Tento text doplňuje návod k úloze Měření momentu setrvačnosti uvedený ve skriptech Úvod do fyzikálních měření. V žádném případě si neklade za cíl být
|
|
- Zdeněk Novák
- před 8 lety
- Počet zobrazení:
Transkript
1 ento text dolňuje návod k úloze Měření oentu etvčnoti uvedený ve kitech Úvod do fyzikálních ěření. V žádné řídě i neklde z cíl být koletní návode o zěření úlohy. Cíle bylo dolnit teoetické infoce o obletice otáčení tuhého těle, zején odobněji ozebt veličinu oent etvčnoti, dále odvodit někteé vzthy oužívné ři ěření výše zíněné úlohy. Auto
2 Kted fyziky Obh: eoie... 3 Moent etvčnoti... 3 Steineov vět... 5 Exeientální tnovení oentu etvčnoti... 7 Stnovení oentu etvčnoti etodou lých kyvů... 7 A Pokud znáe olohu hotného tředu těle... 7 B Pokud neznáe olohu hotného tředu těle... 8 Příloh... 0 S.P. - -
3 Kted fyziky Měření oentu etvčnoti tuhého těle Moent etvčnoti eoie Při otční (otáčivé ohybu tuhého těle kole nehybné oy oiují body těle kužnice, jejichž tředy leží n oe otce. Všechny body těle e z dný č otočí o tejný úhel. Úhlová ychlot je tedy o všechny body tejná. Obvodové ychloti jednotlivých bodů jou řío úěné oloěů kužnic, o nichž e body ohybují. Situci zchycuje obázek. o v v Obázek : Odvození kinetické eneie tuhého těle otujícího kole nehybné oy Kinetickou eneii E k otujícího těle vyočtee jko oučet kinetických eneií jednotlivých bodů: n E k v v... n vn i vi ( i Po velikot ychloti kždého bodu těle ltí vzth: v i i ( S oužití vzthu ( ůžee vzth ( řet do odoby: n n E k i i (3 i i i i Ze vzthu (3 vylývá, že kinetická eneie tuhého těle otujícího kole nehybné oy závií n úhlové ychloti otáčení, n hotnotech jednotlivých bodů tvořících těleo n jejich vzdálenotech od oy otáčení. Kinetická eneie těle ři otci tedy závií n ozložení hotnoti v tuhé tělee. Fyzikální veličin, kteá chkteizuje ozložení látky vzhlede k oe otce, e nzývá oent etvčnoti vzhlede k oe otce znčí e. Moent etvčnoti á jednotku k. 0 S.P
4 Kted fyziky Po konečný očet bodů tvořících tuhé těleo je oent etvčnoti definován vzthe: n i ( i i Potože většin těle je tvořen nekonečný očte bodů, uíe ve vzthu ( nhdit konečný oučet inteále ře hotnot celého těle. Moent etvčnoti k definuje náledující vzth: d, (b ( kde d je hotnot eleentu těle kolá vzdálenot tohoto eleentu od oy otce. Pokud je teiál, z něhož je tuhé těleo vyobeno, hooenní, k je ožno oužití hutoty řejít ve vzthu (b od eleentu hotnoti k eleentu objeu. d dv (5 ( (V Po těle videlných tvů lze řío z definice (b odvodit oenty etvčnoti. yto oenty lze njít nř. ve fyzikálních tbulkách, vzoce o běžná těle obhuje tbulk. Obuč nebo tenec o oloěu R otáčející e kole eoetické oy R Válec nebo dik o oloěu R otáčející e kole eoetické oy R Koule o oloěu R otáčející e kole oy ocházející její třede 5 R Kužel o oloěu odtvy R výšce v otáčející e kole eoetické oy 3 0 R Pvoúhlý hnol hotnoti hni, b, c vzhlede k oe jdoucí třede ovnoběžně hnou (b c enká tyč délky l otáčející e kole oy vedené třede tyče kolo k její délce l enká tyč délky l otáčející e kole oy vedené jední konce tyče kolo k její délce bulk : Moenty etvčnoti vybných těle 3 l 0 S.P. - -
