1.3 Derivace funkce. x x x. . V každém bodě z definičního oboru má každá z těchto funkcí vlastní derivaci. Podle tabulky derivací máme:
|
|
- Bohuslav Zdeněk Špringl
- před 5 lety
- Počet zobrazení:
Transkript
1 rivc unkc 9 Vpočtět drivci unkc nou unkci lz přpst v tvru součt tří unkcí Zřjmě ji můžm chápt jko kd Ihnd vidím ž V kždém bodě z diničního oboru má kždá z těchto unkcí vlstní drivci Podl tbulk drivcí mám: 9 Td i unkc má v kždém bodě diničního oboru drivci 9 pltí: Vpočtět drivci unkc nou unkci lz chápt jko součin kd Zřjmě V kždém bodě diničního oboru mjí obě unkc vlstní drivc pltí td s použitím tbulk drivcí: Td i unkc má v kždém bodě diničního oboru drivci pltí: rivci uvžovné unkc lz vpočítt i jink to tk ž unkci njprv uprvím roznásobním: odtud přímo dostnm
2 Vpočtět drivci unkc nou unkci lz přdvším chápt jko podíl kd Zřjmě tudíž Mám Protož n má unkc n vlstní drivci pltí: [ ] Vpočtět drivci unkc sin nou unkci lz přdvším chápt jko podíl kd Zřjmě sin všk tudíž ostávám cos sin Funkc má v kždém bodě diničního oboru vlstní drivci pltí: [ ] sin cos sin cos 5sin 5 cos 5 5 sin Vpočtět drivci unkc ln Zd musím dnou unkci chápt přdvším jko unkci složnou situc j zd násldující:
3 Vnější unkc ln Vnitřní unkc Vnitřní unkci bchom sic mohli brát s diničním oborm l nmělo b to smsl nboť unkc zobrzuj intrvl do intrvlu n ktrém unkc nní dinován Zřjmě pltí: o ostávám: n n Podl vět o drivci složné unkc má unkc o v kždém bodě diničního oboru vlstní drivci pltí: o Povšimnět si ž výrz j dinován i v těch bodch v ktrých unkc vůbc nní dinován tudíž tm nmůž mít ni drivci S tímto jvm s lz stkt čstěji nní třb s s ním niktrk znpokojovt Vpočtět drivci unkc ln Zd j si njlpší dnou unkci přpst v tvru l n o o kd z z ln Z tohoto tvru j vidět ž Zřjmě Proto unkc vzmm s diničními obor Kždá z unkcí má v kždém bodě svého diničního oboru vlstní drivci Sndno vidímž: z z Funkc o o má v kždém bodě z diničního oboru drivci pltí: o o o o o o 6ln o o ln 6ln Vzhldm k tomu ž skládání unkcí j socitivní mohli jsm postupovt i tímto způsobm: o o o o o o což j stjný výsldk jko výš prktický výpočt b l vpdl tkto: 6ln ln ln
4 5 Vpočtět drivci unkc j konstnt V tomto příkldě chcm upozornit jk drivovt unkci tvru g Zákldní mšlnk j stjná jko při výpočtu it Funkci přdvším vjádřím v tvru: h ln g Zřjmě pltí: o kd h ln g Pltí ž tkž mám: h ln g h h ln g g h ln g h ln g pro výpočt drivc ln g opět stčí použít větu o drivci složné unkc Npíšm ln g g o g kd g ln g g tkž mám: g ln g g g g h g Clkm td dostávám: g h ln g h g V nšm konkrétním přípdě tk dostávám: ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln ln 6 Vpočtět drivci unkc rctg Zřjmě intrvl h ln ln ln ln ln ln ln ln ln l chcm-li použít ormulí pro výpočt drivcí musím s omzit n nboť tto ormul pltí pouz pro vlstní drivc v nšm přípdě j Tuto skutčnost zjistím sndno pomocí vět o itě drivc Funkc j totiž spojitá v bodě zprv n intrvlu pltí: N intrvlu Td i ovšm pomocí ormulí pro drivc sndno njdm: zřjmě rctg Vzhldm k tomu ž jdiná otázk týkjící s drivc ktrá zbývá j otázk pro V tkovýchto přípdch l vlmi čsto pomáhá vět o itě drivc Funkc
