Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.
|
|
- Jana Matějková
- před 8 lety
- Počet zobrazení:
Transkript
1 Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ t) + ψ t) dt, de regulární řiva je parametric vjádřena rovnicemi x ϕt), ψt), t α, β. Parametricé vjádření úseč AB je x + 4t, + t, t,. Křivu můžeme ted parametric vjádřit rovnicemi ϕt) + 4t, ψt) + t, t,. Odtud ds x 4 + 4t + t) dt 5 t + dt 5 [ln t + ] 5 ln. Přílad. x + ) ds, de je obvod trojúhelnía ABC, A[, ], B[, ], C[, 3] Řešení: Platí 3, de,, 3 jsou stran trojúhelnía ABC. Je : x + t, + t, t,, : x t, + t, t,, 3 : x + t, + t, t,.
2 x + ) ds t + ) dt + t) + + t)) 8 dt + t + ) dt Přílad 3. x ds, de { x, ) R : x, ln x }. Řešení: Křivu můžeme parametric vjádřit pomocí rovnic x ds x t, ln t, t,. t + t dt Označme u t + a dále du t dt. t t + dt 5 t t + dt. u du 5 5 ). 3 Přílad 4. x + ds, de je ružnice x + x. Řešení: Doplněním na čtverec a úpravou převedeme rovnici ružnice na tvar x ) +. Její parametricé vjádření je x + ds π x + cos t, sin t, t, π. π + cos t + cos t dt dt π π cos t π cos t π cos t π [ dt + cos t dt sin t ] π [ sin t Přílad 5. x + ) ds, de je řiva daná parametricými rovnicemi x acos t + t sin t), asin t t cos t), t, π, a >. Řešení: Nejdříve určíme ϕ t) a sin t + sin t + t cos t) at cos t, ψ t) acos t cos t + t sin t) at sin t. π x + ) ds a cos t + t sin t) + sin t t cos t) ) at dt a 3 π + π ). ] π π ) 8
3 Vpočítejte dané řivové integrál prvního druhu v R 3. Přílad 6. rovnicemi ds x + +z, de je řiva jeden závit šroubovice) daná parametricými x a cos t, a sin t, z bt, t, π, a >, b >. Řešení: ds x + + z π a + b t a + b dt a + b b [ b arctg bt ] π a a a + b ab arctg bπ a. Přílad 7. ) x + z ds, de je řiva jeden závit uželové šroubovice) daná parametricými rovnicemi Řešení: Nejdříve určíme x t cos t, t sin t, z t, t, π. ϕ t) cos t t sin t, ψ t) sin t + t cos t, χ t) a ds ϕ t) + ψ t) + χ t) dt + t dt. ) x + z ds π t cos t + sin t) t) + t dt π t + t dt + 4π ) 3 3 ). Apliace řivového integrálu prvního druhu. Přílad 8. Vpočítejte délu asteroid 3 x a, a >, jejíž parametricé rovnice jsou x a cos 3 t, x a sin 3 t, t, π. Řešení: Asteroida není regulární řiva. Víme, že funce F x, ) 3 x a je sudá v proměnné x i v proměnné a řiva je souměrná podle os i podle os x.
4 Platí 3 4, de,, 3, 4 jsou čtři regulární řiv stejné dél. Pro délu asteroid platí s ds 4 ds. Nejdříve určíme ϕ t) 3a cos t sin t, ψ t) 3a sin t cos t a ds 3a cos 4 t sin t + sin 4 t cos t dt 3a cos t sin t dt. Odtud s 4 ds 4 π/ [ sin t 3a cos t sin t a ] π/ 6a. Přílad 9. ploch Pomocí řivového integrálu prvního druhu vpočítejte obsah válcové Ω {x,, z) R 3 : x + 4 z 4 x }. Řešení: Z geometricého významu řivového integrálu prvního druhu víme, že obsah části válcové ploch je roven číslu σ fx, ) ds, de je řiva v rovině z, do teré se válcová plocha promítne a plocha je zdola omezena rovinou z a shora grafem funce z fx, ). V našem případě je ružnice x + 4 s parametricými rovnicemi x cos t, sin t, t, π ) a fx, ) 4 x. σ π x ds 4 4 cos dt 4 π 4 sin t dt + 4 π π π sin t dt 4 sin t dt 4 π [ cos t] π sin t dt + [cos t]π π ) 6. Přílad. Pomocí řivového integrálu prvního druhu vpočítejte obsah válcové ploch Ω { x,, z) R 3 : x + ax x + + z a } a > ). Řešení: Plocha je souměrná podle rovin z a podle rovin x a je sjednocením čtř ploch o stejném obsahu. Pro obsah ploch Ω platí σ 4 a x ds,
