PLASTICITA A CREEP PLASTICITA IV

Rozměr: px
Začít zobrazení ze stránky:

Download "PLASTICITA A CREEP PLASTICITA IV"

Transkript

1 Plasticita IV 1/44 PLATIITA A REEP PLATIITA IV Zbyněk k Hrubý zbynek.hruby hruby@s.cvut.cz

2 Plasticita IV /44 Pomínka asticity tvary parametrů (, α, ) (, α ) ( ) vnitřní proměnné (internal variables) e & e t & & t t t kumulativní eektivní astická eormace (strain harening) W astická práce isipace (work harening)

3 Plasticita IV /44 Pomínky konzistence

4 Plasticita IV 4/4444 Pomínka konzistence (, α, ) (, α ) ( ) (, α α, ) (, α α ) ( ) aby se stav napjatosti neostal vně ochy asticity, ale ocha asticity se změnila, aby na ní stav napjatosti stále lež (, α α, ) (, α, ) (, α, ) (, α, )

5 Plasticita IV 5/44 Pomínky konzistence konkrétní příay pomínka asticity: pomínka konzistence: ( ) ( ) (, ) ( ) ( ), ( α, ) (, α ), (, ) (, ) (, α, ) α α α α (, α, ) (, α ) ( ) (, α, ) α α α α

6 Plasticita IV 6/44 Zpevnění (změna ochy asticity s procesem přitěžování)

7 Plasticita IV 7/44 Isotropní zpevnění (Roney Hill, 195) pomínka asticity: (, ) ( ) ( ) (, ) ( ) ( ) e ocha asticity se v prostoru napětí neposouvá, pouze se rozšiřuje ( ) r ( ) e von Mises: e ( )? r e J e k 1 k r k k ( ) e

8 Plasticita IV 8/44 Lineární isotropní zpevnění pomínka asticity: (, ) ( ) ( ) (, ) ( ) ( ) ( ) r ( ) e e e r ( ) h r ( ) h e e e e 1D: E h E h E h Eh E T k k r k k ~E T jiné sony ~h k ~E

9 Plasticita IV 9/44 Lineární isotropní zpevnění pomínka asticity: (, ) ( ) ( ) (, ) ( ) ( ) ( ) r ( ) e e e pomínka konzistence: e e e e Hookeův zákon: ep ( ) λ e λ λ λ λ λ

10 Plasticita Plasticita IV IV 1 1/44 44 vyjáření astického multiikátoru z pomínky konzistence: e c abc ab λ Lineární isotropní zpevnění e tu rstu rs abc ab c λ e tu rstu rs abc ab c ep 1 přírůstek napětí jako unkce přírůstku eormace ep

11 Plasticita Plasticita IV IV 11 11/44 44 Lineární isotropní zpevnění přírůstek eormace jako unkce přírůstku napětí? e e e λ pomínka konzistence: e λ D D D λ e ab ab D D

12 Plasticita IV 1/44 Nineární isotropní zpevnění pomínka asticity: (, ) ( ) ( ) (, ) ( ) ( ) ( ) r ( ) e e e r ( ) b Q r ( ) e ( ) ( ) ( ) b r Q 1 e e e e e ABAQU 1D: E b ( ) b e e E T k k r k k ~E T k ~E

13 Plasticita IV 1/44 Nineární isotropní zpevnění pomínka asticity: (, ) ( ) ( ) (, ) ( ) ( ) ( ) r ( ) e e e pomínka konzistence: e e e e Hookeův zákon: λ ep e λ

14 Plasticita Plasticita IV IV 14 14/44 44 vyjáření astického multiikátoru z pomínky konzistence: e tu rstu rs ab ab λ Nineární isotropní zpevnění e tu rstu rs abc ab c λ e tu rstu rs abc ab c ep přírůstek napětí jako unkce přírůstku eormace ep

15 Plasticita IV 15/44 Bauschingerův eekt reálné chování materiálu při olehčení a náslené reverzaci ieální Bauschingerův eekt Bauschingerův eekt snížení meze uzu v opačném smyslu zatěžování Bauschingerův eekt isotropní zpevnění kinematické zpevnění

16 Plasticita IV 16/44 Lineární kinematické zpevnění (William Prager, 1956) pomínka asticity: (, α ) (, α ) α tenzor kinematických parametrů (backstress) ocha asticity se v prostoru napětí nerozšiřuje, pouze se posouvá Prager 1956 α ( ) µ α α Ziegler 1959 von Mises: ( ' )( ' ) 1 α α 1 k pro von Misesovu pom. ast. ve D jsou Pragerův i Zieglerův vztah pro evoluci backstressu ientické

