Metoda konečných prvků 3 - nelineární úlohy

Rozměr: px
Začít zobrazení ze stránky:

Download "Metoda konečných prvků 3 - nelineární úlohy"

Transkript

1 Nelineárn rní analýza materiálů a konstrukcí (V-132YNAK) Metoa konečných prvků 3 - nelineární úlohy Petr Kabele petr.kabele@sv.cvut.cz people.sv.cvut.cz/~pkabele 1

2 MKP metoy řešení nelineárních úloh Diskretizovaný slabý tvar říících rovnic pro lineární úlohu: K = Můžeme také zapsat jako: =... vektor uzlových sil o zatížení povrchovými a objemovými silami... vektor uzlových sil ekvivalentních napětí působícímu v prvcích ( ) Je-li úloha materiálově a/nebo geometricky nelineární, pak vztah mezi globálními vektory uzlových sil a uzlových posunů je nelineární: ( ) = 2

3 MKP metoy řešení nelineárních úloh Úlohu pak řešíme po časových (zatěžovacích) krocích (přírůstcích, inkrementech). Přepokláejme, že řešení v kroku t je známo, např. z přechozího výpočtu. = ( ) Po inkrementální změně zatížení: ( ) + = + + Rozvoj o řay: ( + ) ( ) ( + ) = ( ) + + O ( 2 ) K ( )... tečná matice tuhosti 3

4 Vektor + můžeme považovat za zaaný (přeepsané zatížení). Vektor je třeba spočítat tak, aby byly splněny (aspoň přibližně) říící rovnice ( ) + = + Vzhleem k tomu, že závislost na je nelineární, nelze obecně nalézt inverzní operátor k analyticky. Pro řešení těchto rovnic pak můžeme použít např. násleující přibližné metoy: A. přírůstkové řešení bez iterací (Eulerova metoa) B. iterativní řešení založené na metoě Newton-Raphson C. alší iterativní metoy, např. BFGS (Broyen-Fletcher-Golarb-Shanno) 4

5 Dopřená Eulerova metoa (Forwar Euler metho) ( 1) ( 0) ( 1) ( 1) ( 1) K = ( 0) ( 0) ( 1) 5

6 Dopřená Eulerova metoa (Forwar Euler metho) ( 2) ( 1) nejjenoušší přístup ( 1) ( 2) ( 2) ( 2) ( 2) ( 1) ( 2) K = = +, ( 0) ( 1) ( 1) ( 1) K = ( 0) ( 0) ( 1) ( 2) 6

7 Dopřená Eulerova metoa (Forwar Euler metho) ( 2) ( 1) vylepšení: ( 1) ( 2) ( 2) ( 1) ( 2) K = ( 2) ( 1) ( 2) = + ( 0) ( 1) ( 1) ( 1) K = ( 0) ( 0) ( 1) ( 2) 7

8 ( 3) ( 2) ( 1) Dopřená Eulerova metoa (Forwar Euler metho) vylepšení: ( 1) ( 2) ( 2) ( 1) ( 2) K = ( 0) ( 1) ( 1) ( 1) K = ( 2) ( 3) ( 3) ( 2) ( 3) K = ( 2) ( 1) ( 2) = + chyba se může akumulovat a zvětšovat!! ( 0) ( 0) ( 1) ( 2) ( 3) 8

9 Newton-Raphsonova metoa aný přírůstek zatížení ( n 1) neznámý přírůstek posunů ( ( n ) ) ( ) ( ) = n n ( n 1) 9

10 Newton-Raphsonova metoa ( n 1) ( n 1 ) ( n,1) ( n ) ( n 1 ) ( n,1) K δ = δ ( n 1 ) = + δ δ ( n 1) 10

11 Newton-Raphsonova metoa ( n 1) ( n 1 ) ( n,1) ( n ) ( n 1 ) ( n,1) K δ = δ ( n 1 ) = + δ δ ( n 1) 11

12 Newton-Raphsonova metoa ( n 1) ( n,1) ( n,2) ( n ) ( n,1) ( n,2) K δ = δ ( n,2 ) ( n,1 ) ( n,2) = + δ δ ( n,2) ( n,2) δ ( n 1) ( n,2) 12

13 Newton-Raphsonova metoa ( n,2) ( n 1) ( n,1) ( n,2) ( n ) ( n,1) ( n,2) K δ = δ ( n,2 ) ( n,1 ) ( n,2) = + δ δ ( n,2) ( n,2) δ ( n 1) ( n,2) 13

14 Newton-Raphsonova metoa ( n,2) ( n 1) δ ( n,2) ( n,3) ( n ) ( n,2) ( n,3) K δ = δ ( n,3) ( n,2) ( n,2) δ ( n,3 ) ( n,2 ) ( n,3) = + δ ( n 1) ( n,2) ( n,3) 14

