Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné
|
|
- Jakub Štěpánek
- před 8 lety
- Počet zobrazení:
Transkript
1 Slezská univerzita v Oavě Obchodně odnikatelská fakulta v Karviné Přijímací zkouška do. ročníku OPF z matematiky (00) A Příklad. Určete definiční oboovnice a rovnici řešte. n + n =. + D : n N n = b b + b + b Příklad. Řešte v R soustavu lineárních rovnic a roveďte zkoušku. + = 4 + = 6 = 0 = = = Zkouška rovedená dosazením výsledků do všech rovnic. 0 b + b + b Příklad. V rovině jsou dány různoběžné římky a q. Určete souřadnice jejich růsečíku P. Výočtem zjistěte, zda jsou římky kolmé. : y = 0, q : = t y = t. b Souřadnice růsečíku P [, y], kde =, y =. Přímky jsou kolmé, rotože: k kq = =, nebo s sq = (;) ( ;) = 0, nebo n n = (;) (;) = 0. q 6b
2 Příklad 4. Určete definiční oboovnice a rovnici řešte. Proveďte zkoušku. log + 4 log + = log. ( ) ( ) 4 D : ( ; ) = L = log, = P = log, = 0,9794 0,9794 b + b + b 0b 4b Příklad. Zadání říkladů: Za odmínky, že dané zlomky mají smysl, určete, co je b nebo b třeba vesat na místo označené ***: ( ) : ( 8) =. *** 00 0, 0b nebo b Vyočítejte 6,6 % z čísla. 66 = 8 0b nebo b Vyočítejte. +. 0b nebo b Vynásobte ( )( ) Určete směrnici římky dané rovnicí + 4 y = 0. -/ 0b nebo b V aritmetické oslounosti je a = 7, a 6 =. Určete diferenci d této oslounosti. d = 8 0b nebo b V geometrické oslounosti je a = 7, a 6 =. Určete 0b nebo b q = kvocient q této oslounosti b nebo b Řešte v R rovnici + = 0. = 7 7 Firma vykázala roční zisk,7 mil. Kč, což odovídá % z tržeb. Jak velké byly tržby? 8 mil. Kč 0b nebo b ; ; 7 0b nebo b Vyočítejte aritmetický růměr čísel ( ).
3 Slezská univerzita v Oavě Obchodně odnikatelská fakulta v Karviné Přijímací zkouška do. ročníku OPF z matematiky (00) B Příklad. Určete definiční oboovnice a rovnici řešte. n + 4 n + = 0. + n Záis výsledků D : n N 0 n = Příklad. Řešte v R soustavu lineárních rovnic a roveďte zkoušku = = 0 = = = 0 Zkouška rovedená dosazením do všech rovnic. = b b + b + b b + b + b b Příklad. V rovině jsou dány různoběžné římky a q. Určete souřadnice jejich růsečíku P. Výočtem zjistěte, zda jsou římky kolmé. : y = 0, q : = t y = t. P, 8, kde =, 4 y =. Přímky jsou kolmé, rotože: k kq = =, nebo s sq = (;) ( ;) = 0, nebo n n = (;) (;) = 0. Souřadnice růsečíku [ y] q 6b
4 Příklad 4. Určete definiční oboovnice a rovnici řešte. Proveďte zkoušku. log log = log. ( ) ( ) 4 D : ; = ( ) L = log, = P = log, = 0,9794 0,9794 b + b + b 0b 4b Příklad. Zadání říkladů: Za odmínky, že dané zlomky mají smysl, určete, co je třeba vesat na místo označené ***: (* **): ( 8) = b nebo b 00 0, 0b nebo b Vyočítejte 7,7 % z čísla. 77 = 7 0b nebo b Vyočítejte. +. 0b nebo b Vynásobte ( )( ) Určete směrnici římky dané rovnicí 4y = 0. k = 0b nebo b V aritmetické oslounosti je a = 7, a 8 =. Určete 0b nebo b d = diferenci d této oslounosti. V geometrické oslounosti je a = 7, a 8 =. 0b nebo b Určete kvocient q této oslounosti. q = b nebo b Řešte v R rovnici + = 0. = 7 7 Firma vykázala roční zisk,8 mil. Kč, což odovídá mil. Kč 0b nebo b % z tržeb. Jak velké byly tržby? Vyočítejte aritmetický růměr čísel ( 7) ; ;. 0b nebo b