17 Plasticita IV 17/44 Prager vs. Ziegler Prager Ziegler

18 Plasticita IV 18/44 Lineární kinematické zpevnění (Prager) pomínka asticity: (, α ) ( α ) α pomínka konzistence: α α α α α Hookeův zákon: λ ep

19 Plasticita Plasticita IV IV 19 19/44 44 vyjáření astického multiikátoru z pomínky konzistence: tu rstu rs abc ab c λ tu rstu rs abc ab c ep 1 přírůstek napětí jako unkce přírůstku eormace ep tu rstu rs ab ab λ Lineární kinematické zpevnění (Prager)

20 Plasticita IV /44 Nineární kinematické zpevnění (Armstrong a reerick, 1966) pomínka asticity: (, α ) (, α ) α tenzor kinematických parametrů (backstress) ocha asticity se v prostoru napětí nerozšiřuje, pouze se posouvá (složitěji oproti lineárnímu kinematickému zpevnění) α γα e Armstrong-reerick 1966 γ recall term von Mises: ( ' )( ' ) 1 α α 1 k

21 Plasticita IV 1/44 Nineární kinematické zpevnění (Armstrong-reerick) pomínka asticity: (, α ) ( α ) α γα e pomínka konzistence: α α α α α Hookeův zákon: λ ep e λ

22 Plasticita Plasticita IV IV /44 44 vyjáření astického multiikátoru z pomínky konzistence: pq pq gh gh tu rstu rs abc ab c γα λ pq pq gh gh tu rstu rs abc ab c ep γα 1 přírůstek napětí jako unkce přírůstku eormace ep Nineární kinematické zpevnění (Armstrong-reerick) pq pq gh gh tu rstu rs ab ab γα λ

23 Plasticita IV /44 Kombinované zpevnění (nineární kinematické isotropní) pomínka asticity: (, α, ) (, α ) ( ) e e ocha asticity se v prostoru napětí rozšiřuje i posouvá ( ) r ( ) α e e γα e von Mises: ( ' )( ' ) 1 α α 1 k r k k ( ) e

24 Plasticita IV 4/44 44 Kombinované zpevnění (nineární kinematické isotropní) pomínka asticity: (, α ) ( α ) ( ) e α γα e pomínka konzistence: α α α e e α α e e e e Hookeův zákon: λ ep e λ

25 Plasticita Plasticita IV IV 5 5/44 44 vw vw e pq pq gh gh tu rstu rs k l abc ab c k l k l k l k l k l γα λ vw vw e pq pq gh gh tu rstu rs abc ab c ep γα 1 přírůstek napětí jako unkce přírůstku eormace ep vw vw e pq pq gh gh tu rstu rs ab ab γα λ Kombinované zpevnění (nineární kinematické isotropní)

26 Plasticita IV 6/44 yické chování cyické zpevnění cyické změkčení cyická raxace cyický creep (ratchetting) paměťový eekt

27 Plasticita IV 7/44 Přepoay správného chování konstitučního mou při cyickém zatěžování Drucker & Palgen (1981), Daalias (1984): 1) nesymetrický cyus napětí způsobuje cyický creep (ratchetting) ve směru střeního napětí ) nesymetrický cyus eormace způsobuje raxaci střeního napětí na nulovou honotu ) hlaký přecho ze stavu astického o stavu astoastického 4) při symetrických napěťových i eormačních cyech materiál změkčuje či zpevňuje po stavu saturace již jen íky kinematickému zpevnění 5) značné jenorázové přetížení maže téměř všechnu historii zatěžování na nižších hlainách

28 Plasticita IV 8/44 Zpevnění rekapitulace ZPEVNĚNÍ KOMBINOVANÉ: KOMBINAE IOTROPNÍ LIBOVOLNÉHO IOTROPNÍHO KINEMATIKÉ A LIBOVOLNÉHO KINEMATIKÉHO LINEÁRNÍ NELINEÁRNÍ ZPEVNĚNÍ LINEÁRNÍ NELINEÁRNÍ Prager Ziegler bilineární mo tahového iagramu

