Stavba atomu. 4πε 1. RUTHERFORDŮV MODEL ATOMU
|
|
- Michaela Horáčková
- před 8 lety
- Počet zobrazení:
Transkript
1 Stavba atou. UTEFODŮV MODEL ATOMU Skutčnost, ž xistují subatoání částic - lktony - s záponý lktický náboj, ž hotnost lktonu j jn vli alý zlok clkové hotnosti atou, a ž pakticky všká hotnost atou j soustřděna v vli alé části jho obju, odpovídá odl nukláního atou (plantání odl atou), ktý navhl uthfod oku 9. Podl této přdstavy j ato tvořn kladně nabitý nhybný jád, kol něhož obíhají lktony podobně, jako obíhají planty kol Slunc. Okolí jáda, v něž s pohybují lktony, s nazývá lktonová sféa. Exaktní atatické řšní j ožné pouz po soustavu dvou těls jádo a jdiný obíhající lkton. Takovou soustavou j njn ato vodíku, al také ion, ktý vznikn z jakéhokoliv atou odstanění všch až na jdiný lkton z jho lktonové sféy. Nní báno v úvahu působní žádných vnějších sil. Ato, na ktý npůsobí žádné vnější síly, s nazývá izolovaný ato. J to přdstava, ktá nůž být v skutčnosti splněna, potož ísto, v kté by npůsobila vůbc žádná silová pol, by uslo být v nkončné vzdálnosti od jakýchkoliv látkových těls. Silová pol působící na tělsa však běžně bývají natolik slabá, ž jjich vliv nní vůbc pozoovatlný, tdy jsou zandbatlná. Pohybuj-li s lkton po kuhové dáz, v jjíž střdu j nhybné jádo, sp. pohybují-li s jádo a lkton po soustřdných kužnicích, přičž jjich spojnic stál pochází střd kužnic, j odstřdivá síla F o působící na lkton sp. na obě částic přsně kopnzována silou lktostatickou F l a silou gavitační F g. odnotu každé z těchto sil označí jako kladnou, působí-li na částici sě od střdu kužnic, po níž s částic pohybuj (tdy pulsní síly ají hodnoty kladné a ataktivní síly ají hodnoty záponé). Pak platí F F + F () o + l g Tuto ovnici ůž upavit do tvau Fg F o + Fl + () Fl Po lktostatickou sílu platí F l Q Q (3) πε j kd Q j náboj lktonu (záponý lntání náboj), Q j j náboj jáda, ε j pitivita vakua a j vzdálnost zi střd jáda a střd lktonu. Jádo atou a lkton s vzájně lktostaticky přitahují. V souladu s tí á F l záponou hodnotu, nboť náboj lktonu á záponou hodnotu a všchny ostatní činitl v zloku na pavé staně ovnic (3) ají hodnoty kladné. Jlikož náboj jáda ůž ít jn hodnoty clistvých násobků kladného lntáního náboj -Q, platí Q j ZQ () kd Z j přiozné číslo. Dosazní za Q j z ovnic () do ovnic (3) dostává ZQ F l (5) πε Gavitační síla j vyjádřna vztah κj F g (6) kd κ j gavitační konstanta, j j hotnost jáda a j hotnost lktonu. Gavitační síla j vždy přitažlivá. Aby jjí hodnota byla záponá, usí být přd zlok na pavé staně ovnic znaénko inus, potož všchny vličiny v toto zloku ají hodnoty kladné. Spojní ovnic (5) a (6) dostan po poě gavitační a lktostatické síly Fg vztah F l F F g j πκε (7) l Z Q
2 ktý ukazuj, ž tnto poě j přío úěný zloku Z j, tdy hotnosti jáda vztažné k počtu lntáních lktických nábojů v jádř. Z jad atoů vyskytujících s v pozské příodě á njvyšší hodnotu tohoto zloku 38 jádo atou 9 U. Tnto ato obsahuj 9 lktonů, poto v jho případě Z j ovno 9. Za hotnost jho jáda j dosadí hotnost atou ( ) znšnou o hotnost lktonů a dostan Z j 38 9 U a 38 a 9U 38 9 U 9 9 Dosazní této hodnoty do ovnic (7) dostává F F g l 38 9 U,958 9, ,5 8 u -9 5, , 593 6,67, u,66 57 u - s - 9 (,6 9 C) -7 8,8588,958 Fg U všch ostatních jdnolktonových iontů vytvořných z přiozných atoů jsou hodnoty jště nší, nž Fl naposld vypočítaná hodnota. Tak alé hodnoty ná sysl dosazovat do ovnic (), nboli význa gavitační intakc zi jád atou a lkton j zandbatlný. Zandbání gavitační intakc s ovnic () zjdnoduší na tva F F (8) o + l Po odstřdivou sílu působící na lkton obíhající ychlostí v po kuhové dáz kol nhybného jáda atou platí v (9) Dosazni za F o z ovnic (9) a za F l z ovnic (5) do ovnic (8) dostává ovnici F o - C s v z níž plynou vztahy: ZQ πε () ZQ () πε v ZQ v () πε Q Z v (3) πε ovnic (3) vyjadřuj, ž ychlost lktonu, ktý s pohybuj po kuhové dáz, v jjíž střdu j nhybné jádo atou, j npřío úěná odocnině poloěu dáhy. Při nkončně vlké poloěu dáhy by byla ychlost lktonu nulová a při nulové vlikosti poloěu dáhy, kdyby jádo bylo bzozěný hotný bod, by ychlost lktonu usla být nkončně vlká. Engi izolované soustavy jádo lkton j obcně součt kintických ngií obou útvaů a jjich spolčné potnciální ngi. Nhybné jádo ná kintickou ngii, á ji pouz lkton. Potciální ngii uvdné soustavy zpavidla označuj jako potnciální ngii lktonu v lktické poli jáda. Engii soustavy s nhybný jád E, tdy součt kintické a potnciální ngi lktonu nazývá ngi lktonu. Vyjadřuj ji ovnic E E k + E p () kd E k j kintická ngi lktonu a E p j potnciální ngi. Po kintickou ngii platí
3 E k v (5) Dosazní za v z ovnic () dostan vztah zi kintickou ngií a poloě dáhy lktonu ZQ E k (6) 8πε K přístění lktonu, ktý j v klidu v vzdálnosti od jáda atou, do vzdálnosti + d, j potřba působit na lkton silou F l. Při to s vykoná pác, ovnající s zvýšní potnciální ngi soustavy jádo - lkton o hodnotu de p, a platí de p F d (7) l Dosazní za F l z vztahu (5) dostan ovnici d E p ZQ d πε jjíž intgací získá vztah (8) ZQ E p + C (9) πε kd C j intgační konstanta. Konvnčně j E p po a z toho plyn, ž C. Potnciální ngi soustavy jádo lkton j tdy vyjádřna vztah ZQ E p () πε Dosazní za E k z ovnic (6) a za E p z ovnic () do ovnic () dostává ZQ E () 8πε Engi lktonu vypočítaná podl tohoto vztahu po jakoukoliv končnou kladnou hodnotu poloěu jho dáhy á záponou hodnotu. To s ůž zdát na pvní pohld podivné, avšak vůbc to nvadí při výpočtch, jak vlkou ngii j třba soustavě dodat, á-li s zěnit poloě dáhy lktonu z hodnoty na hodnotu nbo jak vlká ngi j při takové zěně soustavou vydána, anbo jakou hodnotu nabud poloě dáhy lktonu, když do soustavy s poloě dáhy lktonu j učitá ngi dodána nbo j učitá ngi touto soustavou vydána. Engi chaaktizuj stav lktonu sp. stav atou. uthfodův odl atou už v době, kdy byl vytvořn, byl v ozpou s lktoagntickou toií, nboť podl ní by lktony pohybující s po zakřivné dáz ěly tval vysílat zářní a tí ztáct ngii tdy ěly by s pohybovat po spiál k kladně nabitéu jádu, s níž by s nakonc spojily. Koě toho tnto odl nvysvětluj čáový chaakt atoových spkt.. BOŮV MODEL ATOMU Čáový chaakt atoových spkt vysvětlil uthfodův žák, dánský fyzik Nils Boh (93). Jho odl atou, přsněji řčno soustavy nhybného jáda a jdnoho lktonu, j vytvořn z uthfodova odlu doplnění o dva postuláty. (Postulát s v příodních vědách ozuí pincip či tvzní, kté j ndokazovaný východisk učité toi.). Elkton ůž být v stavch, po něž platí podínka nh v () π kd n j přiozné číslo, nazývané hlavní kvantové číslo a h 6,66-3 J s j Planckova konstanta. Výaz v na lvé staně ovnic vyjadřuj tzv. ont hybnosti lktonu. Tyto stavy s nazývají dovolné stacionání stavy.. Jstliž s uskutční přchod lktonu zi stav s nižší ngií E a stav s vyšší ngií E, j při to vyzářno či absobováno jdiné kvantu ngi lktoagntického zářní E f, což vyjadřuj vztah 3
4 E f E E ktý dosazní za E f z Planckovy-Einstinovy ovnic (E f hν) přjd na tva hν E E (3) kd ν j fkvnc příslušné spktální čáy. Když z pvního Bohova postulátu () vyjádří ychlost lktonu v, tdy nh v () π a takto vyjádřnou ychlost dosadí do ovnic (), po úpavě vyjádří vzdálnost lktonu od jáda jako funkci hlavního kvantového čísla n: ε ZQ h π n V případě vodíku (Z ) by tdy obit njbližší k jádu (což j tn, po nějž j n ) ěl poloě (5) ε h a 5,977 5,9 p (6) Q π Vličina a s nazývá poloě pvního Bohova obitu nbo Bohův poloě. Engii jdnolktonového systéu vyjádří jako funkci hlavního kvantového čísla n, když do ovnic () dosadí za z ovnic (5). Po úpavě dostan vztah Z Q E (7) h n z něhož vyplývá, ž ngi systéu ost s hlavní kvantový čísl n, a dosazní za E a E do ovnic (3) pak dostává Z Q hν (8) h n n Fkvnc spktální čáy atou vodíku (Z ) podíněné přchody lktonů zi stav s vyšší kvantový čísl n a stav s nižší kvantový čísl n j tdy Q ν 3 (9) h n n Mzi vlnočt zářní ~ ν, jho vlnovou délkou λ a kvitočt ν platí vztahy ~ ν ν λ c kd c j ychlost světla v vakuu. Z vztahu (8) tdy plyn ~ Q ν 3 (3) h c n n Zavdní konstanty Q (3) 3 h c ůž posldní ovnici přpsat na tva ~ ν (3) n n U naěřných vlnočtů ča v spktu bylo zjištěno, ž platí zákonitost vyjádřná ydbgový vztah