5 Slezská univerzita v Oavě Obchodně odnikatelská fakulta v Karviné Přijímací zkouška do. ročníku OPF z matematiky (00) C Příklad. Určete definiční oboovnice a rovnici řešte. n + n + = D : n N n = b b + b + b Příklad. Řešte v R soustavu lineárních rovnic a roveďte zkoušku. 4 + = = = = 0 = = Zkouška rovedená dosazením výsledků do všech rovnic. b + b + b b Příklad. V rovině jsou dány různoběžné římky a q. Určete souřadnice jejich růsečíku P. Výočtem zjistěte, zda jsou římky kolmé. : y = 0, q : = t y = t. 4 Souřadnice růsečíku P [, y], kde =, y =. Přímky jsou kolmé, rotože: k kq = =, nebo s sq = (;) ( ;) = 0, nebo n n = (;) (;) = 0. q 6b
6 Příklad 4. Určete definiční oboovnice a rovnici řešte. Proveďte zkoušku. log + 6 log + = log. ( ) ( ) 4 D : ; = ( ) L = log, = P = log, = 0,9794 0,9794 b + b + b 0b 4b Příklad. Zadání říkladů: Za odmínky, že dané zlomky mají smysl, určete, co je 8 0b nebo b třeba vesat na místo označené ***: ( ) : (***) = , 0b nebo b Vyočítejte, % z čísla = 64 0b nebo b Vyočítejte b nebo b Vynásobte ( )( ) Určete směrnici římky dané rovnicí + 4y = 0. k = 0b nebo b V aritmetické oslounosti je a = 7, a 8 = 8. Určete diferenci d této oslounosti. d = 7 0b nebo b V geometrické oslounosti je a = 7, a 8 = 8. Určete q = 4 0b nebo b kvocient q této oslounosti. 8 0b nebo b Řešte v R rovnici + = 0. = 7 7 Firma vykázala roční zisk,4 mil. Kč, což odovídá 6 mil. Kč 0b nebo b % z tržeb. Jak velké byly tržby? 0 Vyočítejte aritmetický růměr čísel ( ) ; ;. 9 0b nebo b
7 Slezská univerzita v Oavě Obchodně odnikatelská fakulta v Karviné Přijímací zkouška do. ročníku OPF z matematiky (00) D Příklad. Určete definiční oboovnice a rovnici řešte. n + n + =. + + D : n N n = b b + b + b Příklad. Řešte v R soustavu lineárních rovnic a roveďte zkoušku. + 4 = = 6 = 0 = = 0 = Zkouška rovedená dosazením výsledků do všech rovnic. b + b + b Příklad. V rovině jsou dány různoběžné římky a q. Určete souřadnice jejich růsečíku P. Výočtem zjistěte, zda jsou římky kolmé. : y = 0, q : = t y = + t. b Souřadnice růsečíku P [, y], kde =, y =. Přímky jsou kolmé, rotože: k kq = =, nebo s sq = (;) ( ;) = 0, nebo n n = (;) (;) = 0. q 6b
8 Příklad 4. Určete definiční oboovnice a rovnici řešte. Proveďte zkoušku. log log = log ( ) ( ) 4. D : ; = ( ) L = log, = P = log, = 0,9794 0,9794 b + b + b 0b 4b Příklad. Zadání říkladů: Za odmínky, že dané zlomky mají smysl, určete, co je b nebo b třeba vesat na místo označené ***: ( ) : ( 7) =. *** 00 0, 0b nebo b Vyočítejte, % z čísla. = 0b nebo b Vyočítejte b nebo b Vynásobte ( )( ) Určete směrnici římky dané rovnicí 4 + y = 0. k = 0b nebo b V aritmetické oslounosti je a = 7, a 6 =. Určete diferenci d této oslounosti. d = 8 0b nebo b V geometrické oslounosti je a = 7, a 6 =. Určete 0b nebo b q = kvocient q této oslounosti b nebo b Řešte v R rovnici + = 0. = 7 7 Firma vykázala roční zisk 6, mil. Kč, což odovídá % z tržeb. Jak velké byly tržby? 4 mil. Kč 0b nebo b ; ; -4 0b nebo b Vyočítejte aritmetický růměr čísel ( ).