29 Plasticita IV 9/44 Další moy zpevnění habocheův mo ( víceochový Armstrong-reerick) Mrózův víceochový mo (kombinace více lineárních kinematických zpevnění) α n k 1 α k k k k k α γ α e Bessingův mo (kombinace více ieálně astických materiálů s různými mezemi uzu)

30 Plasticita IV /44 Další moy zpevnění Daaliův-Popův vojochový mo Enochronní teorie asticity (Valanis) - termoynamika směrové zpevnění (irectional istortional harening) - mění se tvar ochy asticity, ocha se eormuje

31 Plasticita IV 1/44 Př.11: Pomínky asticity a konzistence Přiřait ruh zpevnění k aným pomínkám asticity a pomínkám konzistence. D: pomínky asticity a pomínky konzistence U: správné přiřazení pomínka asticity: pomínka konzistence: ( ) ( ) (, ) (, ) ( ) ( ), ( α, ) (, α ), (, ) (, α, ) α α α α (, α, ) (, α ) ( ) (, α, ) α α ieální asticita isotropní zpevnění kinematické zpevnění kombinované zpevnění α α

32 Plasticita IV /44 Př.1: Moy zpevnění numerická simulace Určit oezvu materiálu na 1D moovou zátěžnou sekvenci napětí MPa, 6MPa, -6 MPa, 8 MPa [MPa] [-] -6 [MPa] [-] linear kinematic linear isotropic

33 Plasticita IV /44 Př.1: Moy zpevnění numerická simulace Určit oezvu materiálu na 1D moovou zátěžnou sekvenci napětí MPa, 6MPa, -6 MPa, 8 MPa, -6 MPa, 8 MPa [MPa] 6 4 [MPa] [-] [-] Arm-re nonlinear kinematic haboche k1...5 nonlin. kinematic nonlinear isotropic

34 Plasticita IV 4/44 44 Př.14: D tah jenorázové zatížení 1/7 Pás materiálu je namáhán D tahem. D: lineární isotropní materiál s počáteční mezí uzu MPa, moulem lineárního isotropního zpevnění 1 MPa, moulem pružnosti v tahu MPa a Poissonovým poměrem,. U: A) vikost napětí pro prvotní snění von Misesovy pomínky asticity, B) astický i astický tenzor eormace po zatížení vojnásobkem napětí, než které způsobilo první snění pomínky asticity s Iljušinovým zákonem tečení ) B) se zákonem tečení z pomínky konzistence

35 Plasticita Plasticita IV IV 5 5/44 44 Př.14: D tah jenorázové zatížení /7 A) Prvotní snění pomínky asticity: 1 Hlavní napětí: ( ) ( ) ( ) ( ) ( ) ( ) 115,47 MPa k I k k k při tomto napětí I oje ke prvotnímu snění pomínky asticity

36 Plasticita IV 6/44 Př.14: D tah jenorázové zatížení /7 B) Zatížení na vojnásobek napětí, které způsobilo prvotní snění pomínky asticity (s použitím Iljušinova zákona tečení): Hlavní napětí: 1 4 I I I 115,47 MPa Iljušin: 1II II II I 1I I I I I I I I e e kk δ 115,47 MPa 115,47 MPa eektivní napětí [MPa] ~ h eektivní astická eormace [-]

37 Plasticita IV 7/44 Př.14: D tah jenorázové zatížení 4/7 Plastická část eormace: Elastická část eormace: 1 e eii e eii e eii 1II II II e ei [( ν ) ν δ ] 1 1 E 1I,,94 4, 4,,94, 17 4 kk, E 1 E 1 E 1 [ ν ( )] [ 461,88, (,94 ) ] 1II 1 1 [ ν ( )] [,94, ( 461,88 ) ] II 1 1 [ ν ( )] [, ( 461,88,94 )], 1 II II 1II 1II II II II ,,5

38 Plasticita IV 8/44 Př.14: D tah jenorázové zatížení 5/7 ) tejné jako B) ale zákon tečení z pomínky konzistence von Misesova pomínka asticity (lineární isotropní zpevnění) : pomínka konzistence: ( ) ( ) h e e e he e k k e zákon tečení obecně: λ přírůstek eektivní astické eormace: e λ

39 Plasticita Plasticita IV IV 9 9/44 44 Př.14: D tah jenorázové zatížení 6/7 e e e e e e e h h h h λ λ λ λ pomínka po úpravě: e h h λ e... e e e h h λ