5 ~ ν (33) n n 7 - v něž (, ±, ) j xpintálně zjištěná konstanta nazývaná ydbgova konstanta po vodík (jdna z njpřsněji znáých fyzikálních konstant), a dál n a n jsou přiozná čísla, přičž n <. Z ovnic (3) a (33) vyplývá, ž, jsou-li Bohovy postuláty spávné, usí platit n Konstantu vypočítá dosazní hodnot fyzikálních vličin do vztahu (3): ( 8, C s ) ( 6,66 s ), (-,69-9 C) 9, , s - Výpočítaná hodnota konstanty j v výboné shodě s xpintálně nalznou hodnotou ydbgovy konstanty. Souhlas zi xpint a toií s jště zlpší, když v vztazích (7), (8), (9) a (3) nahadí hotnost lktonu vličinou µ, ktá s nazývá dukovaná hotnost atou a j dfinována vztah µ j + j Touto kokcí j bána v úvahu skutčnost, ž jádo atou nůž být nhybné, al jádo a lkton s usjí pohybovat obcně po konfokálních lipsách, přičž spojnic jáda a lktonu stál pochází spolčný ohnisk obou lips. Jdnou z ožností zvláštní případ j pohyb jáda a lktonu po soustřdných kužnicích, kdy spojnic jáda a lktonu stál pochází spolčný střd obou kužnic. O to, jak alá j tato kokc, s přsvědčí, když dukovanou hotnost po ato vodíku µ vyjádří jako násobk hotnosti lktonu. Jád atou vodíku j poton, ktý j 836,5 kát těžší nž lkton, poto po vodík platí µ 836, ,5, Jiné jdnolktonové útvay ají těžší jáda nž ato vodíku a poto s jjich dukované hotnosti jště víc blíží hotnosti lktonu. Použij-li k výpočtu ydbgovy konstanty po vodík vztahu Q µ (3) 3 h c ktý vyplývá z poovnání koigované ovnic (3) s xpintálně nalzný vztah (33), dostan hodnotu, , jjíž odchylka od xpintálně zjištěné hodnoty j v zích xpintálních chyb jdnotlivých konstant a vlastních ěřní. Základní stav soustavy j stav, v něž á soustava iniální ngii. Z vztahu (7) j zřjé, ž izolovaný jdnolktonový útva j v základní stavu, když j hlavní kvantové číslo n. Po izolovaný ato vodíku ( Z ) v základní stavu a s výš uvdnou kokcí na pohyb jáda přjd ovnic (7) na tva Q µ E h a ngi z něho vypočítaná á hodnotu E,79-8 J. Excitovaný stav soustavy j stav, kdy á soustava vyšší ngii nž v základní stavu. Zvýšní ngi soustavy s nazývá xcitac. Vzdální lktonu z dosahu silového působní jáda s nazývá ionizac. Engi pávě potřbná po vzdální lktonu z atou v základní stavu io dosah silového působní jáda, tj do stavu, kdy hodnota hlavního kvantového čísla s zvýší nad všchny z ( n ), j ionizační ngi (E i ) atou. V stavu, kdy n, j ngi atou E, tdy platí E i E E E E 5
6 odnota ionizační ngi atou vodíku tdy j,79-8 J. Z ovnic (33) vyplývá, ž vlnočt spktální čáy odpovídající ionizační ngii atou vodíku ( n, n ) j 8 ovn ydbgově konstantě po vodík, tdy j vlnová délka této čáy λ 9,7 63 9,76 3 n. J to čáa s njvyšší vlnočt (njvyšší kitočt, njkatší vlnovou délkou) v spktu vodíku tvořící hanu Lyanovy séi ča (v ultafialové oblasti spkta). Pfktní shoda vypočítaných a xpintálně nalzných paatů spktálních ča vodíku a jiných jdnolktonových útvaů byla tiuf Bohovy toi. Bohův odl s však npodařilo ozpacovat po útvay s víc nž jdní lkton a ná žádný význa po toii chických vazb. 6
INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE
Studnt Skupina/Osob. číslo INSTITUT FYZIKY VŠB-TU OSTRAVA NÁZEV PRÁCE 5. Měřní ěrného náboj lktronu Číslo prác 5 Datu Spolupracoval Podpis studnta: Cíl ěřní: Pozorování stopy lktronů v baňc s zřděný plyn
VíceGravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r
Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1
Více4.3.2 Vlastní a příměsové polovodiče
4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si
VícePříklad 70 Vypočet konstanty šíření (fázová konstanta, měrný útlum)
Přílad 7 Vypočt onstanty šířní (fáová onstanta, ěný útlu) adání : Rovinná haonicá ltoagnticá vlna o itočtu : a) f 5 b) f 7 M c) f 9 G s šíří v postřdí s těito paaty:.[ S ], ε 8, µ. Vaianta a) Vaianta b)
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
ATOMOVÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Kvantování nrgi lktroagntického zářní opakování téa Elktroagntické zářní Planck (1900): Enrgi lktroagntického zářní ůž být vyzářna
VíceELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE
ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE ELEKTRICKÝ NÁBOJ A JEHO VLASTNOSTI Pokud budm třít sklněnou tyč o vlněnou látku a poté ji přiblížím k malým tělískům bud j přitahovat. Co j příčinou tohoto jvu Obdobně
VíceJihočeská univerzita v Českých Budějovicích. Katedra fyziky. Modely atomu. Vypracovala: Berounová Zuzana M-F/SŠ
Jihočská univrzita v Čských Budějovicích Katdra fyziky Modly atomu Vypracovala: Brounová Zuzana M-F/SŠ Datum: 3. 5. 3 Modly atomu První kvalitativně správnou přdstavu o struktuř hmoty si vytvořili již
Více3.10. Magnetické vlastnosti látek
3.10. Magntické vlastnosti látk 1. Sznáit s s klasifikací látk podl charaktru intrakc s agntický pol. 2. Nastudovat zdroj agntického pol atou, ktré souvisí s pohyb lktronu v lktronové obalu atou. 3. Vysvětlit
VíceElektrické a magnetické pole zdroje polí
Elektické a magnetické pole zdoje polí Co je podstatou elektomagnetických jevů Co jsou elektické náboje a jaké mají vlastnosti Co je elementání náboj a bodový elektický náboj Jak veliká je elektická síla
VíceMěrný náboj elektronu
Fyzikální praktikum FJFI ČVUT v Praz Úloha č. 12 : Měřní měrného náboj lktronu Jméno: Ondřj Ticháčk Pracovní skupina: 7 Kruh: ZS 7 Datum měřní: 8.4.2013 Klasifikac: Měrný náboj lktronu 1 Zadání 1. Sstavt
VíceHlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby
Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod
VíceELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE
ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky
VíceUniverzita Tomáše Bati ve Zlíně
Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační
Více2.1.6 Relativní atomová a relativní molekulová hmotnost
.1. Relativní atoová a elativní oleklová hotnost Předpoklady: Pedagogická poznáka: Tato a následjící dvě hodiny jso pokse a toch jiné podání pobleatiky. Standadní přístp znaená několik ne zcela půhledných
VíceF5 JEDNODUCHÁ KONZERVATIVNÍ POLE
F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Evopský sociální fond Paha & EU: Investujeme do vaší budoucnosti F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Asi nejznámějším konzevativním polem je gavitační silové pole Ke gavitační
VíceFYZIKA 3. ROČNÍK. Nestacionární magnetické pole. Magnetický indukční tok. Elektromagnetická indukce. π Φ = 0. - magnetické pole, které se s časem mění
FYZKA 3. OČNÍK - magntické pol, ktré s s časm mění Vznik nstacionárního magntického pol: a) npohybující s vodič s časově proměnným proudm b) pohybující s vodič s proudm c) pohybující s prmanntní magnt
VíceSeznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních
VíceFyzikální podstata fotovoltaické přeměny solární energie
účinky a užití optického zářní yzikální podstata fotovoltaické přměny solární nri doc. In. Martin Libra, CSc., Čská změdělská univrzita v Praz a Jihočská univrzita v Čských Budějovicích, In. Vladislav
Více4. PRŮBĚH FUNKCE. = f(x) načrtnout.
Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.