9 Slezská univerzita v Oavě Obchodně odnikatelská fakulta v Karviné E Přijímací zkouška do. ročníku OPF z matematiky (00) -. kolo Příklad. Řešte v R soustavu lineárních rovnic: 4 6 = = 8 = Záznam výsledku = = = 0 ZKOUŠKA: rovedená dosazením do všech rovnic Body ++=b b Příklad. Určete definiční oboovnice a rovnici řešte. Proveďte zkoušku. n + n = 40 + Příklad. Řešte v R rovnici a roveďte zkoušku. 9 *) Nehodící se škrtněte + = Záis výsledků D : n N Řešení n = Zk.: L=P Záis výsledků = Zk.: L=P b 0b b 4b 6b
10 Příklad 4. V rovině jsou dány různoběžné římky a q. Určete souřadnice jejich růsečíku P. Výočtem otvrďte kolmost daných římek. : + y + 9 = 0, q : = t y = + t. 4 Souřadnice růsečíku P [, y], kde =, y =. Přímky jsou kolmé, rotože: k kq = =, nebo s sq = (;) ( ;) = 0, nebo n n = (; ) (;) = 0. q 6b Příklad. Zadání říkladů: Body Za odmínky, že dané zlomky mají smysl, určete, co je třeba vesat na místo označené ***: ( + ) : ( + ) =. + *** Vyočítejte 0, % z čísla 0,078. 0, Vyočítejte Pro funkci f y určete f 0. : = ( ) Určete směrnici římky dané rovnicí 8 4y = 0. V aritmetické oslounosti je a =, a 8 = 00. Určete diferenci d této oslounosti. V geometrické oslounosti je a =, a 8 = 00. Určete 00 kvocient q této oslounosti Řešte v R nerovnici < 0 > 7 7 y Z rovnice = vyjádřete y. y = V množině reálných čísel určete definiční obor funkce 8 f : y =. 8
11 Slezská univerzita v Oavě Obchodně odnikatelská fakulta v Karviné F Přijímací zkouška do. ročníku OPF z matematiky (00) Obor Hotelnictví. Porovnejte čísla - 4 a body Krácením dostaneme a Číslo -469 je větší než 470, roto: < - 470, a tedy - 4 < Zjednodušte: [( - ) ( 4 )- ] - 6 bodů = [ -6 ( ) ] - = [ -6 4 ] - = ( ) = = 4. Vyjádřete ze vzorce neznámou a: S = ac + c v 4 body S = (ac + c) v S v = c (a + ) S cv = a + S cv = a (oř. jiný, ekvivalentní záis, nař. S - cv cv = a)
12 4. Umocněte ( 9 8 y - y ) 9 bodů = y - 4 y y 4. Kolik mililitrů je, z 6 litrů? 6 bodů 6 litrů = ml, =, 6 = ml 6. Jaký největší očet různých trikolór je možné 6 bodů sestavit z ěti vzájemně odlišných barev? Vybíráme vždy tři barvy z ěti možných, záleží na ořadí barev v trikolóře V(,) =!! = 0 = 60 Je možné sestavit 60 různých trikolór. 7. V množině R řešte rovnici: tg = - body = + k 80 = 4 + k 60 k Z 8. Určete definiční obor funkce y = Dvě odmínky: + > 0 a tedy > a zároveň 0. 4 body Celkově ak vyhovují čísla ( - ; 0) (0 ; ).
13 9. Řešte v R rovnici: ( 8 ) = body ( ) = ( ) + 6 = + -6 = + = Určete souřadnice bodu, ve kterém římka 6 bodů : 4y + = 0 rotíná osu. Souřadnice y = 0: + = 0 = -4 Hledaný bod má souřadnice [-4;0].. Řešte v R soustavu rovnic: 0 bodů + y = (y +) 4 + 4y 4 = 0 = 6 y + y = y +4 (6 y) + y = (6 y)y y + y + y = y - y + 4 y 6y + 8= 0 (y ) (y 4) = 0 y =, y = 4 Po dosazení dostáváme = 4, =. Řešením jsou usořádané dvojice [4;] a [;4].