5 Kted fyziky Steineov vět Ne vždy uí těleo otovt kole oy, kteá ochází jeho hotný třede. e-li zná oent etvčnoti těle 0 vzhlede k někteé oe o 0 jdoucí hotný třede těle, k lze učit oent etvčnoti těle vzhlede k libovolné oe o ovnoběžné oou o 0. K touto účelu louží tzv. Steineov vět:, (6 0 kde je hotnot těle vzájená vzdálenot o o o 0. o 0 o 0 0 Obázek : Alikce Steineovy věty (hotný třed válce leží n otční oe válce Pozn.: Ze Steineovy věty vylývá, že oent etvčnoti těle vzhlede k oe, kteá neochází jeho hotný třede, je vždy větší než oent etvčnoti 0 vzhlede k oe otce, kteá ochází hotný třede těle. (Hotnot je vždy kldné čílo duhá ocnin vzdálenoti tké, oto e člen. vždy řičítá. Příkld užití Steineovy věty: Hooenní válec o hotnoti = k oloěu = 0, e otáčí kole oy ovnoběžné oou otční yetie válce. Vzájená vzdálenot oy válce oy otce činí = 0,. Stnovte oent etvčnoti válce vzhlede k oe otce. Řešení: Situci zchycuje obázek. Po hooenní válec leží hotný třed n oe yetie jeho otční yetie, tj. oe o 0. Vzoec o výočet oentu etvčnoti 0 vhlede k oe o 0 je znáý lze jej njít nříkld v tbulce tohoto textu. Oy o 0 o jou ovnoběžné, oto oužijee Steineovu větu. Steineov vět: 0 Po oent etvčnoti 0 nleznee v tbulce vzoec: 0 S.P
6 Kted fyziky Po dození do Steineovy věty zíkáe hledný výledek: Vzth lze teticky uvit do odoby: Po zdné hodnoty: 0, 0, 0,0 0,0 0,005 0,0 0,05 0,05 k 0,05 k Pozn. Moent etvčnoti zdného válce otujícího odle oy o 0 činí: 0 0 0,0 0, 0,005 k 0,005 k 0 S.P
7 Kted fyziky Exeientální tnovení oentu etvčnoti Stnovení oentu etvčnoti etodou lých kyvů Po tnovení oentu etvčnoti těle lze oužít etodu kyvů, kdy těleo zvěíe nd jeho hotný třede ozkývee. (Zvěšení nd hotný třede těle je nutné, by těleo kývlo. Pokud bycho těleo zvěili v ítě jeho hotného tředu, k e kývt nebude. outo etodou nelze řío zěřit oent etvčnoti 0 vzhlede k oe ocházející hotný třede těle. Po kývání těle v tíhové oli kole vodoovné oy lze o lé výchylky (tj. < 5 z ohybové ovnice odvodit vzth o dobu kitu:, (7 kde je tíhové zychlení, hotnot těle, vzdálenot hotného tředu těle od oy otáčení. A Pokud znáe olohu hotného tředu těle Ze znáé hotnoti, vzdálenoti (okud znáe olohu hotného tředu těle ze zěřené eiody kitů ůžee učit oent etvčnoti z uveného vzthu (7: (8 Po tnovení oentu etvčnoti těle vzhlede k oe ocházející hotný třede těle oužijee Steineovu větu (6 uvenou do odoby: (9 0 Stnovení chyby ěření Stnovení oentu etvčnoti výše uvedený zůobe je klický říkld neříého ěření. Ze zěřených veličin eiody kitů, znáé hotnoti, zěřené vzdálenoti, tbulkové hodnoty tíhového zychlení několik kontnt učíe hledný oent etvčnoti výočte odle vzthu (8. Po chybu vyočteného oentu etvčnoti těle videlného tvu užijee vzth: ( ( ( ( ( ( (0 Loickou úvhou lze někteé závoky ve výzu (0 znedbt vzth tí zjednodušit. Kontnty tíhové zychlení tzv. Ludolfovo čílo jou uvedeny v tbulkách nohe řeněji, než e ná odřilo tnovit ottní veličiny. Chyb učení tíhového zychlení ( chyb učení Ludolfov číl ( jou znedbtelně lé v oovnání ottníi chybi ěřených veličin. (Nř. zobzují běžné klkulčky nejéně n 8 deetinných ít. 0 S.P