VíceMECHANIKA GRAVITA NÍ POLE Implementace ŠVP ivo Výstupy Klí ové pojmy Strategie rozvíjející klí ové kompetence I. Kompetence k u ení:
Pojekt Efektivní Učení Refoou oblastí gynaziálního vzdělávání je spolufinancován Evopský sociální fonde a státní ozpočte České epubliky. MECHANIKA GRAVITAČNÍ POLE Ipleentace ŠVP Učivo - Newtonův gavitační
VíceÚvod do fyziky plazmatu
Dfinic plazmatu (typická) Úvod do fyziky plazmatu Plazma j kvazinutrální systém nabitých (a případně i nutrálních) částic, ktrý vykazuj kolktivní chování. Pozn. Kolktivní chování j tdy podstatné, nicméně
VíceTrivium z optiky 37. 6. Fotometrie
Trivium z optiky 37 6. Fotomtri V přdcházjící kapitol jsm uvdli, ž lktromagntické zářní (a tdy i světlo) přnáší nrgii. V této kapitol si ukážm, jakými vličinami j možno tnto přnos popsat a jak zohldnit
VíceVYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE FAKULTA CHEMICKO-INŽENÝRSKÁ FYZIKA II
A-PDF MRGR DMO VYSOKÁ ŠKOLA CHMICKO-TCHNOLOGICKÁ V PRAZ FAKULTA CHMICKO-INŽNÝRSKÁ FYZIKA II Doc. RND. Mai Ubanová, CSc. Doc. Ing. Jaoslav Hofmann, CSc. RND. D. Pt Ala p k ngi 3 3 7 ω n 3 5 ω n 3 ω n ω
Více(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ
Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku
VíceÚloha č. 11. H0 e. (4) tzv. Stefanův - Bo1tzmannův zákon a 2. H λ dλ (5)
pyromtrm - vrz 01 Úloha č. 11 Měřní tplotní vyzařovací charaktristiky wolframového vlákna žárovky optickým pyromtrm 1) Pomůcky: Měřicí zařízní obsahující zdroj lktrické nrgi, optický pyromtr a žárovku
Více2. Frekvenční a přechodové charakteristiky
rkvnční a přchodové charaktristiky. rkvnční a přchodové charaktristiky.. Obcný matmatický popis Přchodové a frkvnční charaktristiky jsou důlžitým prostřdkm pro analýzu a syntézu rgulačních obvodů a tdy
Více1 Poznámka k termodynamice: Jednoatomový či dvouatomový plyn?
Kvantová a statistická fyzika (erodynaika a statistická fyzika) 1 Poznáka k terodynaice: Jednoatoový či dvouatoový plyn? Jeden ol jednoatoového plynu o teplotě zaujíá obje V. Plyn však ůže projít cheickou
Vícezákladní pojmy základní pojmy teorie základní pojmy teorie základní pojmy teorie základní pojmy teorie
Tori v strojírnské tchnologii Ing. Oskar Zmčík, Ph.D. základní pojmy používaná rozdělní vztahy, dfinic výpočty základní pojmy žádnou součást ndokážm vyrobit s absolutní přsností při výrobě součásti dochází
VíceELEKTŘINA A MAGNETIZMUS
ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ
VíceNewtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce
Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí
VícePříklady z kvantové mechaniky k domácímu počítání
Příklady z kvantové mchaniky k domácímu počítání (http://www.physics.muni.cz/~tomtyc/kvant-priklady.pdf (nbo.ps). Počt kvant: Ionizační nrgi atomu vodíku v základním stavu j E = 3, 6 V. Najdět frkvnci,
VíceMAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických
VíceMetody ešení. Metody ešení
Mtod šní z hldiska kvalit dosažného výsldku ) p ř sné mtod p ř ímé ř šní difrnciálních rovnic, většinou pro jdnoduché konstrukc nap ř. ř šní ohbu prutu p ř ímou intgrací ) p ř ibližné mtod náhrada hldané
VíceINTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)
INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc
VíceFYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 12: Měření měrného náboje elektronu. Dosah alfa částic v látce. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 12: Měřní ěrného náboj lktronu Datu ěřní: 19. 4. 21 Dosah alfa částic v látc Jéno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužk: 2. ročník, 1. kroužk, pondělí
VíceHodnocení tepelné bilance a evapotranspirace travního porostu metodou Bowenova poměru návod do praktika z produkční ekologie PřF JU
Hodnocní tlné bilanc a vaotransirac travního orostu mtodou Bownova oměru návod do raktika z rodukční kologi PřF JU Na základě starších i novějších matriálů uravil a řiravil Jakub Brom V Čských Budějovicích,
Více, je vhodná veličina jak pro studium vyzařování energie z libovolného zdroje, tak i pro popis dopadu energie na hmotné objekty:
Radiomtri a fotomtri Vyzařování, přnos a účinky nrgi lktromagntického zářní všch vlnových délk zkoumá obor radiomtri, lktromagntickým zářním v optické oblasti s pak zabývá fotomtri. V odstavci Přnos nrgi
Více6 Elektronový spin. 6.1 Pojem spinu
6 Elktronový spin Elktronový spin j vličina poněkud záhadná, vličina, ktrá nmá obdoby v klasickém svět. Do kvantové mchaniky s spin dostal jako xprimntální fakt: z řady xprimntů totiž vyplývalo, ž kromě
VíceZákazové značky. Název, význam a užití. Zákaz vjezdu všech vozidel v obou směrech. Zákaz vjezdu všech vozidel
Příloha č. 3 k vyhlášc č. 294/2015 Sb. Zákazové značky Číslo Bl Vyobrazní o Zákaz vjzdu všch vozidl v obou směrch Značka zakazuj vjzd všm druhům vozidl. B2 B3 B4 Zákaz vjzdu všch vozidl Značka zakazuj
VíceNewtonův gravitační zákon
Gavitační pole FyzikaII základní definice Gavitační pole je posto, ve kteém působí gavitační síly. Zdojem gavitačního pole jsou všechny hmotné objekty. Každá dvě tělesa jsou k sobě přitahována gavitační
VíceDemonstrace skládání barev
Vltrh nápadů učitlů fyziky I Dmonstrac skládání barv DENĚK NAVRÁTIL Přírodovědcká fakulta MU Brno Úvod Studnti střdních škol si často stěžují na nzáživnost nzajímavost a matmatickou obtížnost výuky fyziky.
VícePohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot
Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný
Více5. kapitola: Vysokofrekvenční zesilovače (rozšířená osnova)
Punčochář, J: AEO; 5. kapitola 1 5. kapitola: Vysokofrkvnční zsilovač (rozšířná osnova) Čas k studiu: 6 hodin íl: Po prostudování této kapitoly budt umět dfinovat pracovní bod BJT a FET určit funkci VF
Více2. Elektrotechnické materiály
. Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů
VíceÚvod do fyziky plazmatu
Úvod do fyziky plazmatu 1 Dfinic plazmatu (S. Ichimaru, Statistical Plasma Physics, Vol I) Plazma j jakýkoliv statistický systém, ktrý obsahuj pohyblivé nabité částic. Pozn. Statistický znamná makroskopický,
VíceHlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů
Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,
VíceM ě ř e n í o d p o r u r e z i s t o r ů
M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:
Více6.2.5 Pokusy vedoucí ke kvantové mechanice IV
65 Pokusy vedoucí ke kvantové echanice IV Předpoklady: 06004 94: J Franck, G Hertz: Frack-Hertzův pokus Př : Na obrázku je nakresleno schéa Franck-Hertzova pokusu Jaký způsobe se budou v baňce (pokud v
VíceI. MECHANIKA 8. Pružnost
. MECHANKA 8. Pružnost Obsah Zobcněný Hookův zákon. ntrprtac invariantů. Rozklad tnzorů na izotropní část a dviátor. Křivka dformac. Základní úloha tori pružnosti. Elmntární Hookův zákon pro jdnoosý tah.
VíceBalmerova série vodíku
Balmerova série vodíku Josef Navrátil 1, Barbora Pavlíková 2, Pavel Mičulka 3 1 Gymnázium Ivana Olbrachta, pepa.navratil.ez@volny.cz 2 Gymnázium Jeseník, barca@progeo-sys.cz 3 Gymnázium a SOŠ Frýdek Místek,
VícePopis fyzikálního chování látek
Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna
VíceMA1: Cvičné příklady funkce: D(f) a vlastnosti, limity
MA: Cvičné příklady funkc: Df a vlastnosti, ity Stručná řšní Na zkoušc j samozřjmě nutné své kroky nějak odůvodnit. Rozsáhljší pomocné výpočty s tradičně dělají stranou, al bývá také moudré nějak naznačit
VíceÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4
ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH
VíceKonstrukci (její části) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).
. íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha této kapitol: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjí části) budm idaliovat
Víceε ε [ 8, N, 3, N ]
1. Vzdálenost mezi elektonem a potonem v atomu vodíku je přibližně 0,53.10-10 m. Jaká je velikost sil mezi uvedenými částicemi a) elektostatické b) gavitační Je-li gavitační konstanta G = 6,7.10-11 N.m
VíceL HOSPITALOVO PRAVIDLO
Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o
Více11. cvičení z Matematiky 2
11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv
Více= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1
Mgntiké pol 8 Vypočtět mgntikou inuki B kuhové smyčky o poloměu 5 m n jjí os symti v válnosti 1 m o oviny smyčky, jstliž smyčkou potéká lktiký pou 1 A Řšní: Po příspěvk k mgntiké inuki v boě A pltí pol
VíceStavba atomu: Atomové jádro
Stavba atomu: tomové jádo Výzkum stuktuy hmoty: Histoie Jen zdánlivě existuje hořké či sladké, chladné či hoké, ve skutečnosti jsou pouze atomy a pázdno. Démokitos, 46 37 př. n.l. Heni Becqueel 85 98 objev
VíceZjednodušený výpočet tranzistorového zesilovače
Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy
Víceε, budeme nazývat okolím bodu (čísla) x
Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž
VíceFYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
Vícečást 8. (rough draft version)
Gntika v šlchtění zvířat TGU 006 9 Odhad PH BLUP M část 8. (rough draft vrsion V animal modlu (M s hodnotí každé zvíř samostatně a současně v závislosti na užitkovosti příbuzných jdinců hodnocné populac.
