MA2: Řešené příklady Funkce více proměnných: Integrály
|
|
- Eliška Jandová
- před 9 lety
- Počet zobrazení:
Transkript
1 MA Řešené příklad 4 c phabala MA: Řešené příklad Funkce více proměnných: Integrál Vpočtěte následující integrál: dand d, cos+z d, 3. e +z dz. 4. Vpočítejte +da,kdejeomezenáoblastvmezenágraf and Najděteprůměrfunkce f,e / namnožině {, IR ; }. Změňte pořadí integrace pro následující integrál: f, d d, e f, dd, f, d d. 9. Vpočítejte da,kde,,.zkustetooběmazpůsob. + Řešení:. Předstíráme, že je konstanta, pak d 6 d+ 6d+ 6d C C,, IR. Teď už snadno vhodnotíme určitý integrál, máme dosadit za. Není špatný nápad si to připomenout vhodným značením, třeba takto: d [ Zkušení integrátoři b ale často napsali jen... [ ] ].
2 MA Řešené příklad 4 c phabala. Předstíráme, že a z jsou konstant, pak u +z cos+z d du [+z]d d d du cosu du cosu du sinu+c sin+z+c,,z IR,. 3. Teď předstíráme, že, jsou konstant. u +z du e +z z [+z]dzdz + dz dz du e u [ z u+ du eu] + e+ e. z u Mimochodem, neurčitý integrál je e +z dz e+z + C,,,z IR. 4. Jakoblastvpadá? Nejprvesepodíváme,jestlisekřivkprotínají: 5+6dává,6.Načrtnemeoblastnenívměřítku: Je zjevné, že svlivlé řez jsou zde mnohem lepší než vodorovné, protože vodorovné řez b se lišil tpem podle toho, kde řežeme. Svislýřezseurčítím,žepevnězvolímehodnotu,pohbnahoruadolůsedělázměnou. Budemeprotointegrovatsd,kdese měnímezi a 5+6. Integrovánípotomto 5+6 svislém řezu ted vede na +d.pakdámevšechnttořezdohromadpomocídalší integrace, kd sčítáme všechna udávající naše řez: d d +d d.
3 MA Řešené příklad 4 c phabala Tento dvojnásobný integrál se teď integruje běžným způsobem, zevnitř ven [ ] d d + d [ ] [ + ]d 6 [ d ] +. Jak b to fungovalo, kdbchom se rozhodli pro vodorovné řez? Doleva a doprava se pohbujemezměnou,takžeintegrálpovodorovnýchřezechsdělajívzhledemk,každýřezjeurčen volbou.pokudsizvolíme mezia,paksevodpovídajícímřezu měnímezi a. Pokudzvolíme mezia36,pakse měnímezi 5 6a.Dostávámeted Teď integrujeme: +dd+ d /5 +dd+ +dd 36 6/5 +dd. [ + ] d 5 d+ 36 [ + ] [ 4 3 3/] [ / ] Asi souhlasíte, že to takto blo těžší. Moudrá volba řezů může mít velký dopad. 6/5 d 5.Jakájedanáoblast? Abchomurčiliprůměr,potřebujemeznátdvěvěci: Obsahaintegrál f na. Itenobsah lze zjistit integrováním přes, tentokráte integrováním funkce. Zde se svislé i vodorovné řez zdají z geometrického pohledu rovnocenéstačí jeden integrál, takže zkusíme svislé řez, které prodané jsouod po. A d d [ ] [ d d 3 3/ ] 6. 3
4 MA Řešené příklad 4 c phabala Teď integrujeme danou funkci. Máme drobný problém, integrál e / da e / d d. e a/ djedostdrsný,jedenztěch,kterénejdouvjádřit pomocí elementárních funkcí. Naštěstí máme alternativu, zkusíme vodorovné řez a doufáme, ževjdoulepšíintegrál. Prodané sehodnot naodpovídajícímřezuměnímezi a pěknévzorce,možnájsmetakmělidělatitenobsah.dostáváme e / da e / dd. Toto je mnohem snažší, potřebujeme najít e /a d,cožjestandardníintegrál,kterýsenejlépe dělá substitucí. Nakonec také budeme potřebovat integraci per partes. w dw e / da e / dd d d dw e w dw d w w [ e w] w d e e d e d e d Průměr je ted w e [ ] [ e ] + A e d e e+ [e ] e. e / da6e. 6. Nejprve potřebujeme zjistit, přes jakou oblast integrujeme. Vnitřní proměnnou je, která nás pohbuje nahoru a dolů, takže jdeme po svislých řezech. Pozice těchto řezů jsou dán hodnotami,takžetennejvícevlevojenapřímce atennejvícevpravonapřímce 3. Zlimitvnitřníhointegráluvidíme,žeprodané jdeodpovídajícísvislýřezodkřivk po křivku 8,takžejeoblastmezitěmitodvěmakřivkami.Nakreslímeobrázek Změna pořadí integrace znamená přepnout na ten druhý směr řezůviz obrázek vpravo. Vodor
