIVE AGRICULTURAL POLICY TOWARDS SUSTAINABLE DEVELOPMENT

USE OF ELASTICITY CATEGORY IN FORMING OF PERSPECTIVE AGRICULTURAL POLICY TOWARDS SUSTAINABLE DEVELOPMENT VYUŽITÍ KATEGORIE RUŽNOSTI ŘI KONCIOVÁNÍ ERSEKTIVNÍ ZEMĚDĚLSKÉ OLITIKY K TRVALE UDRŽITELNÉMU ROZVOJI USE OF ELASTICITY CATEGORY IN FORMING OF ERSECTIVE AGRICULTURAL OLICY TOWARDS SUSTAINABLE DEVELOMENT

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE VYTVÁŘENÍ TRŽNÍ ROVNOVÁHY VYBRANÝCH ZEMĚDĚLSKO-POTRAVINÁŘSKÝCH PRODUKTŮ Ing. Michal Malý Školiel: Prof. Ing. Jiří

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA Přednáška 7 MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA A INTERAKCE S MĚNOVÝM KURZEM (navazující přednáška na přednášku na éma inflace, měnová eorie a měnová poliika) Měnová poliika

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DIPLOMOVÁ PRÁCE. 2008 Bc. Pavel Hájek

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DIPLOMOVÁ PRÁCE. 2008 Bc. Pavel Hájek ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE DIPLOMOVÁ PRÁCE 8 Bc. Pavl Hájk ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavbní, Katdra spciální godézi Názv diplomové prác: Vbudování, zaměřní a výpočt bodového

Více

1.3.5 Dynamika pohybu po kružnici I

1.3.5 Dynamika pohybu po kružnici I 1.3.5 Dynamika pohybu po kružnici I Předpoklady: 1304 Při pohybu po kružnici je výhodnější popisova pohyb pomocí úhlových veličin, keré korespondují s normálními veličinami, keré jsme používali dříve.

Více