15 Newton-Raphsonova metoa ( n,2) ( n 1) ( n, i) ( n,3) ( n,2) as i δ ( n,2) δ ( n 1) ( n,2) ( n,3) 15

16 áno: hleáme: splňující: ( 1) ( 2) ( 3),,,... ( 1) ( 2) ( 3),,,... ( ), 1,2,3,... = n = Newton-Raphson iterace ( n, i 1 ) ( n, i) ( n, i 1) K δ = ( n, i) ( n, i 1 ) ( n, i) = + δ i = 1,2,3,... tangenciální matice tuhosti se aktualizuje v kažé iteraci 16

17 Moiikovaná Newton-Raphsonova metoa ( n 1) ( n,3) ( n,2) ( n, i) pro i δ ( n,2) δ ( n 1) ( n,3) 17

18 áno: hleáme: splňující: ( 1) ( 2) ( 3),,,... ( 1) ( 2) ( 3),,,... ( ), 1,2,3,... = n = Newton-Raphson iterace ( n, i 1 ) ( n, i) ( n, i 1) K δ = ( n, i) ( n, i 1 ) ( n, i) = + δ i = 1,2,3,... moiikovaná Newton-Raphson iterace ( n,0 ) ( n, i) ( n, i 1) K δ = ( n, i) ( n, i 1 ) ( n, i) = + δ i = 1,2,3,... 18

19 Iterativní metoy Newton-Raphson ( n, i 1 ) ( n, i) ( n, i 1) K δ = ( n, i) ( n, i 1 ) ( n, i) = + δ moiikovaná Newton-Raphson ( n,0 ) ( n, i) ( n, i 1) K δ = ( n, i) ( n, i 1 ) ( n, i) = + δ matice tuhosti aktualizována v kažé iteraci i = 1,2,3,... (obyčejně rychlá konvergence, iterace početně náročné) matice tuhosti aktualizována v kažém kroku i(obyčejně = 1,2,3,... konvergence pomalejší, iterace početně méně náročné) metoa počáteční tuhosti (initial stiness metho) ( 0 ) ( n, i) ( n, i 1) K δ = matice tuhosti není aktualizována i = 1,2,3,... ( n, i) ( n, i 1 ) ( n, i) (pomalá konvergence, = + δ ormulace a ekompozice m.t. pouze jenou) 19

20 Konvergenční kritéria ria U iteračních meto je třeba stanovit kritéria pro ukončení iteračních cyklů einují pomínky, za jakých můžeme považovat přibližné řešení za ostatečně blízké k rovnovážnému stavu. A. Kritérium rium přírůstku přem emíst stění konvergenční tolerance (~0,01)... norma vektoru přírůstku přemístění během iterace je ostatečně malá ve srovnání s normou vektoru celkového přemístění na konci iterace 20

21 B. Kritérium rium nevyrovnaných sil (reziuí) konvergenční tolerance (~0,01)... norma vektoru reziuí v iteraci je ostatečně malá ve srovnání se normou zaaného přírůstku zatížení 21

22 C. Energetické kritérium rium konvergenční tolerance (~0,01)... práce nevyvážených sil (reziuí) na přírůstku přemístění v iteraci je ostatečně malá ve srovnání s počátečním přírůstkem vnitřní energie 22

23 Poznámky: Uveená kritéria jsou relativní. Absolutní kritéria ria lze einovat tak, že srovnávací honota ve jmenovateli je pevně zvolena. Maximální počet iterací je navíc omezen uživatelem. Poku nejsou zvolená konvergenční kritéria splněna ani při maximálním počtu iterací, řešení nezkonvergovalo. 23

24 Volba metoy přírůstkov stkového řešen ení výpočtová náročnost/iterace (nejmenší největší): bez iterací MNR BFGS NR počet iterací k osažení konvergence (nejmenší největší): NR BFGS MNR použití metoy bez iterací menší přesnost, nutnost malých kroků použití vyhleávání po linii zvyšuje výpočetní náročnost ale pomáhá osáhnout konvergence i při silné nelinearitě a snižuje počet iterací při slabé nelinearitě Volba konvergenčního kritéria ria vhoné tolerance: příliš volné nepřesné řešení, riziko ivergence příliš přísné zbytečná výpočtová náročnost, alešná ivergence obyčejně kolem 1% volba kritéria (přemístění, reziua, energetické) obyčejně postačuje energetické kritérium, existují přípay, ky je příliš volné nutno vzít v úvahu iterační metou, élku kroku a chování moelu 24