14 . Řešte v R nerovnici: bodů Nulové body jsou = 7 4 a = 4 7. (- ; 4 7 ] [ 4 7 ; 7 4 ] [ 7 4 ; ) a) b) c) [- ; 4 7 ] [ 4 7 ; ] Nemá řešení. Celkové řešení: [- ; 4 7 ] [ 4 7 ; ], tedy [ - ; ].. Určete součet rvních deseti členů geometrické bodů oslounosti, ve které latí: a a = 6 a a 4 = 6 Ze vztahu a n = a q lyne a a q = 6 a - a q³ = 6 a ( q) = 6 a ( - q³) = 6 Řešíme nař. odílovou metodou: q - q³ = 6 6 a tedy + q + q² =. Po úravě q² + q = 0 q = 0, q* = -. Po dosazení do jedné z výše uvedených rovnic: a = 6, a * =. Součet rvních deseti členů ak S = = 6 a S* = = 0.
Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.
Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,
POŽADAVKY pro přijímací zkoušky z MATEMATIKY
TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy
Test z matematiky. Přijímací zkoušky na bakalářský obor Bioinformatika
Test z matematiky Přijímací zkoušky na bakalářský obor Bioinformatika 5. 6. 2019 Na provedení testu máte 60 minut. Při testu nelze používat kalkulátory, tabulky ani jakákoli komunikační média. Test obsahuje
CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T BŘEZNA 07 D : 4 BŘEZNA 07 P P P : 964 : 0 M M : 0 : 8,8 M : 8,8 % S : -7,5 M P : -,5 :,8 Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na
MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Matematika rozšířená úroveň Vážení vyučující! ředmětoví koordinátoři Centra pro zjišťování výsledků vzdělávání pro
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická
Analytická metoda aneb Využití vektorů v geometrii
KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
Opakovací kurs středoškolské matematiky podzim
. Opakovací kurs středoškolské matematiky podzim František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU
SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro udržitelný rozvoj v sítí spolupracujících škol,
CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
Test Matematika Var: 101
Test Matematika Var: 101 Pokyny: Vyplňte příslušné kolečko odpovídající správné odpovědi u každé otázky ve zvláštním odpovědním formuláři, který Vám byl rozdán spolu se zadáním testu. 1. Přímky p: y =
Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2009/2010
Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 00/010 Zadavatel: Ekonomický přehled: kód 1 Matematické myšlení: kód Společensko historický přehled: kód Zadejte kód místo x do níže
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
Pokyny k hodnocení MATEMATIKA
ILUSTRAČNÍ TEST MAIZD4C0T0 Pokyny k hodnocení MATEMATIKA Pokyny k hodnocení úlohy Vyznačte na číselné ose obraz čísla 0,6. 0,6 3 apod. NEDOSTATEČNÉ ŘEŠENÍ Chybně vyznačený obraz, resp. není zřejmé, kde
2. Najděte funkce, které vedou s těmto soustavám normálních rovnic
Zadání. Sestavte soustavu normálních rovnc ro funkce b b a) b + + b) b b +. Najděte funkce, které vedou s těmto soustavám normálních rovnc nb a) nb. Z dat v tabulce 99 4 4 b) určete a) rovnc regresní funkce
9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
3.2. ANALYTICKÁ GEOMETRIE ROVINY
3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou
Základy matematiky pracovní listy
Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky
Repetitorium matematiky (pomocný učební text soubor testů s výsledky) KMA/P113, KMA/K113
Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta Repetitorium matematiky (pomocný učební text soubor testů s výsledky) KMA/P113, KMA/K113 Lenka Cibochová Ústí nad Labem 016 Anotace: Tato
MATEMATIKA ZÁKLADNÍ ÚROVEŇ
NOVÁ MTURITNÍ ZKOUŠK Ilustrační test 2008 Základní úroveň obtížnosti MVCZMZ08DT MTEMTIK ZÁKLDNÍ ÚROVEŇ DIDKTICKÝ TEST Testový sešit obsahuje 8 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém
Kód uchazeče ID:... Varianta: 13
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 13 1. V únoru byla zaměstnancům zvýšena mzda o 20 % lednové mzdy. Následně
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
MATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA DIDAKTICKÝ TEST MAIZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
CVIČNÝ TEST 55. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 55 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 9 IV. Záznamový list 2 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE Jsou dány dva poměry 4 : a : 2 a b : 2 : 4, kde a, b jsou
Kód uchazeče ID:... Varianta: 12
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 12 1. V lednu byla zaměstnancům zvýšena mzda o 10 % prosincové mzdy. Následně
CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN!