40 Plasticita IV 4/44 44 Př.14: D tah jenorázové zatížení 7/7 úžený součin (jenorázové zatížení, integrace je možná na 1 inkrement ): 1I 1 I 115,47,94 115,47 astická eormace: I ( 115,47 ) 6 666, 64 MPa 1 h ei h ei h ei 1I ei I ei I ei 6 666, , , ,47 ( 115,47),17,17 astická eormace a její výpočet ientické s B)

41 Plasticita IV 41/44 44 Př.15: 1D tah-tlak astoastická oezva 1/ imulovat oezvu ocové tyče o průměru 1 mm a élce 5 mm na zatížení s využitím lineárního kinematického zpevnění a nineární isotropního zpevnění bo sekvence [-] nominální napětí [MPa] E 1 MPa ν, k k Q 1 e α k 4 MPa b α Q 6 MPa b 15 5 MPa

42 Plasticita IV 4/44 44 Př.15: 1D tah-tlak astoastická oezva / Řešení opřenou Eulerovou metoou v souboru ra_nap.m 15 1 stress (MPa) sigma ala strain (-)

43 Plasticita IV 4/44 44 Př.16: 1D tah-tlak astoastická oezva 1/ imulovat oezvu ocové tyče o průměru 1 mm a élce 5 mm na zatížení s využitím nineárního kinematického zpevnění a lineární isotropního zpevnění bo sekvence [-] nominální napětí [MPa] E 1 MPa ν, α h k k α k 4 MPa h 5 MPa 7 MPa γ 9 γα

44 Plasticita IV 44/44 Př.16: 1D tah-tlak astoastická oezva / Řešení opřenou Eulerovou metoou v souboru rb_nap.m 15 1 stress (MPa) sigma ala strain (-)

PLASTICITA A CREEP PLASTICITA V

PLASTICITA A CREEP PLASTICITA V Plasticita V / PLASIIA A REEP PLASIIA V Zbyněk k Hrubý zbynek.hruby hruby@fs.cvut.cz Plasticita V / Čistá asticita vs. čistá asticita čistá asticita: čistá asticita: prou nestlačitné tekutiny, o osažení

Více

Inkrementální teorie plasticity - shrnutí

Inkrementální teorie plasticity - shrnutí Inkrementální teorie plasticity - shrnutí Aditivní zákon = e p. Hookeův zákon pro elastickou složku deformace =C: e. Podmínka plasticity f = f Y =0. Pravidlo zpevnění p e d =g, p,,d, d p,..., dy =h, p,y,

Více

Přehled modelů cyklické plasticity v MKP programech

Přehled modelů cyklické plasticity v MKP programech Přehled modelů cyklické plasticity v MKP programech Teorie plasticity Ing Josef Sedlák doc Ing Radim Halama, PhD 1 Shrnutí Aditivní pravidlo a Hookeův zákon, Podmínka plasticity Pravidlo zpevnění Pravidlo

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

PLASTICITA A CREEP PLASTICITA III

PLASTICITA A CREEP PLASTICITA III Plasticita III / PLATICITA A CRP PLATICITA III Zbyně Hrubý zbyne.hruby hruby@fs.cvut.cz Plasticita III / Pmíny asticity mezní stavy Plasticita III / Pmíny asticity mezní stavy parametr atuálníh napěťvéh

Více

Zaklady inkrementální teorie plasticity Teoretický základ

Zaklady inkrementální teorie plasticity Teoretický základ Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI Zaklady inkrementální teorie plasticity Teoretický základ 1. ADITIVNÍ ZÁKON. PODMÍNKA PLASTICITY 3. PRAVIDLO

Více

OOFEM: Implementace plasticitního materiálového modelu Cam-Clay. Ondřej Faltus, ZS 2016/17 Vyučující: Ing. Martin Horák, PhD.

OOFEM: Implementace plasticitního materiálového modelu Cam-Clay. Ondřej Faltus, ZS 2016/17 Vyučující: Ing. Martin Horák, PhD. OOFEM: Implementace plasticitního materiálového modelu Cam-Clay Ondřej Faltus, ZS 2016/17 Vyučující: Ing. Martin Horák, PhD. Teorie plasticity Pružnoplastické chování Princip: materiál se chová elasticky

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku 1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram

Více

Identifikace materiálových parametrů Vybraných modelů plasticity

Identifikace materiálových parametrů Vybraných modelů plasticity Teorie plasticity 1. VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI 17.listopadu 15, 708 33 Ostrava - Poruba Identifikace materiálových parametrů Vybraných modelů plasticity