8 Kted fyziky Vzth (0 e zjednoduší do odoby: ( ( ( ( ( ednotlivé ciální deivce e ovnjí:,, B Pokud neznáe olohu hotného tředu těle Pokud olohu hotného tředu těle neznáe, otuujee tkto. Nejdříve tnovíe eiodu kývání těle, o kteou ltí již dříve uvedený vzth (7, (7 kde je tíhové zychlení, vzdálenot hotného tředu těle od oy otáčení. Potože neznáe olohu hotného tředu těle, otřebujee ovnici (7 dolnit o dlší vhodný vzth, bycho ěli outvu dvou ovnic o dvě neznáé. Přidáe k těleu řívžek o znáé hotnoti jednoduché tvu (nejčtěji válec, u něhož je choni učit olohu hotného tředu uíe očítt jeho oent etvčnoti. í dotáváe dlší otřebnou ovnici. Po kývjící těleo řívžke ltí:, ( kde je tíhové zychlení, hotnot outvy těleo lu řívžek, vzdálenot hotného tředu outvy od oy otáčení oent etvčnoti outvy. Po oent etvčnoti outvy těleo lu řívžek ltí jednoduchý vzth (3 (3 kde je oent etvčnoti vzhlede k oe otáčení o. Přívžek volíe jednoduchého tvu nř. jko válec. O otáčení řívžku není totožná oou yetie válce, oto oent etvčnoti řívžku vůči oe otáčení o zíkáe oužití Steineovy věty (6 vzth (3 řejde ve vzth:, (3b 0 kde 0 je oent etvčnoti řívžku vůči oe ocházející jeho hotný třede, hotnot řívžku vzdálenot hotného tředu řívžku od oy otáčení o. Moent etvčnoti 0 o jednoduchý tv řívžku vzdálenot dokážee učit. V ovnici ( chybějící vzdálenot hotného tředu outvy od oy otáčení o vyjádříe oocí vzthu:, ( 0 S.P
9 Kted fyziky kde je hotnot zkouného těle, hotnot řívžku, vzdálenot hotného tředu zkouného těle od oy otáčení o vzdálenot hotného tředu outvy od oy otáčení o. Vyvětlení ke vzthů ( ž ( obhuje obázek 3. o S S S tředu Obázek 3: Stnovení oentu etvčnoti těle neznáou olohou hotného Ze outvy ovnic (7 ( ž ( lze odvodit vzth o tnovení oentu etvčnoti těle, u kteého neznáe řenou olohu hotného tředu. Při odvození ůžee otuovt nříkld tkto: Z ovnice ( vyjádříe oent etvčnoti outvy (5 Vyjádřený oent etvčnoti dodíe do ovnice (3b. Dále ředokládeje válcový tv řívžku zvole z tbulky vhodný oent etvčnoti o řívžek. Z olohu hotného tředu outvy v ovnici (6 dodíe z ovnice ( zíkáe náledující vzth (Pozn.: hotnot outvy lze n levé tně ovnice (7 vykátit Polohu hotného tředu těle bez řívžku ůžee vyjádřit ze vzthu (7: (8 (6 (7 0 S.P
10 Kted fyziky 0 S.P Vyjádřenou olohu hotného tředu těle bez řívžku (8 dodíe do ovnice (7, číž dotnee ovnici: (9 V ovnici (9 koě hledného oentu etvčnoti znáe všechny ottní veličiny. ednoduchýi lebickýi úvi doějee k výlednéu výzu oužitelnéu o tnovení hledného oentu etvčnoti: (0 Ze zěřené eiody kyvů těle nevidelného tvu bez řívžku eiody kyvů těle nevidelného tvu řívžke válcového tvu S oužití vzthu (0 tnovíe hledný oent etvčnoti. Stnovení chyby ěření Stnovení oentu etvčnoti těle nevidelného tvu výše uvedený zůobe je oět říkld neříého ěření. Ze zěřených veličin eiody kitů těle bez řívžku, eiody kitů těle řívžke, znáé hotnoti řívžku, zěřené vzdálenoti hotného tředu řívžku od oy otáčení, tbulkové hodnoty tíhového zychlení