VíceJednokapalinové přiblížení (MHD-magnetohydrodynamika)
Jdnokapalinové přiblížní (MHD-magntohydrodynamika) Zákon zachování hmoty zákony zachování počtu lktronů a iontů násobny hmotnostmi a sčtny n t div nu ni divnu i i t div u M M (1) t i m n M n u u M i i
VícePříklady elektrostatických jevů - náboj
lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém
VíceELEKTRONOVÝ OBAL ATOMU. kladně nabitá hmota. elektron
MODELY ATOMU ELEKTRONOVÝ OBAL ATOMU Na základě experimentálních výsledků byly vytvořeny různé teorie o struktuře atomu, tzv. modely atomu. Thomsonův model: Roku 1897 se jako první pokusil o popis stavby
VíceKINETICKÁ TEORIE PLYNŮ
KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu
VíceGRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný,
VLASTNOSTI GRAFENU TLOUŠŤKA: Při tloušťc 0,34 nanomtru j grafn milionkrát tnčí nž list papíru. HMOTNOST: Grafn j xtrémně lhký. Kilomtr čtvrčný tohoto matriálu váží jn 757 gramů. PEVNOST: V směru vrstvy
VíceRentgenová strukturní analýza
Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční
Více( ) { }{} ( ) { }{} ( ) n (
Mtody optické spktoskopi v biofyzic Toi absopčníc přcodů / TEORIE ABSORPČNÍCH PŘECHODŮ. Obcné vztay Jdná s nám o ční lktickéo dipólovéo momnt přcod { } ( ) ( ) { } ( ) d = Ψ R d R Ψ R ˆ,,, n n momnt lz
VíceChemické výpočty. výpočty ze sloučenin
Cheické výpočty výpočty ze sloučenin Cheické výpočty látkové nožství n, 1 ol obsahuje stejný počet stavebních částic, kolik je atoů ve 1 g uhlíku 1 C počet částic v 1 olu stanovuje Avogadrova konstanta
VíceSP2 01 Charakteristické funkce
SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía:
VícePENOS ENERGIE ELEKTROMAGNETICKÝM VLNNÍM
PNO NRG LKTROMAGNTCKÝM VLNNÍM lktromagntické vlnní, stjn jako mchanické vlnní, j schopno pnášt nrgii Tuto nrgii popisujm pomocí tzv radiomtrických, rsp fotomtrických vliin Rozdlní vyplývá z jdnoduché úvahy:
Více( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 2
I Drivac jdnoduchých funkcí pomocí pravidl a vzorců Užitím P U druhého a třtího člnu použijm P Nní podl V a posldní čln podl V Použijm P Dál V a na drivaci trojčlnu v poldní závorc V a V Výsldk upravím
VíceJaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.
7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y
VíceKonstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).
. íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjíčásti) budm idaliovat jako tuhá (ndfomovatlná)
Vícev 1 = at 1, (1) t 1 = v 1
Příklad Statující tyskové letadlo musí mít před vzlétnutím ychlost nejméně 360 km/h. S jakým nejmenším konstantním zychlením může statovat na ozjezdové dáze dlouhé,8 km? Po ychlost v ovnoměně zychleného
VíceF9 SOUSTAVA HMOTNÝCH BODŮ
F9 SOUSTAVA HMOTNÝCH BODŮ Evopský sociální fon Ph & EU: Investujee o vší buoucnosti F9 SOUSTAVA HMOTNÝCH BODŮ Nyní se nučíe popisovt soustvu hotných boů Přepokláeje, že áe N hotných boů 1,,, N N násleující
VíceAtom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =
Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?
VíceMolekula vodíku. ez E. tak její tvar můžeme zjednodušit zavedením tzv. Bohrova poloměru vztahem: a celou rovlici (0.1) vynásobíme výrazem
Molkul vodíku Přípvná část tomové jdnotky Vzmm-li si npř. Schodingovu ovnici: Z, (0.) m tk jjí tv můžm zjdnodušit zvdním tzv. ohov poloměu vzthm: (0.) m Pokud v těchto jdnotkách udm měřit vzdálnosti, noli
Více1. Hmotnost a látkové množství
. Hotnost a látkové nožství Hotnost stavební jednotky látky (například ato, olekly, vzorcové jednotky, eleentární částice atd.) označjee sybole a, na rozdíl od celkové hotnosti látky. Při požití základní
VíceDynamika mechanismů. dynamika mechanismů - metoda uvolňování, dynamika mechanismů - metoda redukce. asi 1,5 hodiny
Dynaika echanisů Dynaika I, 0. přednáška Obsah přednášky : dynaika echanisů - etoda uvolňování, dynaika echanisů - etoda edukce Doba studia : asi,5 hodiny Cíl přednášky : seznáit studenty se dvěa základníi
Více28. Základy kvantové fyziky
8. Základy kvantové fyziky Kvantová fyzika vysvětluj fyzikální principy mikrosvěta. Mgasvět svět plant a hvězd Makrosvět svět v našm měřítku, pozorovatlný našimi smysly bz jakéhokoli zprostřdkování Mikrosvět
VíceModel spotřeby soukromého sektoru (domácností)
Makokonomická analýza přdnáška Modl spořby soukomého skou (domácnosí) Přdpoklady Exisují pouz domácnosi j. uvažujm pouz spořbu nxisují žádné invsic. Exisuj pouz jdn yp spořbního saku. Exisují pouz dvě
VíceNewtonův zákon I
14 Newtonův zákon I Předpoklady: 104 Začnee opakování z inulé hodiny Pedaoická poznáka: Nejdříve nechá studenty vypracovat oba následující příklady, pak si zkontrolujee první příklad a studenti dostanou
VíceZákladní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el.