25 Příkla 3: Uvažujte zobrazený prut při jenoosé napjatosti. Určete posun u při zatížení F = 3,5 MN. Materiál prutu je nelineárně elastický a jeho chování lze popsat unkcí [MPa] A) Úlohu vyřešte analyticky. Víme-li, že pro F = 3 MN je u = 1,29 mm, pak B) vyřešte úlohu 1 krokem Eulerovy metoy bez iterací. C) vyřešte úlohu 1 krokem moiikované NR metoy. Proveďte 3 iterace. D) vyřešte úlohu 1 krokem plné NR metoy. Proveďte 3 iterace. V přípaech B)~D) určete chybu výsleku třetí iterace pole kritéria přírůstku přemístění, kritéria nevyrovnaných sil a kritéria energetického. Dále určete o kolik se liší vypočtený posun o analytického řešení. Postup oplňte obrázky. F u 1 m x 0,3 m 0,3 m 25

26 Příkla 4: Uvažujte soustavu 2 nelineárních algebraických rovnic: ( ) = (*), ke 1 =, ( ) = a) Určete ( ) ( 1) ( 1) = pro = 2 pro přibližné řešení násleující úlohy. ( ) a použijte ( 1) ( 1), jako počáteční stav Nalezněte řešení proveete 1 krok: b) opřeené Eulerovy metoy; ( 2) nelineární soustavy (*) pro c) moiikované Newton-Raphsonovy metoy se 3 iteracemi; ) plné Newton-Raphsonovy metoy se 3 iteracemi. ( 2) ( ( 2) ) = tak, že e) Pro kažý z příklaů b)-) spočtěte vektor konečných reziuí r (nevyvážených sil) a jeho normu a porovnejte přesnost jenotlivých meto. 26

27 Praktické ray pro používání MKP- obecně Ujasníme si, jaký obecný výsleek o analýzy očekáváme (např. obecnou inormaci o eormaci rozsáhlé konstrukce, preikci šíření trhliny o ostrého etailu ap.). Uvážíme možná zjenoušení, reukci imenze (rovina), rozělení konstrukce na části působící samostatně. Zvolíme vhoné kinematické přepoklay (příhraa, prut, rovinná napjatost/eormace, osová symetrie, eska, skořepina, 3-D kontinuum). Bereme v úvahu složitost vlastního moelu, čas řešení, zpracování a vizualizaci výsleků. U složitých úloh může být výhoné kombinovat různé kinematické přepoklay pro různé části konstrukce (např. prut + rovinná napjatost). Pozor, musí se zajistit kompatibilita různých stupňů volnosti. Uěláme si empirický/zjenoušený oha přepokláaného výsleku. Ohaneme místa koncentrace eormace a místa, ke bue eormace rovnoměrnější - použijeme hustší síť či prvky vyššího stupně v místech většího graientu. 27

28 Proveeme zkušební výpočet s řiší sítí - ientiikujte místa koncentrace eormace. Zjemníme síť konečných prvků a proveeme konečný výpočet. Po kažém výpočtu: vizuálně zkontrolujeme přemístění (zvětšené) kontrola poepření, orientace zatížení ap. vizuálně zkontrolujeme pole eormace/napětí ochází-li ke koncentraci, má to tak být nebo je to ůsleek nevhoně zaveeného zatížení (osamělé břemeno), poepření (boová popora), zjenoušení geometrie (ostré rohy), ap.? zkontrolujeme, za napjatost opovíá přeepsanému zatížení zkontrolujeme, za nevznikly nežáoucí iskontinuity např. v ůsleku nevhoně proveené iskretizace 28

29 Napříkla: 29

30 Praktické ray pro nelineárn rní analýzu 1. Provést elastický převýpo evýpočet et výpočet v jenom kroku s malým zatížením (tak, aby materiál zůstal elastický) vizuálně zkontrolujeme přemístění (zvětšené) a pole eormace/napětí ientiikujeme velikost maximálního napětí, které v konstrukci vzniká 30

31 2. Volba velikosti zatěž ěžovac ovacího kroku první krok (elastický): maximální napětí z 1. porovnáme s kritériem pro nelineární chování (např. pomínkou plasticity) vypočteme aktor zatížení z 1. tak, aby napjatost v nejnamáhanějším boě byla těsně pře počátkem nelineárního chování zásaa: čím větší nelinearita, tím menší krok poku nemáme přestavu o nelineárním chování konstrukce, proveeme hrubý výpočet bez iterací s hrubým krokováním ientiikujeme zatížení, ky se nelinearita zvětšuje/zmenšuje příliš jemné krokování louhý výpočet, obrovské množství vypočtených at (nesnané zpracování) 31

32 2. Co ělat, kyž řešení nekonverguje? vžy se snažit najít yzickou postatu, proč řešení nekonverguje!! lineárně elastický výpočet: zkontrolovat poepření (není kinematicky neurčité? není výjimkový přípa?) zkontrolovat přítomnost nepoepřených uzlů/stupňů volnosti zkontrolovat, za konstrukce netvoří mechanismus nelineární výpočet: nebyla překročena únosnost konstrukce? neošlo k náhlé změně tuhosti konstrukce (i lokálně)? 32