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

Kontraktantní/dilatantní

Kontraktantní/dilatantní Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku

Více

Plasticita - ur ení parametr zpevn ní z tahové zkou²ky

Plasticita - ur ení parametr zpevn ní z tahové zkou²ky Plasticita - ur ení parametr zpevn ní z tahové zkou²ky Zpracoval Ctirad Novotný pro matmodel.cz 1 Postup p i ur ování parametr získání tahového diagramu p epo et na závislost nap tí - deformace (nebo plastická

Více

Typy nelinearit. jen v tahu (jen v tlaku), pružnost, plasticita, lomová mechanika,... ), geometrická nelinearita velká posunutí, pootočení.

Typy nelinearit. jen v tahu (jen v tlaku), pružnost, plasticita, lomová mechanika,... ), geometrická nelinearita velká posunutí, pootočení. Typy nelinearit konstrukční nelinearita např. jednostranné vazby nebo prvky působící jen v tahu (jen v tlaku), fyzikální nelinearita vlastnosti materiálu nejsou lineární pružné (nelineární pružnost, plasticita,

Více

Kritéria porušení laminy

Kritéria porušení laminy Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém

Více

PLASTICITA A CREEP PLASTICITA III

PLASTICITA A CREEP PLASTICITA III Plasticita III / PLATICITA A CRP PLATICITA III Zbyně Hubý zbyne.huby huby@fs.cvut.cz Plasticita III / Pdmíny asticity mezní stavy Plasticita III / Pdmíny asticity mezní stavy paamet atuálníh napěťvéh stavu

Více

Porušení hornin. J. Pruška MH 7. přednáška 1

Porušení hornin. J. Pruška MH 7. přednáška 1 Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost

Více

Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.7/2.2./28.9 Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc.

Více

Reologické modely technických materiálů při prostém tahu a tlaku

Reologické modely technických materiálů při prostém tahu a tlaku . lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury. ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ

Více

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ

DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ Úvod PLASTICITA DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ I. Návrh konstrukce z "mezního stavu Zahrnuje relativně malá plastická přetvoření často stejného řádu jako jsou souběžná elastická přetvoření. Analýza

Více

Lineární stabilita a teorie II. řádu

Lineární stabilita a teorie II. řádu Lineární stabilita a teorie II. řádu Sestavení podmínek rovnováhy na deformované konstrukci Konstrukce s a bez počáteční imperfekce Výpočet s malými vs. s velkými deformacemi ANKC-C 1 Zatěžovacídráhy [Šejnoha,

Více

Aktuální trendy v oblasti modelování

Aktuální trendy v oblasti modelování Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,

Více

PARAMETER IDENTIFICATION OF CHABOCHE NONLINEAR KINEMATIC HARDENING MODEL STANOVENÍ KONSTANT CHABOCHEOVA NELINEÁRNÍHO KINEMATICKÉHO MODELU ZPEVNĚNÍ

PARAMETER IDENTIFICATION OF CHABOCHE NONLINEAR KINEMATIC HARDENING MODEL STANOVENÍ KONSTANT CHABOCHEOVA NELINEÁRNÍHO KINEMATICKÉHO MODELU ZPEVNĚNÍ PARAMETER IDENTIFICATION OF CHABOCHE NONLINEAR KINEMATIC HARDENING MODEL STANOVENÍ KONSTANT CHABOCHEOVA NELINEÁRNÍHO KINEMATICKÉHO MODELU ZPEVNĚNÍ Radim HALAMA 1, Hana ROBOVSKÁ 2, Linda VOLKOVÁ 2, Tomáš

Více

Lokalizační vlastnosti modelů poškození. Martin Horák

Lokalizační vlastnosti modelů poškození. Martin Horák České vysoké učení technické v Praze Fakulta stavební SVOČ Lokalizační vlastnosti modelů poškození Martin Horák Vedoucí práce: Prof. Ing. Milan Jirásek, DrSc. Studijní program: Stavební inženýrství Obor:

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

Více

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. 5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. K poškození únavou dochází při zatížení výrazně proměnném s časem. spolehlivost

Více

ENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM

ENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM P Ř Í K L A D Č. 6 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM Projekt : FRVŠ 011 - Analýza meto výpočtu železobetonovýh lokálně poepřenýh esek Řešitelský kolektiv : Ing. Martin Tipka