5 MA Řešené příklad 4 c phabala ovnéřezjsoudánvolbounějakého mezia4tobudevnějšíintegrál,protakové se proměnná pohbujemezi a 8 todostanemevřešenímvztahu 8 pro. Dostáváme integrál 4 8 / f, dd. 7. Začneme určením oblasti integrace. Vnitřní proměnná je udávající pohb doprava a doleva,cožznamená,žejdemepovodorovnýchřezech,nejnižšíjenapřímce anejvššíu.řezsahajíodkřivk pokřivku e,cožje ln.teďjsmepřipravenito nakreslit. e ln e e Pro změnu pořadí integrace přejdeme na svislé řez, ale obrázek jasně ukazuje, že pak máme dvatpřezů,jinýmislov,dostanemedvaintegrál:pro meziajdousvisléřezod po,pro meziaejdousvisléřezod lnpo.dostáváme f, d d+ e ln f, d d. 8. Nejprve určíme oblast integrace. Vnitřní integrál s pracovní proměnnou ukazuje na svisléřez,každýřezserozkládámezikřivkami a.řezberemeprovšechna, obrázek je teď jasný. 8 Změna pořadí integrace odpovídá přechodu k těm druhým řezům, ted k vodorovnýmviz obrázek napravo. Abchom pokrli celou, musíme uvažovat vodorovné řez až do nekonečna, jejichpozicejsouteddánpomocí zmnožin,. Prozvolené pakodpovídajícířez nechává probíhatmezikřivkou anekonečnem.aužjetuintegrál. f, dd. 9. Protože je daná oblast obdélník, 5
6 MA Řešené příklad 4 c phabala oba integrál budou mít konstantní meze integrace a můžeme použít libovolné pořadí dle libosti. Začneme svislými řez, což odpovídá vnitřnímu integrálu používajícímu. f, da d d. + Potřebujeme spočítat parametr: A + d + B+ C a d, to volá po parciálních zlomcích, ve kterých bude + + d + d d d + z + dz d d dz z ln ln + +C ln ln + +C ln + + C. Protože je náš integrál nevlastní, doporučuje se vjádřit primitivní funkci v kompaktním tvaru, což jsme udělali. Teď vpočítáme [ + d ln ] + lim ln + ln+ ln+ ln +. Zpět k danému integrálu: f, da d d + ln +d To volá po integraci per partes. ln +d fln + g f + g ln + ln ++ Proto [ f, da arctg ln + ln + + d d + ln ++arctg+c. ] lim arctg ln + 6 lim + arctg ln +
7 MA Řešené příklad 4 c phabala π ln lim + ln + + lim + π l H lim + lim + + π + + π. To ted bl integrál. Pěkný přehled integračních technik. Teď zkusíme vodorovné řez. Vnitřní integrál f, da + dd + dd. d + a jestandardní,někteřílidésijejdokoncepamatují.tiostatnímohou použít třeba doporučenou nepřímou substituci. t d + d dt t t [ ] t arctgt Proto f, da ] π [ Tímto způsobem se to zdá trochu snažší. t + dd lim π dt t + lim t arctgt π π d π dt t +. d π + π π. 7
7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83
Sbírka úloh z matematik 7 DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH 8 7 Definiční oblasti 8 Úloh k samostatnému řešení 8 7 Parciální derivace 8 Úloh k samostatnému řešení 8 7 Tečná rovina a normála 8
INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL,
INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, URČITÝ INTEGRÁL Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve
STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113
STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu
( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501
..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného
Kapitola 7: Integrál. 1/14
Kapitola 7: Integrál. 1/14 Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní funkcí k
Lokální a globální extrémy funkcí jedné reálné proměnné
Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální
Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y.