33 nelineární výpočet (pokračování): neochází k rémnímu lokálnímu namáhání v ůsleku nevhoně zaveených okrajových pomínek (zatížení osamělou silou, boová popora ap.)? neošlo ke vzniku plastického mechanismu, utržení části konstrukce? 33

34 opatření: eliminovat yzikálně nepřípustný stav (snížit zatížení, boové zatížení a popory roznést ap.) zmenšit élku kroku použít plnou NR metou s vyhleáváním po linii změnit způsob zatěžování: řízené silou řízené posunem použít automatickou élku kroku 34

35 Tento okument je určen výhraně jako oplněk k přenáškám a cvičením z přemětu Nelineární analýza materiálů a konstrukcí pro stuenty Stavební akulty ČVUT v Praze. Dokument je průběžně oplňován, opravován a aktualizován a i přes veškerou snahu autora může obsahovat nepřesnosti a chyby. Datum poslení aktualizace:

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy

Více

Tutoriál programu ADINA

Tutoriál programu ADINA Nelineární analýza materiálů a konstrukcí (V-132YNAK) Tutoriál programu ADINA Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2010 1 Výstupy programu ADINA: Preprocesor

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA

STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA Zaání STATICKY NEURČITÉ RÁOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ ETODA Příkla č. Vykreslete průěhy vnitřníh sil na konstruki zorazené na Or.. Voorovná část konstruke (příčle) je složena z průřezu a

Více

PLASTICITA A CREEP PLASTICITA V

PLASTICITA A CREEP PLASTICITA V Plasticita V / PLASIIA A REEP PLASIIA V Zbyněk k Hrubý zbynek.hruby hruby@fs.cvut.cz Plasticita V / Čistá asticita vs. čistá asticita čistá asticita: čistá asticita: prou nestlačitné tekutiny, o osažení

Více

F (x, h(x)) T (g)(x) = g(x)

F (x, h(x)) T (g)(x) = g(x) 11 Implicitní funkce Definice 111 (implicitní funkce) Nechť F : R 2 R je funkce a [x 0, y 0 ] R 2 je takový bo, že F (x 0, y 0 ) = 0 Řekneme, že funkce y = f(x) je v okolí bou [x 0, y 0 ] zaána implicitně

Více

Kontraktantní/dilatantní

Kontraktantní/dilatantní Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku

Více

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta

UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta Chromatografie Zroj: http://www.scifun.org/homeexpts/homeexpts.html [34] Diaktický záměr: Vysvětlení pojmu chromatografie. Popis: Žáci si vyzkouší velmi jenouché ělení látek pomocí papírové chromatografie.

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load

PROTLAČENÍ. Protlačení 7.12.2011. Je jev, ke kterému dochází při působení koncentrovaného zatížení na malé ploše A load 7..0 Protlačení Je jev, ke kterému ochází při působení koncentrovaného zatížení na malé ploše A loa PROTLAČENÍ A loa A loa A loa Zatěžovací plochu A loa obyčejně přestavuje kontaktní plocha mezi sloupem

Více

Lineární stabilita a teorie II. řádu

Lineární stabilita a teorie II. řádu Lineární stabilita a teorie II. řádu Sestavení podmínek rovnováhy na deformované konstrukci Konstrukce s a bez počáteční imperfekce Výpočet s malými vs. s velkými deformacemi ANKC-C 1 Zatěžovacídráhy [Šejnoha,

Více

MATEMATICKÁ STATISTIKA 1, CVIČENÍ (NMSA331) Poslední úprava dokumentu: 17. listopadu 2016

MATEMATICKÁ STATISTIKA 1, CVIČENÍ (NMSA331) Poslední úprava dokumentu: 17. listopadu 2016 MATEMATICKÁ STATISTIKA, CVIČENÍ NMSA33 Příklay nejen pro přípravu na písemnou zápočtovou práci Poslení úprava okumentu: 7. listopau 206 Poslení úprava okumentu: 7. listopau 206 Mnohorozměrné normální rozěleni

Více

ENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM

ENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM P Ř Í K L A D Č. 6 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM Projekt : FRVŠ 011 - Analýza meto výpočtu železobetonovýh lokálně poepřenýh esek Řešitelský kolektiv : Ing. Martin Tipka

Více

NCCI: Vzpěrné délky sloupů a tlačených prutů příhradových a rámových konstrukcí. Obsah

NCCI: Vzpěrné délky sloupů a tlačených prutů příhradových a rámových konstrukcí. Obsah CCI: Vzpěrné élky sloupů a tlačených prutů příhraových a rámových konstrukcí Sa-CZ-EU CCI: Vzpěrné élky sloupů a tlačených prutů příhraových a rámových konstrukcí ento CCI okument se zabývá určením vzpěrných