Více

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012 Prohloubení odborné spolupráce a propojení ústavů lékařské biofyziky na lékařských fakultách v České republice CZ.1.07/2.4.00/17.0058 Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

tuhost, elasticita, tvrdost, relaxace a creep, únava materiálu, reologické modely, zátěž a namáhání

tuhost, elasticita, tvrdost, relaxace a creep, únava materiálu, reologické modely, zátěž a namáhání tuhost, elasticita, tvrdost, relaxace a creep, únava materiálu, reologické modely, zátěž a namáhání Reologie obor mechaniky - zabývá obecnými mechanickými vlastnostmi látek vztahy mezi napětím, deformacemi

Více

Přetváření a porušování materiálů

Přetváření a porušování materiálů Přetváření a porušování materiálů Přetváření a porušování materiálů 1. Viskoelasticita 2. Plasticita 3. Lomová mechanika 4. Mechanika poškození Přetváření a porušování materiálů 2. Plasticita 2.1 Konstitutivní

Více

Kap. 3 Makromechanika kompozitních materiálů

Kap. 3 Makromechanika kompozitních materiálů Kap. Makromechanika kompozitních materiálů Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVU v Praze. listopadu 7 Základní pojmy a vztahy Notace

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

Nelineární úlohy při výpočtu konstrukcí s využitím MKP

Nelineární úlohy při výpočtu konstrukcí s využitím MKP Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,

Více

PŘÍPRAVEK PRO POKROČILÉ TESTOVÁNÍ PLECHŮ - BAUSCHINGERŮV EFEKT SVOČ FST 2018

PŘÍPRAVEK PRO POKROČILÉ TESTOVÁNÍ PLECHŮ - BAUSCHINGERŮV EFEKT SVOČ FST 2018 PŘÍPRAVEK PRO POKROČILÉ TESTOVÁNÍ PLECHŮ - BAUSCHINGERŮV EFEKT SVOČ FST 2018 Bc. Josef Mištera, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Diplomová práce se zaměřuje

Více

Metody teorie spolehlivosti

Metody teorie spolehlivosti Metoy teorie spolehlivosti Historické metoy mpirické metoy Kalibrace Pravěpoobnostní metoy FOM úroveň II AKTNÍ úroveň III Kalibrace MTOD NÁVH. BODŮ Kalibrace MTODA DÍLČÍCH SOUČINITLŮ úroveň I Nejistoty

Více

( ) Podmínka plasticity: σ σ 0. Podmínky plasticity. Podmínky plasticity. Podmínky plasticity. = σ = σ. f σ σ σ

( ) Podmínka plasticity: σ σ 0. Podmínky plasticity. Podmínky plasticity. Podmínky plasticity. = σ = σ. f σ σ σ Podmínka plasticit rovnice popisující všechn stav napětí, které vedou k plastickému přetváření materiálu. ednoosá napjatost charakteriovaná jedinou složkou normálového napětí. Podmínka plasticit: nebo

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti

Více

Beton 5. Podstata železobetonu

Beton 5. Podstata železobetonu Beton 5 Pro. Ing. ilan Holický, DrSc. ČVUT, Šolínova 7, 166 08 Praha 6 Tel.: 435384, Fax: 43553 E-mail: milan.holicky@klok.cvut.cz, http://www.klok.cvut.cz Peagogická činnost Výuka bakalářských a magisterský

Více

Pruty nam ahan e na vzpˇ er Martin Fiˇser Martin Fiˇ ser Pruty nam ahan e na vzpˇ er

Pruty nam ahan e na vzpˇ er Martin Fiˇser Martin Fiˇ ser Pruty nam ahan e na vzpˇ er Obsah Úvod Eulerova teorie namáhání prutů na vzpěr První případ vzpěru zde Druhý případ vzpěru zde Třetí případ vzpěru zde Čtvrtý případ vzpěru zde Shrnutí vzorců potřebných pro výpočet Eulerovy teorie

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS,

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?