Aplikace Gaussova zákona ) Po sestavení základní ovnice elektostatiky Základní vlastnosti elektostatického pole, pobané v minulých hodinách, popisují dvě difeenciální ovnice : () ot E konzevativnost el.
VíceSTUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA
STUDIUM DEFORMAČNÍCH ODPORŮ OCELÍ VYSOKORYCHLOSTNÍM VÁLCOVÁNÍM ZA TEPLA Martin Radina a, Ivo Schindlr a, Tomáš Kubina a, Ptr Bílovský a Karl Čmil b Eugniusz Hadasik c a) VŠB Tchnická univrzita Ostrava,
Více1. Okrajové podmínky pro tepeln technické výpo ty
1. Okrajové podmínky pro tpln tchncké výpo ty Správné stanovní okrajových podmínk j jdnou z základních součástí jakéhokol tchnckého výpočtu. Výjmkou njsou an tplně tchncké analýzy. V násldující kaptol
Více41 Absorpce světla ÚKOL TEORIE
41 Absorpc světla ÚKOL Stanovt závislost absorpčního koficintu dvou průhldných látk různé barvy na vlnové délc dopadajícího světla. Proměřt pro zadané vlnové délky absorpci světla při jho průchodu dvěma
VíceFunkce hustoty pravděpodobnosti této veličiny je. Pro obecný počet stupňů volnosti je náhodná veličina
Přdnáša č 6 Náhodné vličiny pro analyticou statistiu Při výpočtch v analyticé statistic s používají vhodné torticé vličiny, tré popisují vlastnosti vytvořných tstovacích charatristi Mzi njpoužívanější
Více1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.
Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností
VíceGravitační a elektrické pole
Gavitační a elektické pole Newtonův gavitační zákon Aistotelés (384-3 př. n. l.) předpokládal, že na tělesa působí síla směřující svisle dolů. Poto jsou těžké předměty (skály tvořící placatou Zemi) dole
VíceElektromagnetické jevy, elektrické jevy 4. Elektrický náboj, elektrické pole
Elektomagnetické jevy, elektické jevy 4. Elektický náboj, elektické pole 4. Základní poznatky (duhy el. náboje, vodiče, izolanty) Někteé látky se třením dostávají do zvláštního stavu přitahují lehká tělíska.
Více( ) ( ) Newtonův zákon II. Předpoklady:
6 Newtonův zákon II Předpoklady: 0005 Př : Autoobil zrychlí z 0 k/h na 00 k/h za 8 s Urči velikost síly, která auto uvádí do pohybu, pokud autoobil váží,6 tuny Předpokládej rovnoěrně zrychlený pohybu auta
VíceIMITANČNÍ POPIS SPÍNANÝCH OBVODŮ
IMITANČNÍ POPIS SPÍNANÝCH OBVODŮ Doc. Ing. Dalibor Biolk, CSc. K 30 VA Brno, Kounicova 65, PS 3, 6 00 Brno tl.: 48 487, fax: 48 888, mail: biolk@ant.f.vutbr.cz Abstract: Basic idas concrning immitanc dscription
Více, je vhodná veličina i pro studium vyzařování energie z libovolného zdroje a také i pro popis dopadu energie na hmotné objekty:
Radiomtri a otomtri Vyzařování, přnos a účinky nrgi lktromagntického zářní všch vlnových délk zkoumá obor radiomtri, lktromagntickým zářním v optické oblasti s pak zabývá otomtri. V odstavci Přnos nrgi
VíceATOMOVÁ SPEKTRA DVOUELEKTRONOVÝCH SYSTÉMŮ: He, Hg
Úloa č. 0 ATOMOVÁ SPEKTRA DVOUELEKTRONOVÝCH SYSTÉMŮ: H, Hg ÚKOL MĚŘENÍ:. Staovt vlovou délku jitzivějšíc spktálíc liií lia.. Staovt vlovou délku jitzivějšíc spktálíc liií tuti.. TEORETICKÝ ÚVOD. Itfc světla
VíceElektrická vodivost kovů. Pro pohyb částice ve vnějším silovém potenciálním poli platí Schrodingerova rovnice:
Elektická vodivost kovů Vodiče Vodiče Po pohyb částice ve vnější silové potenciální poli platí Schodingeova ovnice: h Ψ x Ψ + y + Ψ + W z p Ψ WΨ Tato ovnice popisuje pohyb elektonu a ářešení pouze po učité
VíceEvropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho
VíceÚlohy krajského kola kategorie B
61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé
Více