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ

Více

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia Stavební statika, 1.ročník bakalářského stuia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katera stavební mechaniky Fakulta stavební, VŠB - Technická univerzita

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

Mezní stavy základové půdy

Mezní stavy základové půdy Mezní stavy záklaové půy Eurokó a norma ČSN 73 1001 přeepisuje pro posuzování záklaové půy pro návrh záklaů metou mezních stavů. Mezním stavem nazýváme stav, při kterém ochází k takovým kvalitativním změnám

Více

NELINEÁRNÍ DYNAMICKÁ ANALÝZA KONSTRUKCE ZATÍŽENA SEISMICKÝMI ÚČINKY NONLINEAR DYNAMIC ANALYSIS OF STRUCTURES WITH SEISMIC LOADS

NELINEÁRNÍ DYNAMICKÁ ANALÝZA KONSTRUKCE ZATÍŽENA SEISMICKÝMI ÚČINKY NONLINEAR DYNAMIC ANALYSIS OF STRUCTURES WITH SEISMIC LOADS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS NELINEÁRNÍ DYNAMICKÁ ANALÝZA KONSTRUKCE

Více

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali Název a číslo úlohy - Difrakce světelného záření Datum měření 3.. 011 Měření proveli Tomáš Zikmun, Jakub Kákona Vypracoval Tomáš Zikmun Datum. 3. 011 Honocení 1 Difrakční obrazce V celé úloze jsme používali

Více

Numerické metody a programování. Lekce 7

Numerické metody a programování. Lekce 7 Numerické metody a programování Lekce 7 Řešení nelineárních rovnic hledáme řešení x problému f x = 0 strategie: odhad řešení iterační proces postupného zpřesňování řešení výpočet skončen pokud je splněno

Více

Nelineární úlohy při výpočtu konstrukcí s využitím MKP

Nelineární úlohy při výpočtu konstrukcí s využitím MKP Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,

Více

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní

Více

Vedení vvn a vyšší parametry vedení

Vedení vvn a vyšší parametry vedení Veení vvn a vyšší parametry veení Při řešení těchto veení je třeba vzhleem k jejich élce uvažovat nejenom opor veení R a inukčnost veení L, ale také kapacitu veení C. Svo veení G se obvykle zanebává. Tyto

Více

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011 Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení

Více

Analýza ŽB nosníku pomocí ATENA Engineering 2D

Analýza ŽB nosníku pomocí ATENA Engineering 2D Analýza ŽB nosníku pomocí ATENA Engineering 2D Petr Bílý kancelář B731 e-mail: petr.bily@fsv.cvut.cz web: people.fsv.cvut.cz/www/bilypet1 Popis konstrukce, zatěžovací schéma Odhad výsledků VŽDY MUSÍM JIŽ

Více

PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK

PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK - - 20,00 1 [0,00; 0,00] 2 [0,00; 0,38] +z 2,00 3 [0,00; 0,72] 4 [0,00; 2,00] Geometrie konstrukce

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Řešení kontaktní úlohy v MKP s ohledem na efektivitu výpočtu

Řešení kontaktní úlohy v MKP s ohledem na efektivitu výpočtu Řešení kontaktní úlohy v MKP s ohledem na efektivitu výpočtu Jan Hynouš Abstrakt Tato práce se zabývá řešením kontaktní úlohy v MKP s ohledem na efektivitu výpočtu. Na její realizaci se spolupracovalo

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce

Více

Grafické řešení úloh LP se dvěma neznámými

Grafické řešení úloh LP se dvěma neznámými . přenáška Grafické řešení úloh LP se věma nenámými Moel úlohy lineárního programování, který obsahuje poue vě nenámé, le řešit graficky v rovině pravoúhlých souřaných os. V této rovině se nejprve obraí

Více

ČVUT v Praze Fakulta stavební. Studentská vědecká a odborná činnost Akademický rok 2005/2006 STUDIE CHOVÁNÍ PILOT. Jméno a příjmení studenta :

ČVUT v Praze Fakulta stavební. Studentská vědecká a odborná činnost Akademický rok 2005/2006 STUDIE CHOVÁNÍ PILOT. Jméno a příjmení studenta : ČVUT v Praze Fakulta stavební Studentská vědecká a odborná činnost Akademický rok 2005/2006 STUDIE CHOVÁNÍ PILOT Jméno a příjmení studenta : Ročník, obor : Vedoucí práce : Ústav : Jakub Lefner 5., KD Doc.