Více

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak. 00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní

Více

Konečný automat Teorie programovacích jazyků

Konečný automat Teorie programovacích jazyků Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu

Více

ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně

ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně 1 Motivace: trhliny v betonu mikrostruktura Vyhojování trhlin konstrukce Pražec po

Více

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající

Více

Části a mechanismy strojů 1 KKS/CMS1

Části a mechanismy strojů 1 KKS/CMS1 Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část A4 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním

Více

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1 Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické

Více

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz

Více

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu

Více

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Proces únavového porušení Iniciace únavové trhliny v krystalu Cu (60 000 cyklů při 20 C) (převzato z [Suresh 2006]) Proces únavového porušení Jednotlivé stádia únavového poškození:

Více

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík Únava a lomová mechanika Koncentrace napětí nesingulární koncentrátor napětí singulární koncentrátor napětí 1 σ = σ + a r 2 σ max = σ 1 + 2( / ) r 0 ; σ max Nekonečný pás s eliptickým otvorem [Pook 2000]

Více

Mechanika hornin. Přednáška 5. Napětí, deformace a numerické modelování horninového masivu

Mechanika hornin. Přednáška 5. Napětí, deformace a numerické modelování horninového masivu Mechanika hornin Přednáška 5 Napětí, deformace a numerické modelování horninového masivu Mechanika hornin - přednáška 5 1 Napětí v horninovém masivu Primární napjatost Sekundární napjatost Vliv na stabilitu

Více

PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK

PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK - - 20,00 1 [0,00; 0,00] 2 [0,00; 0,38] +z 2,00 3 [0,00; 0,72] 4 [0,00; 2,00] Geometrie konstrukce

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza modelu s vrubem

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza modelu s vrubem VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Autor: Michal Šofer Verze 0 Ostrava 2011 Zadání: Proveďte napěťovou analýzu součásti s kruhovým vrubem v místě

Více

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE 1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera Obsah přednášek 1. Stabilita stěn, nosníky třídy 4.. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné

Více

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu

Více

Nejpoužívanější podmínky plasticity

Nejpoužívanější podmínky plasticity Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova

Více

EXPERIMENTÁLNÍ MECHANIKA 2

EXPERIMENTÁLNÍ MECHANIKA 2 EXPERIMENTÁLNÍ MECHANIKA 2 2. přednáška Jan Krystek 28. února 2018 EXPERIMENTÁLNÍ MECHANIKA Experiment slouží k tomu, abychom pomocí experimentální metody vyšetřili systém veličin nutných k řešení problému.

Více

Obr. 0.1: Nosník se spojitým zatížením.

Obr. 0.1: Nosník se spojitým zatížením. Každý test obsahuje jeden příklad podobný níže uvedeným tpovým příkladům a několik otázek vbraných z níže uvedených testových otázek. Za příklad je možno získat maimálně bodů, celkový počet bodů z testu

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Konstitutivní modelování (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Jednoosá tahová zkouška betonářské oceli

Jednoosá tahová zkouška betonářské oceli Přednáška 06 Nepružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram N, M Příklady Copyright

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická

Více

Ztráta stability tenkých přímých prutů - vzpěr

Ztráta stability tenkých přímých prutů - vzpěr Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo

Více

Metoda konečných prvků 3 - nelineární úlohy

Metoda konečných prvků 3 - nelineární úlohy Nelineárn rní analýza materiálů a konstrukcí (V-132YNAK) Metoa konečných prvků 3 - nelineární úlohy Petr Kabele petr.kabele@sv.cvut.cz people.sv.cvut.cz/~pkabele 1 MKP metoy řešení nelineárních úloh Diskretizovaný

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 3

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 3 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTUOVÁNÍ STOJŮ strojní součásti Přednáška 3 Poškozování při cyklickém zatěžování http://technology.open.ac.uk/ iniciace trhliny Engineers

Více

Biomechanika srdečněcévnísoustavy a konstitutivnímodelování

Biomechanika srdečněcévnísoustavy a konstitutivnímodelování Biomechanika srdečněcévnísoustavy a konstitutivnímodelování Biomechanika a lékařsképřístroje Biomechanika I LukášHorný Laboratoř biomechaniky člověka Ústavu mechaniky Fakulty strojní ČVUT v Praze M Konstitutivní

Více

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života Únava materiálu 1) Úvod 2) Základní charakteristiky únavového zatěžování 3) Křivka únavového života 4) Etapy únavového života 5) Klíčové vlivy na únavový život 1 Degradace vlastností materiálu za provozu

Více

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu

Více

Vícerozměrné úlohy pružnosti

Vícerozměrné úlohy pružnosti Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových

Více

Výpočet sedání terénu od pásového přitížení

Výpočet sedání terénu od pásového přitížení Inženýrský manuál č. 21 Aktualizace 06/2016 Výpočet sedání terénu od pásového přitížení Program: Soubor: MKP Demo_manual_21.gmk V tomto příkladu je řešeno sednutí terénu pod přitížením pomocí metody konečných