5 j spojitá v bodě zprv tkž istuj pltí: Clkově td můžm npst ž pltí: rctg n 7 Vpočtět drivci unkc Zd j opět l z stjných důvodů jko v přdšlém příkldě můžm počítt drivc pouz n intrvlu ostávám tk: Zjímá-li nás jště použijm opětně větu o itě drivc Funkc j spojitá v bodě zprv pltí tkž istuj pltí: 8 Vpočtět drivci unkc rcsin Zd můž být trochu njsná otázk diničního oboru Npíšm-li všk nrovnosti: vidím hnd ž posldní nrovnosti pltí pro všchn rálná ž td Vnitřní unkc má zřjmě vlstní drivci v kždém bodě z Bohužl všk vnější unkc rcsin má nvlstní jdnostrnné drivc v bodch Při použití vět o drivci složné unkc s td musím omzit n t pro ktrá m m m Vidím tk ž drivc unkc můžm podl vět o drivci složné unkc vpočíst pro všchn Mám:
6 rcsin sign Funkc j očividně spojitá v bodě td j spojitá jk zlv tk i zprv dál pltí: sign sign Podl vět o itě drivc j td Oboustrnná drivc td nistuj 9 Vpočtět drivci unkc rcsin j konstnt Sndno zjistím ž intrvlu Zd pltí: l ž drivci j možno počítt pouz n otvřném Podl vět o itě drivc zd bz nsnází zjistím ž td npst: n Vpočtět drivci unkc Zřjmě Zd j výhodné npst pro pro nboť odtud ihnd pln ž pro pro Z těchto výsldků vidím ž unkc Můžm npst: nmá v bodě drivci ž sign pro Můžm
7 Vpočtět drivci unkc opět použijm postupu ktrý jsm viděli v přdchozím příkldě Můžm td psát: pro pro Odtud ihnd pln: pro pro Vidím přdvším ž td Clkm můžm npst: Funkc má sic tvr součinu má v bodě vlstní drivci l tuto drivci nlz vpočíst pomocí ormul pro drivci součinu nboť jdn unkc z součinu totiž unkc - nmá v bodě drivci Vpočtět drivci unkc ln lz psát: ln pro ln pro N dostávám: n dostávám Clkm lz td psát: ln pro Vpočtět drivci unkc Pro výpočt drivc j dobré si všimnout ž můžm psát Funkc má td tvr součinu přičmž prvního činitl umím sndno zdrivovt Podívjm s proto n drivci unkc pro pro Odtud ihnd dostávám: pro Zřjmě td sign pro : Výsldk lz zpst v jdnotném tvru:
8 Clkm dostávám při vužití ormul pro drivování součinu: sign sign sign 5 sign sign Vpočtět drivci unkc sin Kvůli bsolutní hodnotě budm dávt pozor n intrvl kd sin kd sin Jsou to zřjmě intrvl tvru k k N intrvlu k k pro k sudé dostávám sin sin odkud pln: sin cos pro k k k k N intrvlu k k pro k liché dostávám sin sin odkud pln: sin cos pro k k k k Vidím td ž pro libovolné k clé j k k ž td k Odtud ihnd pln ž Abchom mohli vjádřit pomocí jdiné ormul povšimněm si ž lz psát sin sin pro k k j li k sudé sin sin pro k k j li k liché Potřbovli bchom td unkci ktrá s rovná sin n intrvlch k k s k sudým ktrá s rovná sin n intrvlch k k s k lichým To j l zřjmě unkc sin Můžm td závěrm npst: sin sin sin 5 Vpočtět drivci unkc rccos Zřjmě ; { ; } N dostávám rccos