5 de je půlružnice x a cos t), a sin t, t, π a graf funce fx, ) a x je horní část zadané ulové ploch x + + z a. Ted σ 4 a x ds 4 π a a + cos t) a dt a a π π sin t dt a [ cos t ] π cos t 4a. dt Přílad. Najděte souřadnice těžiště homogenní řiv dané parametricými rovnicemi x t sin t), cos t), t, π část cloid). Řešení: Pro souřadnice těžiště T [x t, t ] platí ) x t S m, t S m, de m je hmotnost řiv a S x, resp. S je staticý moment řiv vzhledem ose x, resp. vzhledem ose. Platí m fx, ) ds, S x fx, ) ds S xfx, ) ds, de fx, ) je hustota řiv v bodě x, ). V našem případě je řiva homogenní, tj. fx, ) onst. a souřadnice těžiště jsou na této onstantě nezávislé ve vzorcích ) se tato onstanta vrátí) a proto položím fx, ). Je ϕ t) cos t, ψ t) sin t a ds Dále cos t) + sin t dt cos t cos t dt S x ds π 4 π m ds π cos t) sin t π dt 4 sin t sin t dt 4 π sin t [ dt 4 cos t ] π 4. cos t sin t dt cos t ) sin t dt 8 sin t dt, t, π. u ) du 6 3 při výpočtu integrálu volíme substituci u cos t ) a π S x ds t sin t) sin t π dt t sin t π dt sin t sin t dt 6 3.
6 První integrál počítáme metodou per partes a ve druhém po úpravě sin t sin t cos t volíme substituci u sin t.) Je ted x t , t Křivové integrál druhého druhu Přílad. Vpočítejte řivový integrál ) z ) dx + z d x dz, de ) je ladně orientovaný oblou daný parametricými rovnicemi x t, t, z t 3, t,. Řešení: Pro řivový integrál druhého druhu fx,, z) dx + gx,, z) d + hx,, z) dz, ) de ) je ladně ve směru rostoucího parametru) orientovaný hladý oblou daný parametricými rovnicemi x ϕt), ψt), z χt), t α, β, platí fx,, z) dx + gx,, z) d + hx,, z) dz ) β fϕt), ψt), χt))ϕ t) + gϕt), ψt), χt))ψ t) + hϕt), ψt), χt))χ t)) dt α Je ted ) z ) dx + z d x dz Přílad 3. Vpočítejte řivový integrál t 4 t 6 + t t 3 t t 3t ) dt 35. ) x x ) dx + x ) d, de ) je orientovaný oblou s trajetorií { x, ) R : x, x }, přičemž pb), ), b), ). Řešení: Oblou budeme parametrizovat rovnicemi ϕt) t, ψt) t, t,. Protože pb), ) je počátečním bodem oblouu, znamená to, že je při zvolené parametrizaci orientován ladně. ) x x ) dx + x ) d t t 3 ) + t 4 t 3 ) t ) dt 4 5.
7 Přílad 4. Vpočítejte řivový integrál ) ) dx + + x) d, de ) je obvod trojúhelnía ABC, A[, ], B[, ], C[, ] a orientace je dána uvedeným pořadím vrcholů. Řešení: Oblou ) není hladý oblou. Platí ) ) ) 3 ), de ), ), 3 ) jsou hladé oblou stran trojúhelnía ABC). Je : x t, t, t,, ladně orientovaná, : x t, t, t,, záporně orientovaná, 3 : x, t, t,, záporně orientovaná. ) ) dx + + x) d t + + t) dt + t t) dt ) dt. Přílad 5. Užitím Greenov vět vpočtěte řivový integrál de ) je ladně orientovaná elipsa x /a ) + /b ), a >, b > ). Řešení: Podle Greenov vět platí ) fx, ) dx + gx, ) d M gx, ) ) x+) dx x ) d, ) fx, ) dx d, de ) je ladně orientovaná hranice uzavřené oblasti M. V našem případě je fx, ) x+, gx, ) x ) a M je oblast omezená elipsou x /a ) + /b ). Ted a dále fx, ), gx, ) x + ) dx x ) d ) dx d abπ. ) M Dvojný integrál jsme vpočítali substitucí pomocí zobecněných polárních souřadnic.) Přílad 6. Užitím Greenov vět vpočtěte řivový integrál e x cos ) dx e x sin ) d, de ) je ladně orientovaná hranice uzavřené ) { oblasti M x, ) R : x, π } sin x. Řešení: Je a odtud fx, ) e x cos ), fx, ) e x sin, gx, ) e x sin ), gx, ) e x sin )
8 a dále e x cos ) dx e x sin ) d e x + e x sin e x sin ) dx d ) M π e x dx d sin x M e x d dx π e x sin x dx 4 eπ + ). Přílad 7. Uažte, že řivový integrál druhého druhu vetorového pole fx, ) x x ), x ) ) nezávisí v oblasti G R na cestě, a vpočtěte,3) integrál fx, ) ds.,) Řešení: Křivový integrál druhého druhu nezávisí na cestě, je-li pro vetorové pole fx, ) fx, ), gx, )) splněna podmína vetorové pole je potenciální) V našem případě je fx, ) fx, ) 4x, gx, ). gx, ) 4x a to znamená, že vetorové pole je potenciální a řivový integrál druhého druhu,3) x x ) dx + x ) d nazávisí na cestě a můžeme volit libovolnou,) cestu ), terá spojí bod, ) s bodem, 3), přičemž bod, ) je počáteční bod cest. Zvolme cestu ) ) ), de ) je úseča spojující bod, ) a, ) a ) je úseča spojující bod, ) a, 3) cestu volíme ta, abchom postupovali rovnoběžně se souřadnicovými osami). Je : x t,, t,, ladně orientovaná, : x, t, t, 3, ladně orientovaná.,3) x x ) dx + x ) d x x ) dx + x ) d+,) + ) ) 3 x x ) dx + x ) d t t ) dt + t4 t ) dt 6. Přílad 8. Uažte, že řivový integrál druhého druhu vetorového pole fx, ) { x, x) nezávisí v oblasti G x, ) R : x > } na cestě, a vpočtěte,) integrál fx, ) ds.,)