Více

Řešení "stiff soustav obyčejných diferenciálních rovnic

Řešení stiff soustav obyčejných diferenciálních rovnic Řešení "stiff soustav obyčejných diferenciálních rovnic Jiří Škvára Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v Ústí n.l.. ročník, počítačové metody ve vědě a technice Abstrakt Seminární

Více

Úloha II.E... čočkování

Úloha II.E... čočkování Úloha II.E... čočkování 8 boů; průměr 5,46; řešilo 65 stuentů V obálce jste spolu se zaáním ostali i vě čočky. Vaším úkolem je změřit jejich parametry ruh a ohniskovou vzálenost. Poznámka Poku nejste stávající

Více

1 Parciální diferenciální rovnice prvního řádu

1 Parciální diferenciální rovnice prvního řádu 1 Parciální iferenciální rovnice prvního řáu 11 Lineární homogenní parciální iferenciální rovnice ve vou nezávisle proměnných ax, y + bx, y0 1 Řešenímjefunkce uux, y Hleáme vrstevnice funkce u Nechť mají

Více

4.6 Složené soustavy

4.6 Složené soustavy 4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu

Více

Martin NESLÁDEK. 14. listopadu 2017

Martin NESLÁDEK. 14. listopadu 2017 Martin NESLÁDEK Faculty of mechanical engineering, CTU in Prague 14. listopadu 2017 1 / 22 Poznámky k úlohám řešeným MKP Na přesnost simulace pomocí MKP a prostorové rozlišení výsledků má vliv především:

Více

METODA PŮLENÍ INTERVALU (METODA BISEKCE) METODA PROSTÉ ITERACE NEWTONOVA METODA

METODA PŮLENÍ INTERVALU (METODA BISEKCE) METODA PROSTÉ ITERACE NEWTONOVA METODA 2-3. Metoda bisekce, met. prosté iterace, Newtonova metoda pro řešení f(x) = 0. Kateřina Konečná/ 1 ITERAČNÍ METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC - řešení nelineární rovnice f(x) = 0, - separace kořenů =

Více

1 Stabilita prutových konstrukcí

1 Stabilita prutových konstrukcí 1 STABLTA PRUTOVÝCH KONSTRUKCÍ 1 1 Stabilita prutových konstrukcí Pod účinky tlakových sil dochází u štíhlých prutů k vybočení stabilitní problém Posuny ve směru střednice u a rotace ϕ y zůstávají malé,

Více

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel

Více

III. MKP vlastní kmitání

III. MKP vlastní kmitání Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 2. Základní pojmy CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Lagrangeův

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

Konečný automat Teorie programovacích jazyků

Konečný automat Teorie programovacích jazyků Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

geologie a užité geofyziky Karlova Univerzita, Praha v geomechanice I

geologie a užité geofyziky Karlova Univerzita, Praha v geomechanice I 1 Ústav hydrogeologie, inženýrské geologie a užité geofyziky Karlova Univerzita, Praha Přednášky pro předmět Matematické modelování v geomechanice I 3. část numerické metody David Mašín 2 Obsah Výstavba

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Krejsa, Ph.D. Katera stavební mechanky Moely položí Záklaové konstrukce Záklaové konstrukce zajšťují: přenesení tíhy vrchní stavby o položí

Více

Princip řešení soustavy rovnic

Princip řešení soustavy rovnic Princip řešení soustavy rovnic Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Formulace úlohy Metody řešení

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Tvorba výpočtového modelu MKP

Tvorba výpočtového modelu MKP Tvorba výpočtového modelu MKP Jaroslav Beran (KTS) Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování

Více

4.6.3 Příhradové konstrukce

4.6.3 Příhradové konstrukce 4.6.3 Příhradové konstrukce Forth Bridge (1890) 2529 m Akashi Kaikyō Bridge (1998) 3911 m "Forth rail bridge head-on-panorama josh-von-staudach" by Josh von Staudach - Own work. "The Forth Bridge seen

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

PLASTICITA A CREEP PLASTICITA IV

PLASTICITA A CREEP PLASTICITA IV Plasticita IV 1/44 PLATIITA A REEP PLATIITA IV Zbyněk k Hrubý zbynek.hruby hruby@s.cvut.cz Plasticita IV /44 Pomínka asticity tvary parametrů (, α, ) (, α ) ( ) vnitřní proměnné (internal variables) e

Více

Rozdíly mezi MKP a MHP, oblasti jejich využití.