VII. Transformace náhodné veličiny. Náhodná veličina X má exponenciální rozdělení Ex(; ) a náhodná veličina Y = X. a) Určete hustotu a distribuční funkci náhodné veličiny Y. b) Vypočtěte E(Y ) a D(Y ).
10.1.13 Asymptoty grafu funkce
.. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol
(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.
I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n
1.1.1 Kvadratické rovnice (dosazení do vzorce) I
.. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: základní početní operace Rovnicí se nazývá vztah rovnosti mezi dvěma výrazy obsahujícími jednu nebo více neznámých. V této kapitole se budeme
{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.
9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme
Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )
. Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového
Funkce více proměnných
Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu
2.4.11 Nerovnice s absolutní hodnotou
.. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na
K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze 01 10. Spojitá prostředí: rovnice struny Leoš Dvořák, MFF UK Praha, 2014
K přednášce NUFY8 Teoretická mechanika prozatímní učební text, verze 1 1 Spojitá prostředí: rovnice strun Leoš Dvořák, MFF UK Praha, 14 Spojitá prostředí: rovnice strun Dosud jsme se zabývali pohbem soustav
9.2.5 Sčítání pravděpodobností I
9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava
Př. 3: Dláždíme čtverec 12 x 12. a) dlaždice 2 x 3 12 je dělitelné 2 i 3 čtverec 12 x 12 můžeme vydláždit dlaždicemi 2 x 3.
1..20 Dláždění III Předpoklady: 01019 Př. 1: Najdi n ( 84,96), ( 84,96) D. 84 = 4 21 = 2 2 7 96 = 2 = 4 8 = 2 2 2 2 2 D 84,96 = 2 2 = 12 (společné části rozkladů) ( ) n ( 84,96) = 2 2 2 2 2 7 = 672 (nejmenší
arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě
Ě Ě Í Ř Í Í é ž Ť Ř Í ť Í é š Ž é Ď é Ž é ž ť Ž Ě é Ú Ž Í Ž é Ú Ý Ú ý ú Éó š š Ú ý ú ť Ž Í Ě Ú é é šť š š Ž Ž š š š šť š é é é é š š Ď é ž ž ď é Ř Á é ď é Í ž Í Á Á ž Íď é Ř ď ď é ž ďž ď ďž Ý é é š Í É
http://www.zlinskedumy.cz
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2, 3 Obor Anotace CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Elektronické obvody, vy_32_inovace_ma_42_06
KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C)
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KVADRATICKÉ
(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.
. Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce
2.1.13 Funkce rostoucí, funkce klesající I
.1.13 Funkce rostoucí, funkce klesající I Předpoklad: 111 Pedagogická poznámka: Následující příklad je dobrý na opakování. Můžete ho studentům zadat na čas a ten kdo ho nestihne nebo nedokáže vřešit, b
Ě Ý ÚŘ Ť č š č š Č Ý š é č š č ž š č č š č š Ě Ů é š Ě č š č ž š č č š é š é Č é é Š č Š č Č š č é é č Ť ž č č ž é é é č é š č š Ú Ť é š č é č ň Č Š é š é š ž Č š č Ť š Č č ú ň Ě Ě č Ě š ž š Č č š š č
INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY
INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................
UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
2.7.2 Mocninné funkce se záporným celým mocnitelem
.7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,
( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208
.. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla
2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)
Radka Hamříková VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA SBÍRKA ÚLOH Z MATEMATIKY Radka Hamříková Vtvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.0..0/..5./006 Studijní opor s převažujícími
2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková
.. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.
Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 12. a) 3 +1)d. Vypočítejte určité integrály: b) 5sin 4 ) d. c) d. g) 3 d. h) tg d. k) 4 arctg 2 ) d.
ŘEŠENÉ PŘÍKLADY Z MA ČÁST Příklad Vypočítejte určité integrály: a) +)d b) 5sin) d c) d d) d e) d f) g) d d h) tgd i) d j) d k) arctg) d l) d m) sin d n) ) d o) p) q) r) s) d d ) d d d t) +d u) d v) d ŘEŠENÉ
IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE
Nové formy výuky s podporou ICT ve školách Libereckého kraje IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Podrobný návod Autor: Mgr. Michal Stehlík IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE 1 Úvodem Tento
+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity
Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na
ť Ť Ť Ť Š Á ň É ť Š ň ÍÍ ň ť ň Ť Ť Ť Í Í Ó Ť Ť Í ň ň Ť Ť Ť Í ň ť Ť ň ň ň Ť ň ň ň Ť ň Í ř Ť ť ň Ť Ž ň Ť Ó Ť ť ň ň ř Í Í Ť ň Ť ň Í ř Ť Í ň ň ň ň ť Ť ť ť ň ť ť ň Ť ť Í Ť Í Í ň Í Í ň Ý Ě ň Ť Í Ť ň É Ť Í Í
Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Tvorba trendové funkce a extrapolace pro roční časové řady
Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení
1.3.1 Kruhový pohyb. Předpoklady: 1105
.. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň
EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ
Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií
Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinancován
ň ť Č Á ť ň ň Ú Ú Á Ň ď Ú Ů Ý É Ů Ď Č ň ď ň ň ň ň Č ň ň Ď Č ň Š ň Š Š Č ň Ú Š Š Š Ě Ú ť ď ď Á Ď ť É Č ť Ó ň ť Ď Ď Ď Ý Ď Ž Ď Ď Ý Ď Ú ň ň Ď Ď Ý Ď Ď Ď ň ť Ť Ů Ú ň ď ň Ř Ů ň Á Š ť Č ň Š Š ň ň ň ť ť ť ť ť ť
Kvadratické rovnice pro studijní obory
Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
Lineární diferenciální rovnice 1. řádu verze 1.1
Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové
Funkce zadané implicitně
Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf
2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL
. VOJROZMĚRNÝ (VOJNÝ) INTEGRÁL Úvodem připomenutí základních integračních vzorců, bez nichž se neobejdete: [.] d = C [.] d = + C n+ n [.] d = + C n + [4.] d = ln + C [5.] sin d = cos + C [6.] cos d = sin
1.2.26 Přepočet přes jednotku - podruhé II
1.2.26 Přepočet přes jednotku - podruhé II Předpoklady: 010225 Pedagogická poznámka: První příklad nechávám řešit žáky, pak diskutujeme důvodech dělení. Př. 1: Za 0,85 hodiny zalévání spotřebovalo zavlažovací
10. Polynomy a racionálně lomenné funkce
10 Polynomy a racionálně lomenné funkce A Polynomy Definice 101 Reálný polynom stupně n (neboli mnohočlen) je funkce tvaru p(x) = a n x n + a n 1 x n 1 + + a 0, kde a 1,, a n R, a n 0, která každému komplexnímu
Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.5.2 ZS 2010/2011. reg-5-2. 2010 - Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 reg-5-2 10.5.2 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
{ } Poznámky 1. Jestliže integrand lze zapsat ve tvaru součinu tří funkcí jedné nezávisle proměnné. b d h
3. TROJROZMĚRNÝ (TROJNÝ) INTEGRÁL Analogick jako dvojroměrný integrál avádíme integrál trojroměrný nebo také trojný. Dvojroměrný integrál bl obecně definován pro funkci dvou neávisle proměnných f(, ) na
Katedra matematiky Matematika a byznys Příklady odhadů a předpovědí časových posloupností
Západočeská univerzita v Plzni Katedra matematiky Matematika a byznys Příklady odhadů a předpovědí časových posloupností Jméno: Číslo: Email: Martin Procházka A6525 m.walker@centrum.cz Úvod V tomto textu
+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)
Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené
MA1: Řešené příklady funkce: integrály
MA Řešené příklad c phabala 9 Spočítejte následující integrál: π. xsin(x), také x sin(x) ;.. 5. 7. 9... 5. (x )e x, také MA: Řešené příklad funkce: integrál (x )e x ; (x+ (x ) )cos(x) ;. x ln(x) ; xarctan
Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.
Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke
Soustavy lineárních rovnic
1 Soustavy lineárních rovnic Příklad: Uvažujme jednoduchý příklad soustavy dvou lineárních rovnic o dvou neznámých x, y: x + 2y = 5 4x + y = 6 Ze střední školy známe několik metod, jak takové soustavy
Kvadratické rovnice pro učební obory
Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
F (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-6:P7.] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]}
1/27 FUNKCE Základní pojmy: Funkce, definiční obor, obor hodnot funkce Kartézská soustava souřadnic, graf funkce Opakování: Číselné množiny, úpravy výrazů, zobrazení čísel na reálné ose Funkce: Zápis:
= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)
.8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Aleš Najman [ÚLOHA 18 TVORBA PLOCH]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Aleš Najman [ÚLOHA 18 TVORBA PLOCH] 1 ÚVOD V této kapitole je probírána tématika tvorby ploch pomocí funkcí vysunutí, rotace a tažení. V moderním světě,
Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň
Nyní jste jedním z oněch kouzelníků CÍL: Cílem hry je zničit soupeřovy HERNÍ KOMPONENTY:
Vytvořili Odet L Homer a Roberto Fraga Velikonoční ostrov je tajemný ostrov v jižním Pacifiku. Jeho původní obyvatelé již před mnoha lety zmizeli a jediné, co po nich zůstalo, jsou obří sochy Moai. Tyto
3.2.4 Podobnost trojúhelníků II
3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).
7.1 Úvod. Definice: [MA1-18:P7.1a]
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-8:P7.a] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.
Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ
2.7.1 Mocninné funkce s přirozeným mocnitelem
.7. Mocninné funkce s přirozeným mocnitelem Předpoklad: 0 Pedagogická poznámka: K následujícím třem hodinám je možné přistoupit dvěma způsob. Já osobně doporučuji postupovat podle učebnice. V takovém případě
1 Úvod. 2 Teorie. verze 1.0
Vícenásobný integrál verze. Úvod Následující tet se zabývá dvojným a trojným integrálem. ěl b sloužit především studentům předmětu ATEAT na Univerzitě Hradec Králové k přípravě na zkoušku. ohou se v něm
Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem.
Pohyb a klid těles Pohyb chápeme jako změnu polohy určitého tělesa vzhledem k jinému tělesu v závislosti na čase. Dráhu tohoto pohybu označujeme jako trajektorii. Délku trajektorie nazýváme dráha, označuje
MS WORD 2007 Styly a automatické vytvoření obsahu
MS WORD 2007 Styly a automatické vytvoření obsahu Při formátování méně rozsáhlých textů se můžeme spokojit s formátováním použitím dílčích formátovacích funkcí. Tato činnost není sice nijak složitá, ale
KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ
Tabulky Word 2007 - egon. Tabulky, jejich formátování, úprava, změna velikosti
Tabulky Word 2007 - egon Tabulky, jejich formátování, úprava, změna velikosti Jan Málek 26.7.2010 Tabulky Tabulky nám pomáhají v pochopení, jak mezi sebou souvisí určité informace, obohacují vzhled dokumentu
ax + b = 0, kde a, b R, přímky y = ax + b s osou x (jeden, nekonečně mnoho, žádný viz obr. 1.1 a, b, c). Obr. 1.1 a Obr. 1.1 b Obr. 1.