9 Řešení: Protože fx, ) gx, ) x je vetorové pole potenciální a řivový integrál,),) x dx x d nezávisí na cestě. Zvolme opět cestu ) ) ), de ) je úseča spojující bod, ) a, ) a ) je úseča spojující bod, ) a, ). Ted : x t,, t,, záporně orientovaná, : x, t, t,, ladně orientovaná.,),) x dx x d ) t dt + x dx x d + dt 3. ) x dx x d
11. KŘIVKOVÝ INTEGRÁL Křivkový integrál I. druhu Úlohy k samostatnému řešení
Sbíra úloh z matematia 11 Křivový integrál 11 KŘIVKOVÝ INTEGRÁL 115 111 Křivový integrál I druhu 115 Úloh samostatnému řešení 115 11 Křivový integrál II druhu 116 Úloh samostatnému řešení 116 11 Greenova
VíceMATEMATIKA III. Program - Křivkový integrál
Matematia III MATEMATIKA III Program - Křivový integrál 1. Vypočítejte řivové integrály po rovinných řivách : a) ds, : úseča, spojující body O=(0, 0), B = (1, ), b) ( + y ) ds, : ružnice = acos t, y= a
VícePŘÍKLADY K MATEMATICE 3
PŘÍKLADY K ATEATIE 3 ZDENĚK ŠIBRAVA. Křivkové integrály.. Křivkový integrál prvního druhu. Příklad.. Vypočítejme křivkový integrál A =, ), B = 4, ). Řešení: Úsečka AB je hladká křivka. Funkce ψt) = 4t,
VícePŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
VíceMATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
VíceMATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
VíceMatematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Více1. Cvičení: Opakování derivace a integrály
. Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )
Více1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
VícePŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2
PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku
VíceMATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
VíceMatematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VíceMatematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VíceDvojné a trojné integrály příklad 3. x 2 y dx dy,
Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je
Více5. KŘIVKOVÝ INTEGRÁL Křivka a její orientace Z kapitoly 4.1 víme, že vektorovou funkcí jedné nezávisle proměnné t
Matematia IV Křivový integrál 5. KŘIVKOVÝ INTEGRÁL Proč řivový integrál? Integračním oborem je řiva. Křiva neorientovaná integrál I. druhu (neorientovaný) Křiva orientovaná integrál II. druhu (orientovaný)
Více2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL
. VOJROZMĚRNÝ (VOJNÝ) INTEGRÁL Úvodem připomenutí základních integračních vzorců, bez nichž se neobejdete: [.] d = C [.] d = + C n+ n [.] d = + C n + [4.] d = ln + C [5.] sin d = cos + C [6.] cos d = sin
Více[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2
4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch
Vícey ds, z T = 1 z ds, kde S = S
Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných
VíceVeronika Chrastinová, Oto Přibyl
Integrální počet II. Příklady s nápovědou. Veronika Chrastinová, Oto Přibyl 16. září 2003 Ústav matematiky a deskriptivní geometrie FAST VUT Brno Obsah 1 Dvojný integrál 3 2 Trojný integrál 7 3 Křivkový
Více12. Křivkové integrály
12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ
VícePosloupnosti. n2 3n. lim. n4 + 2n. lim. n 1. n + n n. n! (n + 1)! n! lim. n ( 1)n! [1] lim. ln 2 n. lim. n n n sin n2 [0] lim. 2 n.