Více

Biomechanika a lékařské přístroje

Biomechanika a lékařské přístroje Biomechanika a lékařské přístroje Projekt II Lukáš Horný lukas.horny@fs.cvut.cz Ústav mechaniky, biomechaniky a mechatroniky, ČVUT FS 2018 Projekt II: O co nám půjde? Otázky odpovědi Konstrukce model konstrukce

Více

Elastické deformace těles

Elastické deformace těles Eastické eformace těes 15 Na oceový rát ék L 15 m a průměru 1 mm zavěsíme závaží o hmotnosti m 110 kg přičemž Youngův mou pružnosti ocei v tahu E 16 GPa a mez pružnosti ocei σ P 0 Pa Určete reativní prooužení

Více

NUMERICKÁ SIMULACE ODTRŽENÍ SKLOEPOXIDOVÉ VRSTVY ADAFLEX BG

NUMERICKÁ SIMULACE ODTRŽENÍ SKLOEPOXIDOVÉ VRSTVY ADAFLEX BG NUMERICKÁ SIMULACE ODTRŽENÍ SKLOEPOXIDOVÉ VRSTVY ADAFLEX BG Autoři: Ing. Michal Mrózek, Ústav stavební mechaniky, Fakulta stavební, Vysoké učení technické v Brně, e-mail: mrozek.m@fce.vutbr.cz Ing. Zdeněk

Více

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in

Více

Spolehlivostní a citlivostní analýza vrtule. Západočeská univerzita v Plzni Katedra mechaniky Bc. Lukáš Němec 18. září 2017

Spolehlivostní a citlivostní analýza vrtule. Západočeská univerzita v Plzni Katedra mechaniky Bc. Lukáš Němec 18. září 2017 Spolehlivostní a citlivostní analýza vrtule Západočeská univerzita v Plzni Katedra mechaniky Bc. Lukáš Němec 8. září 27 Obsah Spolehlivostní a citlivostní analýza vrtule 3. Citlivostní analýza...............................

Více

BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU

BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU MECHANICKÉ VLASTNOSTI BIOLOGICKÝCH MATERIÁLŮ Viskoelasticita, nehomogenita, anizotropie, adaptabilita Základní parametry: hmotnost + elasticita (akumulace

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

Dynamická pevnost a životnost Přednášky

Dynamická pevnost a životnost Přednášky DPŽ 1 Dynamická pevnost a životnost Přednášky Milan Růžička, Josef Jurenka, Martin Nesládek, Jan Papuga mechanika.fs.cvut.cz martin.nesladek@fs.cvut.cz DPŽ 2 Přednášky část 3 Koncentrace napětí a její

Více

Navrhování konstrukcí z korozivzdorných ocelí

Navrhování konstrukcí z korozivzdorných ocelí Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí

Více

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu: Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul

Více

Prvky betonových konstrukcí BL01 11 přednáška

Prvky betonových konstrukcí BL01 11 přednáška Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav

Více

Napěťový vektor 3d. Díky Wikipedia za obrázek. n n n

Napěťový vektor 3d. Díky Wikipedia za obrázek. n n n Míry napětí Napěťový vektor 3d n n2 2 n,. n n n Zatížené těleso rozdělíme myšleným řezem na dvě části. Na malou plošku v okolí materiálového bodu P působí napěťový vektor (n) (n, x, t), který je spojitou

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

Specializovaný MKP model lomu trámce

Specializovaný MKP model lomu trámce Structural and Physical Aspects of Civil Engineering, 2010 Specializovaný MKP model lomu trámce Tomáš Pail, Petr Frantík, Michal Štafa Technical University of Brno Faculty of Civil Engineering, Institute

Více

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená

Více

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku: Sedmé cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady MOHROVA KRUŽNICE PRO ROVINNOU NAPJATOST Rovinná, neboli dvojosá

Více

Pružné oblasti (oblasti bez plasticity) Program: MKP

Pružné oblasti (oblasti bez plasticity) Program: MKP Pružné oblasti (oblasti bez plasticity) Program: MKP Soubor: Demo_manual_34.gmk Inženýrský manuál č. 34 Aktualizace: 04/2016 Úvod Při zatížení zeminy napětím, jehož hodnota dosáhne meze plasticity, dojde

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS ANALÝZA TAHOVÉ ZKOUŠKY SPOJOVACÍHO OCELOVÉHO

Více