1 Rovnice, nerovnice a soustavy 11 Lineární rovnice Rovnice f(x) = g(x) o jedné neznámé x R, kde f, g jsou reálné funkce, se nazývá lineární rovnice, jestliže ekvivalentními úpravami dostaneme tvar ax
MA2: Řešené příklady Funkce více proměnných: D(f), graf, limita. 3.Najděteanačrtnětedefiničníoborfunkce f(x,y)=3 4 x 2 y 2. . x y.
MA Řešené příklad c phabala MA: Řešené příklad Funkce více proměnných: Df, graf, ita.najděteanačrtnětedefiničníoborfunkce f,=..najděteanačrtnětedefiničníoborfunkce f,= ln ln. Najděteanačrtnětejejíhladinkonstantnostiprohodnot
. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
Práce se zálohovými fakturami
Práce se zálohovými fakturami Jak pracovat se zálohovými fakturami Pro program DUEL je připraven metodický postup pořizování jednotlivých dokladů v procesu zálohových plateb a vyúčtování, včetně automatického
Matematika 1 pro PEF PaE
Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace
M - Rovnice - lineární a s absolutní hodnotou
Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
5.1.2 Volné rovnoběžné promítání
5.1.2 Volné rovnoběžné promítání Předpoklady: 5101 Základní stereometrický problém: zabýváme se trojrozměrnými objekty, ale k práci používáme dvojrozměrný papír musíme najít způsob, jak trojrozměrné objekty
Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í
4.6.6 Složený sériový RLC obvod střídavého proudu
4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu
II. 3. Speciální integrační metody
48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou
Vzorová písemka č. 1 (rok 2015/2016) - řešení
Vzorová písemka č. rok /6 - řešení Pavla Pecherková. května 6 VARIANTA A. Náhodná veličina X je určena hustotou pravděpodobností: máme hustotu { pravděpodobnosti C x pro x ; na intervalu f x jinde jedná
Dvojné a trojné integrály příklad 3. x 2 y dx dy,
Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je
Rozvrhování zaměstnanců
Rozvrhování zaměstnanců 23. dubna 2014 1 Úvod 2 Rozvrhování volných dnů 3 Rozvrhování směn 4 Cyklické rozvrhování směn 5 Rozvrhování pomocí omezujících podmínek Rozvrhování zaměstnanců Jedná se o problém
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Petra Schreiberová, Ph.D. Ostrava 0 Ing. Petra Schreiberová, Ph.D. Vysoká škola báňská Technická
Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0
Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Matyáš Řehák stud.sk.:
ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š
ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě
ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě
ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů
V týmové spolupráci jsou komentáře nezbytností. V komentářích se může např. kolega vyjadřovat k textu, který jsme napsali atd.
Týmová spolupráce Word 2010 Kapitola užitečné nástroje popisuje užitečné dovednosti, bez kterých se v kancelářské práci neobejdeme. Naučíme se poznávat, kdo, kdy a jakou změnu provedl v dokumentu. Změny
2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic
.3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =
AUTORKA Barbora Sýkorová
ČÍSLO SADY III/2 AUTORKA Barbora Sýkorová NÁZEV SADY: Číslo a proměnná číselné označení DUM NÁZEV DATUM OVĚŘENÍ DUM TŘÍDA ANOTACE PLNĚNÉ VÝSTUPY KLÍČOVÁ SLOVA FORMÁT (pdf,, ) 1 Pracovní list číselné výrazy
Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč.
Učební dokument FUNKCE Vyšetřování průběhu funkce Mgr. Petra MIHULOVÁ.roč. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Vyš etř ová ní přů be hů fůnkce á šeštřojení její ho gřáfů Určování
Název: VY_32_INOVACE_PG3309 Booleovské objekty ve 3DS Max - sčítání a odčítání objektů
Název: VY_32_INOVCE_PG3309 ooleovské objekty ve 3DS Max - sčítání a odčítání objektů utor: Mgr. Tomáš Javorský Datum vytvoření: 05 / 2012 Ročník: 3 Vzdělávací oblast / téma: 3D grafika, počítačová grafika,