SBÍRKA PŘÍKLAŮ Z MATEMATICKÉ ANALÝZY III J. ANĚČEK, M. ZAHRANÍKOVÁ Symbolem jsou označeny obtížnější příklady. Posloupnosti Určete limitu posloupnosti n n + lim n n + 5n + lim n n n n4 + n lim n lim n
VíceŘešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1,
Určete Křivkový integrál příklad 4 x ds, kde {x, y ; y ln x, x 3}. Řešení: Nejprve musíme napsat parametrické rovnice křivky. Asi nejjednodušší parametrizace je Tedy daný integrál je x ds x t, y ln t,
VíceF n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
VíceTransformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
VíceCvičení z AM-DI. Petr Hasil, Ph.D. Verze: 1. března 2017
z AM-DI Petr Hasil, Ph.D. hasil@mendelu.cz Verze: 1. března 017 Poznámka. Příklady označené na cvičení dělat nebudeme, protože jsou moc dlouhé, popř. složité (jako takové, nebo pro psaní na tabuli). V
VíceKapitola 8: Dvojný integrál 1/26
Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet
VíceII. 5. Aplikace integrálního počtu
494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu
Více11. cvičení z Matematické analýzy 2
11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y
VíceINTEGRACE KOMPLEXNÍ FUNKCE
INTEGRAE KOMPLEXNÍ FUNKE LEKE34-KIN auchyova obecná auchyova auchyův vzorec vičení KŘIVKOVÝ INTEGRÁL Na konci kapitoly o derivaci je uvedena souvislost existence derivace s potenciálním polem. Existuje
VíceParametrické rovnice křivky
Křivkový integrál Robert Mařík jaro 2014 Tento text je tištěnou verzí prezentací dostupných z http://user.mendelu.cz/marik/am. Křivkový integrál Jedná se o rozšíření Riemannova integrálu, kdy množinou
VíceKŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE
KŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE Jiří Novotný Ústav matematiky a deskriptivní geometrie, Fakulta stavební, Vysoké učení technické v Brně Abstrakt: V rámci řešení projektu Inovace bakalářského studia Počítačová
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
VíceU dx+v dy = y. f = (2x+3y,5x y 4) po obvodu ABC ve směru A B C, kde A = [1,0],B = [1, 3], C = [ 3,0].
E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II (6) IV.6. Greenova věta Křivkový integrál vektorového pole po uzavřené křive nazýváme irkulaí vektorového pole f po křive a zapisujeme
Více10. cvičení z Matematické analýzy 2
. cvičení z Matematické analýzy 3. - 7. prosince 8. (dvojný integrál - Fubiniho věta Vhodným způsobem integrace spočítejte daný integrál a načrtněte oblast integrace (a (b (c y ds, kde : y & y 4. e ma{,y
VíceAnalytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Více1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
VíceNejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.
U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek
Více+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F
Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální
VíceSubstituce ve vícenásobném integrálu verze 1.1
Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.
VíceŘešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál.
E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 III.6. Aplikace trojných integrálů Příklad 6. Užitím vorce pro výpočet objemu tělesa pomocí trojného integrálu (tj.v ddd ukažte, že objem
VícePříklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1
Víceβ 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:
GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového
Více, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1
ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami
Víceˇ EDNA SˇKA 9 DALS ˇ I METODY INTEGRACE
PŘEDNÁŠKA 9 DALŠÍ METODY INTEGRACE 1 9.1. Věta o substituci Věta 1 (O substituci) Necht je ϕ(x) prosté regulární zobrazení otevřené množiny X R n na množinu Y R n. Necht je M X, f(y) funkce definovaná
VíceOtázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
VíceVYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. (f(x) g(x)) dx.
VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. Výpo et obsahu rovinných ploch a) Plocha ohrani ená k ivkami zadanými v kartézských sou adnicích. Obsah S rovinné plochy ohrani ené dv ma spojitými
Více6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.
KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou
Více1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Více11. cvičení z Matematické analýzy 2
11. cvičení z Matematické analýzy 11. - 15. prosince 17 11.1 (trojný integrál - Fubiniho věta) Vypočtěte (i) xyz dv, kde je ohraničeno plochami y x, x y, z xy a z. (ii) y dv, kde je ohraničeno shora rovinou
Více1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu
22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte
Více14. cvičení z Matematické analýzy 2
4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti
VíceFAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,
Více7. Integrál přes n-rozměrný interval
7. Integrál přes n-rozměrný interval Studijní text 7. Integrál přes n-rozměrný interval Definice 7.1. Buď A = a 1, b 1 a n, b n R n n-rozměrný uzavřený interval a f : R n R funkce ohraničená na A Df. Definujme
Více9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud
VíceIII. Dvojný a trojný integrál
E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II 6 III. vojný a trojný integrál III.. Eistence Necht je měřitelná v Jordanově smslu množina v E resp. E a funkce f je omezená na. Necht
VíceOBECNOSTI KONVERGENCE V R N
FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce
VíceMatematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.
VíceOpakování k maturitě matematika 4. roč. STR 2 <
8.. Otáza číslo Mocniny a odmocniny. b.) Zjednodušte: b. b Opaování maturitě matematia. roč. STR :.) Zjednodušte:.) Vypočtěte: a. y : ( a. y ) =.) Umocněte: 7 7.. Otáza číslo Lineární a vadraticé rovnice.)
Víceterminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy
2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená
VíceBakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
VíceMatematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
VícePLOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule).
LOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule). uzavřená hladká kraj LOCHY lochy v prostoru, které byly zatím
Více26. listopadu a 10.prosince 2016
Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální
VíceDERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a
DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x
VíceVEKTOROVÁ POLE Otázky
VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,
VícePavel Burda Jarmila Doležalová
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA MATEMATIKA III Pavel Burda Jarmila Doležalová Vytvořeno v rámci projetu Operačního programu Rozvoje lidsých zdrojů CZ.04.1.0/..15.1/0016 Studijní opory
Vícef (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.
8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce
VíceX = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
VíceIntegrální počet - II. část (další integrační postupy pro některé typy funkcí)
Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 /
VíceMFT - Matamatika a fyzika pro techniky
MFT - Matamatika a fyzika pro techniky Pro každou přednášku by zde měl být seznam klíčových témat, odkaz na literaturu, zápočtový příklad k řešení a další příklady k procvičování převážně ze sbírky příkladů
VíceKřivkový integrál prvního druhu verze 1.0
Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm
VícePlošný integrál funkce
Kapitola 9 Plošný integrál funkce efinice a výpočet Plošný integrál funkce, kterému je věnována tato kapitola, je z jistého pohledu zobecněním integrálů dvojného a křivkového. Základním podnětem k jeho
Více18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.
I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce
VíceCyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
VíceHomogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde
Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými
Více6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH
Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle
Více13. cvičení z Matematické analýzy 2
. cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2
VíceNalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
Více7. Aplikace derivace 7E. Křivky. 7E. Křivky
7E. Křivky Derivace nacházejí uplatnění také při studiu křivek. Obrazně řečeno křivka v rovině je množina bodů, která vznikne pohybem pera po papíře. Předpokládáme přitom, že hrot pera je stále v kontaktu
VíceHledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky
6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme
Více7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí
202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají
Vícef(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
VíceII. 3. Speciální integrační metody
48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou
VíceX = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
Více(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení
.. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému
VíceDerivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
VíceVIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2
Více7.3.9 Směrnicový tvar rovnice přímky
7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:
VíceFunkce a základní pojmy popisující jejich chování
a základní pojmy ující jejich chování Pro zobrazení z reálných čísel do reálných čísel se používá termín reálná funkce reálné proměnné. 511 f bude v této části znamenat zobrazení nějaké neprázdné podmnožiny
Víceb) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
VícePetr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceVEKTOROVÁ POLE VEKTOROVÁ POLE
Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s
VícePŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE
PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE Příklad Představme si, že máme vypočítat integrál I = f(, y) d dy, M kde M = {(, y) R 2 1 < 2 + y 2 < 4}. y M je mezikruží mezi kružnicemi o poloměru 1 a 2 a se
Více9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Více4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
VícePRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VíceVysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)
Vícearcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
Více