Rozdíly mezi MKP a MHP, oblasti jejich využití. Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí

Více

Téma 7, modely podloží

Téma 7, modely podloží Pružnost a plastcta II.,.ročník bakalářského stua, přenášky Janas, Téma 7, moely položí Úvo Wnklerův moel položí Pasternakův moel položí Pružný poloprostor Nosník na pružném Wnklerově položí, řešení ODM

Více

STAD. Vyvažovací ventily ENGINEERING ADVANTAGE

STAD. Vyvažovací ventily ENGINEERING ADVANTAGE Vyvažovací ventily STAD Vyvažovací ventily Uržování tlaku & Kvalita voy Vyvažování & Regulace Termostatická regulace ENGINEERING ADVANTAGE Vyvažovací ventil STAD umožňuje přesné hyronické vyvážení v širokém

Více

Postup při výpočtu prutové konstrukce obecnou deformační metodou

Postup při výpočtu prutové konstrukce obecnou deformační metodou Vysoké učení technické v Brně Fakulta stavební Ústav stavební mechaniky Postup při výpočtu prutové konstrukce obecnou deformační metodou Petr Frantík Obsah 1 Vytvoření modelu 2 2 Styčníkové vektory modelu

Více

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup)

Postup při měření rychlosti přenosu dat v mobilních sítích dle standardu LTE (Metodický postup) Praha 15. srpna 2013 Postup při měření rchlosti přenosu at v mobilních sítích le stanaru LTE (Metoický postup Zveřejněno v souvislosti s vhlášením výběrového řízení za účelem uělení práv k vužívání ráiových

Více

Numerické metody. Numerické modelování v aplikované geologii. David Mašín. Ústav hydrogeologie, inženýrské geologie a užité geofyziky

Numerické metody. Numerické modelování v aplikované geologii. David Mašín. Ústav hydrogeologie, inženýrské geologie a užité geofyziky Numerické modelování v aplikované geologii David Mašín Ústav hydrogeologie, inženýrské geologie a užité geofyziky Přírodovědecká fakulta Karlova Univerzita v Praze Přednášky pro obor Geotechnologie David

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

4.5.5 Magnetické působení rovnoběžných vodičů s proudem

4.5.5 Magnetické působení rovnoběžných vodičů s proudem 4.5.5 Magnetické působení rovnoběžných voičů s prouem Přepoklay: 4502, 4503, 4504 Př. 1: Dvěma velmi louhými svislými voiči prochází elektrický prou. Rozhoni pomocí rozboru magnetických inukčních čar polí

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrský manuál č. 25 Aktualizace 07/2016 Posouzení stability svahu Program: MKP Soubor: Demo_manual_25.gmk Cílem tohoto manuálu je vypočítat stupeň stability svahu pomocí metody konečných prvků. Zadání

Více

Výpočet sedání terénu od pásového přitížení

Výpočet sedání terénu od pásového přitížení Inženýrský manuál č. 21 Aktualizace 06/2016 Výpočet sedání terénu od pásového přitížení Program: Soubor: MKP Demo_manual_21.gmk V tomto příkladu je řešeno sednutí terénu pod přitížením pomocí metody konečných

Více

Namáhání ostění kolektoru

Namáhání ostění kolektoru Inženýrský manuál č. 23 Aktualizace 06/2016 Namáhání ostění kolektoru Program: MKP Soubor: Demo_manual_23.gmk Cílem tohoto manuálu je vypočítat namáhání ostění raženého kolektoru pomocí metody konečných

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

Pružnost a pevnost. zimní semestr 2013/14

Pružnost a pevnost. zimní semestr 2013/14 Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:

Více

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek LABORATORNÍ ZKOUŠKY Jednou z hlavních součástí grantového projektu jsou laboratorní zkoušky elastomerových ložisek. Cílem zkoušek je získání pracovního diagramu elastomerových ložisek v tlaku a porovnání

Více

Numerické metody a programování. Lekce 4

Numerické metody a programování. Lekce 4 Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 5. Aplikace tahová úloha CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah cvičení: Zadání

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

Generování sítě konečných prvků

Generování sítě konečných prvků Generování sítě konečných prvků Jaroslav Beran Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování vlastností

Více

Předpokládáme ideální chování, neuvažujeme autoprotolýzu vody ve smyslu nutnosti číselného řešení simultánních rovnováh. CH3COO

Předpokládáme ideální chování, neuvažujeme autoprotolýzu vody ve smyslu nutnosti číselného řešení simultánních rovnováh. CH3COO Pufr ze slabé kyseliny a její soli se silnou zásaou např CHCOOH + CHCOONa Násleujíí rozbor bue vyházet z počátečního stavu, ky konentrae obou látek jsou srovnatelné (největší pufrační kapaita je pro ekvimolární

Více

Klasifikace rámů a složitějších patrových konstrukcí

Klasifikace rámů a složitějších patrových konstrukcí Klasifikace rámů a složitějších patrových konstrukcí Klasifikace závisí na geometrii i zatížení řešit pro každou kombinaci zatížení!! 1. Konstrukce řešené podle teorie 1. řádu (α > 10): F α 10 Pro dané

Více

Kritéria porušení laminy

Kritéria porušení laminy Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém

Více

Příhradové konstrukce

Příhradové konstrukce Příhradové konstrukce Základní předpoklady konstrukce je vytvořena z přímých prutů pruty jsou navzájem pospojovány v bodech =>styčnících vzájemné spojení prutů se ve všech styčnících se předpokládá kloubové