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika 017 ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na jeho řešení máte 90 minut čistého času. n V průběhu
Funkce. Obsah. Stránka 799
Obsah 4. Funkce... 800 4.. Základní vlastnosti funkcí... 800 4.. Grafy funkcí... 8 4.. Eponenciální a logaritmické funkce... 8 4.4. Eponenciální a logaritmické rovnice... 8 4.5. Eponenciální a logaritmické
Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun.
1. Operace s reálnými čísly Obsah jedné stěny krychle je 289 cm 2. Vypočítejte objem této krychle. [S= 4 913 cm 3 ] Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy:
s p nazýváme směrový vektor přímky p, t je parametr bodu
MATE ZS 2013 KONZ 3A Analytická geometrie lineárních útvarů v rovině a v rostoru Přímka v rovině 1 Parametrická rovnice římky v rovině: t R s o : X = A + t s, kde, Vektor s nazýváme směrový vektor římky,
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Parametrický popis křivek
MATEMATIKA ŘÍKLADY NA RCVIČENÍ arametrický ois křivek 1 Jedánakřivka k(t)=[t t+ ; t 3 3t], t R. Nakresletečástkřivk kro t 3 ;3.Naišterovnicetečenkřivkvbodech k( 1), k(1) a k(). Dosazením několika hodnot
MATEMATIKA základní úroveň obtížnosti
ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 8 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:
Funkce pro učební obory
Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
Informace o výsledcích přijímacího řízení pro akademický rok 2015/2016 Fakulta bezpečnostního inženýrství VŠB TU Ostrava
Informace o výsledcích přijímacího řízení pro akademický rok 05/06 Fakulta bezpečnostního inženýrství VŠB TU Ostrava V souladu s platným zněním Vyhlášky Ministerstva školství, mládeže a tělovýchovy číslo
CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.
Logaritmus Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým umocníme základ a, abychom dostali číslo. Platí tedy: logax = y a y = x ( Dekadický logaritmus základ 10 označení
Analytická geometrie. c ÚM FSI VUT v Brně
19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =
CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
Funkce - pro třídu 1EB
Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému
Iracionální nerovnice a nerovnice s absolutní hodnotou ( lekce)
Iracionální nerovnice a nerovnice s absolutní hodnotou (15. - 16. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října
Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď C C B B C
Matematické myšlení: Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo 6 8 0. Které číslo doplníte místo 5 7 7 5 3. Které číslo doplníte místo 70 7 76
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku
. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 206 Kód uchazeče ID:.................. Varianta: 2 Příklad. (3b) Binární operace je definovaná jako a b = a+b a b. Určete hodnotu
Soustavy rovnic a nerovnic
Soustavy rovnic a nerovnic Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 2. září 20 Příklad Příklad Určete všechna čísla x, y R
CVIČNÝ TEST 11. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 11 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je k dispozici m přepravek na ovoce. Prázdná přepravka
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar
Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné
ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE
ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.
SBÍRKA n PŘÍKLADŮ Z MATEMATIKY kde n =
SBÍRKA n PŘÍKLADŮ Z MATEMATIKY kde n = 017-1957 Mgr. Petr Říman Gymnázium Ostrava-Zábřeh, Volgogradská a červen 017 1. Vypočítejte: 1 0, 4 1 8 0,75. Vypočítejte:. Vypočítejte: ( 4 4) ( + ) ( i) [ + 4i]
9. Soustava lineárních rovnic
@097 9. Soustava lineárních rovnic Definice: Nechť x, y, z, t,... jsou reálné proměnné, a, b, c, d,... jsou reálné konstanty. Kombinace proměnných a konstant tvaru ax+b=0, ax+by+c=0, ax+by+cz+d=0, ax+by+cz+dt+e=0,
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
Přijímací zkouška z matematiky 2017
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2017 Kód uchazeče ID:.................. Varianta: 14 Příklad 1. (3b) Mějme dvě čísla zapsaná v pětkové soustavě: 4112 5 a 2443
PŘÍKLAD 6: Řešení: Příprava k přijímacím zkouškám na střední školy matematika 29. Určete, pro které x je hodnota výrazu 8x 6 rovna: a) 6 b) 0 c) 34
Příprava k přijímacím zkouškám na střední školy matematika 29 PŘÍKLAD 6: Určete, pro které x je hodnota výrazu 8x 6 rovna: a) 6 b) 0 c) 34 Chceme-li vypočítat hodnotu výrazu za daného předpokladu, pak