9 N dostávám rccos Podl vět o itě drivc dostávám nvíc: J td pltí: rccos 5 Vpočtět drivci unkc [ ] sin N zákldě znlostí s unkcí [ ] vím ž j vhodné uvžovt intrvl nn kd n j clé N tomto intrvlu zřjmě j nsin tudíž sin cos nsin pro n n n n Zbývá td určit n Pokusím s opět použít větu o itě drivc Z tímto účlm njprv ukžm ž unkc j v bodě n spojitá zlv: n n sin n n n n [ ] n n nsin nsin Odkud vplývá ž n N zákldě těchto výsldků sndno vidím ž unkc má vlstní drivci i v kždém cločíslném bodě n přičmž pltí n Můžm td npst ž ž nsin pro n n pro n Chcm-li výsldk zpst v hzčím tvru můžm psát: [ ] sin 6 Vpočtět drivci unkc pro pro pro Lz psát:
10 pro pro pro Odtud: pro pro pro Vidím ihnd ž Clkový výsldk lz zpst v tvru: pro pro pro 7 Vpočtět drivci unkc b pro b všud jind Povšimněm si ž můžm npst pro b pro b pro b Odtud získám ihnd: pro b b pro b pro b b b Zs vidím ž clkový výsldk lz zpst v tvru: b b pro b všud jind 8 Vpočtět drivci unkc ln pro pro Povšimněm si ž opět můžm npst pro ln pro Odtud dostnm: pro pro Vidím pk ž ž lz psát:
11 pro pro 9 Vpočtět drivci unkc rctg sign pro pro Zřjmě opět můžm psát pro rctg pro pro Zd j trochu npříjmné ž hodnot unkc v bodě nní rovn hodnotě unkc rctg v bodě tkž nmůžm npst pro Kždopádně všk z přdchozího vjádřní unkc ihnd pln: pro pro pro Zbývá jn otázk jk vpdá Sndno vidím ž Funkc nní td v bodě spojitá zlv odtud j ihnd jsné ž pokud istuj můž být pouz nvlstní K důkzu istnc nmůžm použít větu o itě drivc nboť bohužl nní splněn přdpokld spojitosti unkc v bodě zlv Nzbývá nž použít dinici drivc Tím j vštřování drivc ukončno Zřjmě Clkový výsldk můžm zpst v tvru
12 pro pro Vpočtět drivci unkc pro pro Zřjmě opět můžm psát pro pro pro Odtud ihnd pln pro pro Vidím td ž ž pltí pro pro pro Vpočtět drivci unkc Zřjmě Podobně jko v příkldě 5 můžm zd npst Odtud vclku bz obtíží zjistím ž pro pro Včsné vtknutí výrzu z bsolutní hodnot nám ukázlo ž při vštřování unkc bod nmusím vůbc brát v úvhu Njprv vpočtm [ ] Odtud [ ] [ 6 8] [ 9] [ 9] pro [ 9] pro 8 Ihnd vidím ž ž pltí: 8
13 [ 9] pro [ 9] pro [ 9] pro Chcm-li vjádřit pomocí jdiné ormul potřbujm unkci ρ tkovou ž pro ρ pro pro Lz si l všimnout ž tková unkc oprvdu istuj j ρ sign sign Tkž můžm npst: sign sign [ 9] Vpočtět drivci unkc sin Kvůli bsolutní hodnotě vsktující s v vjádřní unkc budm uvžovt intrvl Můžm zřjmě psát sin pro sin pro Odtud sin sin cos sin sin cos sin Td [ sin cos ] [ ] pro clkový výsldk můžm zpst v tvru sign sin [ sin cos ] Vpočtět drivci unkc rcsinsin Zřjmě nboť oborm hodnot unkc sin j intrvl pro tntýž intrvl j diničním oborm unkc rcsin Funkc rcsin s zvádí jko unkc invrzní k unkci sin což vlmi svádí k tomu npst rcsinsin Toto j zásdní chb nboť j třb si uvědomit ž unkci rcsin dinujm jko invrzní unkci k unkci sin uvžovné pouz n intrvlu Pltí td rcsin sin l pouz pro Pro dtilní rozbor unkc rcsin sin j dobré si povšimnout ž tto unkc j priodická s priodou Stčí ji td uvžovt n intrvlu délk M si vbrm intrvl N intrvlu jk již blo uvdno mám rcsin sin N intrvlu potom dostávám:
14 rcsinsin sin rcsin rcsinsin rcsinsin Nboť Pro lpší zpmtování uvdm gr unkc rcsin sin Z přdchozích výsldků ihnd pln: pro pro Odtud s použitím priodičnosti sndno vidím ž Z k k ; ž Z k k k pro Z k k k pro Vpočtět drivci unkc pro Pro vpočtm Zbývá vštřit zd istuj drivc nbo zd istují lspoň jdnostrnné drivc v bodě Zd j si njlép povšimnm-li si poměrně tchnick výhodného tvru unkc zčnm počítt podl dinic:
15 Td pro j určno výš uvdnou ormulí Pokud s nrozhodnm počítt podl dinic můžm jště použít větu o itě drivc Tnto postup l jk ihnd uvidít j zd podsttně tchnick náročnější Přdně bchom větu o itě drivc mohli použít musím ověřit zd unkc j v bodě spojitá Funkc j td v bodě spojitá tkž můžm počítt itu drivc Posldní itu lz vpočítt tímto způsobm: Při výpočtu jsm použili větu o itě složné unkc vnitřní unkc j vnější unkc j lhospitlovo prvidlo Vchází tk tudíž dostávám opět
16 Odtud znov dostávám 5 Vpočtět drivci unkc Z účlm urční diničního oboru uvžujm nrovnost Posldní nrovnost j splněn pro všchn rálná odkud pln Vnitřní unkc má vlstní drivci v kždém bodě vnější unkc v kždém bodě J td třb z účlm použití vět o drivci složné unkc vloučit bod v nichž Tkový bod j l pouz jdn to bod Pro můžm td použít větu o drivci složné unkc ostávám tk: Zbývá vštřit bod Upozorněm opět ž při výpočtu it v bodě zlv uvžujm tudíž Td pro j určno výš uvdnou ormulí
17 6 Vpočtět drivci unkc rcsin Z účlm urční diničního oboru uvžujm nrovnost Odtud ihnd vidím ž Zárovň j zřjmé ž unkc j n clém svém diničním oboru spojitá Vnější unkc rcsin nmá vlstní drivc v bodch proto s z účlm použití vět o drivci složné unkc musí vloučit bod pro ktré j Jdná s td o dv bod Pro m dostávám: rcsin sign sign Anlogickým postupm zjistím ž Vidím td ž 7 Vpočtět drivci unkc pro rctg Zřjmě Pro dostávám: 5 rctg rctg rctg Vzhldm k příznivému tvru unkc bud vhodné jdnostrnné drivc v bodě počítt podl dinic:
18 rctg rctg Td
Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu.
Mtmtik II.. Mtod pr prts pro určité intgrály.. Mtod pr prts pro určité intgrály Cíl Sznámít s s použitím mtody pr prts při výpočtu určitých intgrálů. Zákldní typy intgrálů, ktré lz touto mtodou vypočítt
VíceL HOSPITALOVO PRAVIDLO
Difrnciální počt funkcí jdné rálné proměnné - 7 - L HOSPITALOVO PRAVIDLO LIMITY TYPU 0/0 PŘÍKLAD Pomocí L Hospitalova pravidla určt sin 0 Ověřní přdpokladů L Hospitalovy věty Přímočarým použitím věty o
Více5.2. Určitý integrál Definice a vlastnosti
Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)
Více4. PRŮBĚH FUNKCE. = f(x) načrtnout.
Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.
VíceURČITÝ INTEGRÁL FUNKCE
URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()
Více2.9.16 Přirozená exponenciální funkce, přirozený logaritmus
.9.6 Přirozná ponnciální funkc, přirozný ritmus Přdpokldy: 95 Pdgogická poznámk: V klsické gymnziální sdě j přirozná ponnciální funkc 0; j funkc y = +. Asi dvkrát vyrán jko funkc, jjíž tčnou v odě [ ]
Více1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.
Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností
VíceJak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:
.. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto
VíceŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log
Řešme n množině reálných čísel rovnice: ) 6 b) 8 d) e) c) f) ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC Co budeme potřebovt? Chápt definici ritmu. Znát průběh ritmické funkce. Znát jednoduché vět o počítání
VíceSeznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních
VíceAž dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním
Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož
VíceSpojitost funkce v bodě, spojitost funkce v intervalu
10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí
Víceje parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné
1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2
Víceε, budeme nazývat okolím bodu (čísla) x
Množinu ( ) { R < ε} Okolím bodu Limit O :, kd (, ) j td otvřný intrval ( ε ε ) ε, budm nazývat okolím bodu (čísla).,. Bod R j vnitřním bodm množin R M, jstliž istuj okolí O tak, ž platí O( ) M. M, jstliž
VíceDefinice limit I
08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí
VíceLINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
Více5. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ
Intgrální počt funkc jdné proměnné. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ V kpitolách věnovných difrnciálnímu počtu jsm poznli, ž vypočítt drivci funkc j úloh vclku jdnoduchá. Stčí znát doř drivc lmntárních
Více3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru
Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém
VíceMA1: Cvičné příklady funkce: D(f) a vlastnosti, limity
MA: Cvičné příklady funkc: Df a vlastnosti, ity Stručná řšní Na zkoušc j samozřjmě nutné své kroky nějak odůvodnit. Rozsáhljší pomocné výpočty s tradičně dělají stranou, al bývá také moudré nějak naznačit
Více3.3. Derivace základních elementárních a elementárních funkcí
Přdpokládané znalosti V násldujících úvahách budm užívat vztahy známé z střdní školy a vztahy uvdné v přdcházjících kapitolách tohoto ttu Něktré z nich připomnm Eponnciální funkc Výklad Pro odvozní vzorců
Více8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
Více2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem
2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice
VíceObecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
VíceDiferenciální počet. Spojitost funkce
Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti
Vícex + F F x F (x, f(x)).
I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných
VíceZavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA
Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním
Více13. Exponenciální a logaritmická funkce
@11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze
VícePřehled základních vzorců pro Matematiku 2 1
Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,
VíceDERIVACE A INTEGRÁLY VE FYZICE
DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická
VíceH - Řízení technologického procesu logickými obvody
H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu
Více+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
Více3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
VíceOBECNÝ URČITÝ INTEGRÁL
OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,
Více( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) 2
I Drivac jdnoduchých funkcí pomocí pravidl a vzorců Užitím P U druhého a třtího člnu použijm P Nní podl V a posldní čln podl V Použijm P Dál V a na drivaci trojčlnu v poldní závorc V a V Výsldk upravím
VíceV předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
VíceJaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.
7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y
Více( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t
7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách
Více2.9.11 Logaritmus. Předpoklady: 2909
.9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).
VíceOhýbaný nosník - napětí
Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se
Více( a) Okolí bodu
0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,
VíceLogaritmická funkce, logaritmus, logaritmická rovnice
Logritmická funkce. 4 Logritmická funkce, ritmus, ritmická rovnice - získá se jko funkce inverzní k funkci eponenciální, má tvr f: = Pltí: > 0!! * * = = musí být > 0, > 0 Rozlišujeme dv zákldní tp: ) >
Více5.1.5 Základní vztahy mezi body, přímkami a rovinami
5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin
VíceNEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.
NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:
Více2.2.9 Grafické řešení rovnic a nerovnic
..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci
VícePřednáška 9: Limita a spojitost
4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty
Více5.1.5 Základní vztahy mezi body přímkami a rovinami
5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin
Více6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
Více2.1 - ( ) ( ) (020201) [ ] [ ]
- FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé
Více2.3. DETERMINANTY MATIC
2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní
VíceNeurčité výrazy
.. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu
VíceINTERGRÁLNÍ POČET. PRIMITIVNÍ FUNKCE (neurčitý integrál)
INTERGRÁLNÍ POČET Motivac: Užití intgrálního počtu spočívá mj. v výpočtu obsahu rovinného obrazc ohraničného různými funkcmi příp. čarami či v výpočtu objmu rotačního tělsa, vzniklého rotací daného obrazc
Více4. cvičení z Matematiky 2
4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y
VíceLogaritmické rovnice I
.9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme
Více13. Soustava lineárních rovnic a matice
@9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky
VíceVlastnosti posloupností
Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti
VíceZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.
VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální
VíceNMAF061, ZS Písemná část zkoušky 25. leden 2018
Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4
VíceVýpočet obsahu rovinného obrazce
Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh
Více5.2.4 Kolmost přímek a rovin II
5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k
Víceintegrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.
Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze
Vícehledané funkce y jedné proměnné.
DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální
VíceGeometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný.