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová

Více

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( )

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( ) Program předmětu YMVB 1. Modelování konstrukcí (17.2.2012) 1.1 Globální a lokální modelování stavebních konstrukcí Globální modely pro konstrukce jako celek, lokální modely pro návrh výztuže detailů a

Více

Materiály ke 12. přednášce z předmětu KME/MECHB

Materiály ke 12. přednášce z předmětu KME/MECHB Materiály ke 12. přednášce z předmětu KME/MECH Zpracoval: Ing. Jan Vimmr, Ph.D. Prutové soustavy Prutové soustavy představují speciální soustavy těles, které se uplatňují při navrhování velkorozměrových

Více

Nelineární analýza ohýbaného nosníku pomocí ATENA Engineering 2D

Nelineární analýza ohýbaného nosníku pomocí ATENA Engineering 2D Nelineární analýza ohýbaného nosníku pomocí ATENA Engineering 2D Petr Bílý kancelář B731 e-mail: petr.bily@fsv.cvut.cz web: people.fsv.cvut.cz/www/bilypet1 Terminologie Materiálová nelinearita neplatí

Více

DEHA ÚCHYTY S KULOVOU HLAVOU KKT 08 BETON

DEHA ÚCHYTY S KULOVOU HLAVOU KKT 08 BETON DEHA ÚCHYTY S KULOVOU HLAVOU KKT 08 BETON Informace o výrobku Přepravní úchyty DEHA s kulovou hlavou se zabetonují společně s vynechávkou. Po ostranění vynechávky se vytvoří spojení zaháknutím univerzální

Více

Zadání semestrální práce z předmětu Mechanika 2

Zadání semestrální práce z předmětu Mechanika 2 Zadání semestrální práce z předmětu Mechanika 2 Jméno: VITALI DZIAMIDAU Číslo zadání: 7 U zobrazeného mechanismu definujte rozměry, hmotnosti a silové účinky a postupně proveďte: 1. kinematickou analýzu

Více

Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench)

Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návody do cvičení) Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench)

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

Numerická matematika Písemky

Numerická matematika Písemky Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva

Více

4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ

4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ 4. FRAUNHOFERŮV OHYB NA ŠTĚRBINĚ Měřicí potřeby 1 helium-neonový laser měrná obélníková štěrbina 3 stínítko s měřítkem 4 stínítko s fotočlánkem 5 zapisovač Obecná část Při opau rovinné monochromatické

Více

PRAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DRÁTKOBETONOVÝCH SMĚSÍ. Petr Janas 1 a Martin Krejsa 2

PRAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DRÁTKOBETONOVÝCH SMĚSÍ. Petr Janas 1 a Martin Krejsa 2 PAVDĚPODOBNOSTNÍ PŘÍSTUP K HODNOCENÍ DÁTKOBETONOVÝCH SMĚSÍ Petr Janas 1 a Martin Krejsa 2 Abstract The paper reviews briefly one of the propose probabilistic assessment concepts. The potential of the propose

Více

Metody teorie spolehlivosti

Metody teorie spolehlivosti Metoy teorie spolehlivosti Historické metoy mpirické metoy Kalibrace Pravěpoobnostní metoy FOM úroveň II AKTNÍ úroveň III Kalibrace MTOD NÁVH. BODŮ Kalibrace MTODA DÍLČÍCH SOUČINITLŮ úroveň I Nejistoty

Více

PRAVDĚPODOBNOSTNÍ POSUDEK OCELOVÉHO RÁMU METODOU IMPORTANCE SAMPLING

PRAVDĚPODOBNOSTNÍ POSUDEK OCELOVÉHO RÁMU METODOU IMPORTANCE SAMPLING I. ročník celostátní konference POLEHLIVOT KONTRUKCÍ Téma: Rozvoj koncepcí posuku spolehlivosti stavebních konstrukcí 15.3.2000 Dům techniky Ostrava IBN 80-02-01344-1 73 PRAVDĚPODOBNOTNÍ POUDEK OCELOVÉHO

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS POROVNÁNÍ RŮZNÝCH METOD NELINEÁRNÍHO

Více

FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU

FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU FYZIKÁLNÍ MODEL KYVADLA NA VOZÍKU F. Dušek, D. Honc Katera řízení procesů, Fakulta elektrotechniky a informatiky, Univerzita Parubice Abstrakt Článek se zabývá sestavením nelineárního ynamického moelu

Více

Zjednodušená deformační metoda (2):

Zjednodušená deformační metoda (2): Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem

Více

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující

Více

Mechanika s Inventorem

Mechanika s Inventorem CAD data Mechanika s Inventorem Optimalizace FEM výpočty 4. Prostředí aplikace Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Tomáš MATOVIČ, publikace 1 Obsah cvičení: Prostředí

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více