Analytická geometrie (AG)
Analytická geometrie (AG) - zkoumá geometrické útvary pomocí algebraických a analytických metod Je založena na vektorech a soustavě souřadnic, rozděluje se na AG v rovině a v prostoru. Analytická geometrie
3. ledna list a odevzdejte tento zvláštní list (listy) i všechny ostatní listy, které jste při řešení
Jméno a příjmení: Písemná část zkoušky z předmětu AN1E 3. ledna 2019 Skutečná písemná práce bude obsahovat 5 příkladů. Zvolte si pořadí, v jakém budete příklady řešit. Vaše řešení nemusí být kulturně zapsané,
----- Studijní obory. z matematiky. z matematiky. * Aplikovaná matematika * Matematické metody v ekonomice
Minimum Maximum Minimum Maximum Studijní obory z matematiky z matematiky z matematiky z matematiky * Aplikovaná matematika * Matematické metody v ekonomice * Obecná matematika Navazující magisterský studijní
c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice
Několik dalších ukázek: Eponenciální rovnice. Řešte v R: a) 5 +. 5 - = 5 - b) 5 9 4 c) 7 + = 5 d) = e) + + = f) 6 4 = g) 4 8.. 9 9 S : a) na každé straně rovnice musí být základ 5, aby se pak základy mohly
CVIČNÝ TEST 7. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 7 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Určete přirozené číslo n tak, aby platilo: 3 + 12 + 27 = n. 1 bod 2 Doplňte
GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.
/ 9 GONIOMETRIE ) Doplň tabulk hodnot: α ( ) 0 0 5 60 90 0 5 50 80 α (ra sin α cos α tg α cotg α α ( ) 0 5 0 70 00 5 0 60 α (ra sin α cos α tg α cotg α ) Doplň, zda je daná funkce v daném kvadrantu kladná,
Analytická geometrie. přímka vzájemná poloha přímek rovina vzájemná poloha rovin. Název: XI 3 21:42 (1 z 37)
Analytická geometrie přímka vzájemná poloha přímek rovina vzájemná poloha rovin Název: XI 3 21:42 (1 z 37) Název: XI 3 21:42 (2 z 37) Rovnice přímky a) parametrická A B A B C A X Název: XI 3 21:42 (3 z
Matematika I, část I Vzájemná poloha lineárních útvarů v E 3
3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů
CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
Informace o výsledcích přijímacího řízení pro akademický rok 2018/2019 Fakulta bezpečnostního inženýrství VŠB TU Ostrava
Informace o výsledcích přijímacího řízení pro akademický rok 018/019 Fakulta bezpečnostního inženýrství VŠB TU Ostrava V souladu s platným zněním Vyhlášky Ministerstva školství, mládeže a tělovýchovy číslo
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při
. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.
CVIČNÝ TEST 27. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 27 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Karel povídá: Myslím si celé číslo. Je záporné. Nyní
MATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST MAIPD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického
5. Na množině R řeš rovnici: 5 x 2 2 x Urči všechna reálná čísla n vyhovující nerovnostem: 3 5
I 16 VADRO (váha 80) E 1. Na obrázku vpravo je graf funkce g dané předpisem: y = a + b + c. Urči koeficienty a, b, c.. Zapiš definiční obor a obor hodnot funkce f na obrázku vpravo. f: y = 0,5 4 + 3. Na
GONIOMETRICKÉ ROVNICE -
1 GONIOMETRICKÉ ROVNICE - Pois zůsobu oužití: teorie k samostudiu (i- learning) ro 3. ročník střední školy technického zaměření, teorie ke konzultacím dálkového studia Vyracovala: Ivana Klozová Datum vyracování:
OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
MATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD2C0T0 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 017, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
Funkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o
Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.
Kvadratická funkce Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí y = ax 2 + bx + c Číslo a je různé od nuly, b,c jsou libovolná reálná čísla. Definičním oborem kvadratické funkce je
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků
Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK
M - Příprava na 1. čtvrtletku pro třídy P a VK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu dovoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl
Opakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
MATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A
MATEMATIKA v úpravě pro neslyšící MAMZD9C0T0 DIDAKTICKÝ TEST 2 SP-3-T SP-3-T-A Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %. Základní informace k zadání zkoušky Didaktický test obsahuje