4. přednášk Geometické zikální plikce učitého integálu Geometické plikce. Osh ovinného útvu A. Pokud se jedná o ovinný útv omezený osou přímkmi gem spojité nezáponé unkce pk je jeho osh dán učitým integálem
VíceII. kolo kategorie Z5
II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem
VíceSeznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.
.4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli
Vícevás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět.
POKYNY KE STUDIU Pokyny ke studiu V úvodu si vysvětlíme jednotnou pevnou strukturu kždé kpitoly tetu, která by vám měl pomoci k rychlejší orientci při studiu Pro zvýrznění jednotlivých částí tetu jsou
Více( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?
1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno
VíceMatice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra
Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel
Více2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
VícePříklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem
Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je
Více2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
VíceJsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.
Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce
Více11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel
KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:
VíceHyperbola a přímka
7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B
VíceVliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění
Vlv prostupů tpla mz byty na spravdlvost rozúčtování nákladů na vytápění Anotac Fnanční částky úhrady za vytápění mz srovnatlným byty rozpočítané frmam používajícím poměrové ndkátory crtfkované podl norm
VíceObsah rovinného obrazce
Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce
Více2 PŘEDNÁŠKA 2: ZÁKLADNÍ (MATEMATICKÝ, FYZIKÁLNÍ) APARÁT A POJMY
PŘEDNÁŠKA : ZÁKLADNÍ (MATEMATICKÝ, FYZIKÁLNÍ) APARÁT A POJMY Klsická fyzik: částic vs. vlny Hmot zářní jsou v klsické fyzic popsány zcl odlišným způsobm. Hmotné objkty: loklizovné řídí s Nwtonovými pohybovými
Více(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a
Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:
VíceVbodě ajsmevčase t=0ahodnoty fsevtéchvíliměnírychlostí. [(h 2 +k 2 )t 2 +(2h+4k)t+5]
Funkce více proměnných: 2. Derivce Ufunkcíjednéproměnnémáderivcefunkce ftrdičnívýkld.je-lidáno =,pk derivce f ()udávásměrnicitečnkegrfu fvodpovídjícímbodě. Vplikcíchje pkásdnídlšíinterpretce,hodnot f ()udává,jkrchlesebudefunkce
VíceIntegrály definované za těchto předpokladů nazýváme vlastní integrály.
Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,
VíceVIII. Primitivní funkce a Riemannův integrál
VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.
VíceIntegrální počet - III. část (určitý vlastní integrál)
Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)
VíceII. 5. Aplikace integrálního počtu
494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu
VíceRentgenová strukturní analýza
Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční
Více4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.
4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost
VíceSeznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.
.. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).
VícePůjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.
4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme
Více8. cvičení z Matematiky 2
8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,
VíceP2 Číselné soustavy, jejich převody a operace v čís. soustavách
P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel
VícePři výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu
Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je
Více4.2.1 Goniometrické funkce ostrého úhlu
.. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α
Více3. Kvadratické rovnice
CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:
Více7. Integrální počet Primitivní funkce, Neurčitý integrál
7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)
VíceKapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a
Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých
VíceÚlohy školní klauzurní části I. kola kategorie C
52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.
Víceln(1 + 3x) lim lim lim ln(x 2 x + 1) lim ln(x 10 + x + 1) = ln x 2 (1 1 x + 1 x 2 ) ln x 10 (1 + 1 x = lim 2 ln x + ln(1 1 x 2 + ln(1 1 x
6. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ ktaristka@gmail.com Příklad. a) b) c) ln + 3x) x x ln 3 ) x x x e 2 e 2x arccos x d) Vtkněte nejrchleji rostoucí člen z logaritmu lnx 2 x + ) lnx 0 +
VíceINTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL
INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci
VíceZkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.
1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)
VícePřehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+
Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu
VíceDigitální učební materiál
Digitální učení mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitnění výuky prostřednictvím ICT Číslo název šlony klíčové ktivity III/ Inovce zkvlitnění výuky prostřednictvím ICT Příjemce
VíceF=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 )
Stvbní mchnik A1 K132 SMA1 Přdnášk č. 3 Příhrdové konstrukc Co nás čká v čtvrté přdnášc? Příhrdové konstrukc Zákldní přdpokldy Sttická určitost/nurčitost Mtody výpočtu Obcná mtod styčných bodů Nulové pruty
Více