oloěu řívžku učíe hledný oent etvčnoti výočte odle vzthu (0. Po chybu vyočteného oentu etvčnoti těle nevidelného tvu užijee vzth: ( ( ( ( ( ( ( ( ( Loickou úvhou lze někteé závoky ve výzu ( znedbt. Kontnty tíhové zychlení tzv. Ludolfovo čílo jou uvedeny v tbulkách nohe řeněji, než e ná odřilo tnovit ottní veličiny. Chyb učení tíhového zychlení ( chyb učení Ludolfov číl ( jou znedbtelně lé v oovnání ottníi chybi ěřených veličin. Vzth ( e ná zjednoduší do odoby: ( ( ( ( ( ( ( ednotlivé ciální deivce e ovnjí:,,, (
11 Kted fyziky Příloh O otce Hotný třed Obázek : Reálná etv exeientu o tnovení oentu etvčnoti těle e znáou olohou hotného tředu (hotný třed outvy leží ve tředu deky. 0 S.P. - -
12 Kted fyziky S S Obázek 5: Reálná etv exeientu o tnovení oentu etvčnoti těle neznáou olohou hotného tředu (neznáá oloh hotného tředu outvy S je vyznčen čeveně. 0, evize 03, M. Stnilv Pnoš, Ph.D. 0 S.P. - -
5.4.6 Objemy a povrchy rotačních těles I
5.4.6 Objey a povchy otačních těle I Předpoklady: 050405 Pedagogická poznáka: Stejně jako u nohotěnů i u otačních těle e vzoce po objey a obahy e neodvozují, žáci ohou využívat tabulky a cíle hodin je,
VíceSeznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.
.4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli
VíceDOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO
DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná
VícePohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot
Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný
VíceURČITÝ INTEGRÁL. Motivace:
Motivce: URČITÝ INTEGRÁL Pomocí učitého integálu můžeme vpočítt: Osh ovinného ozce. Ojem otčního těles. Délku ovinné křivk. Dlší vužití učitého integálu: ve zice, chemii, ekonomii Histoická poznámk: Deinici
Více2.9.14 Věty o logaritmech I
.9.1 Věty o itmech I Předpokldy: 910 Pedgogická poznámk: Tto náledující hodin e djí tihnout njednou, pokud oželíte počítání v tbulce někteé příkldy n konci příští hodiny. Přijde mi to tochu škod, nžím
VíceLaboratorní práce č. 3: Kmitání mechanického oscilátoru
Přírodní vědy oderně a interaktivně FYZIKA 4. ročník šetiletého a. ročník čtyřletého tudia Laboratorní práce č. : Kitání echanického ocilátoru G Gynáziu Hranice Přírodní vědy oderně a interaktivně FYZIKA
VíceDynamika tuhého tělesa. Petr Šidlof
Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se
VíceGravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r
Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1
VíceZvyšování kvality výuky technických oborů
Zvšování kvlit výuk technických ooů Klíčová ktivit IV Inovce zkvlitnění výuk měřující k ozvoji mtemtické gmotnoti žáků tředních škol Tém IV1 Algeické výz, výz mocninmi odmocninmi Kitol 1 Duhá odmocnin
VíceOrientační odhad zatížitelnosti mostů pozemních komunikací v návaznosti na ČSN a TP200
Orientční odhd ztížitelnoti motů pozemních komunikcí v návznoti n ČSN 73 6222 TP200 Úvod Ztížitelnot motů PK e muí tnovit jedním z náledujících potupů podle ČSN 73 6222, kpitol 6 : - podrobný ttický výpočet
VíceF9 SOUSTAVA HMOTNÝCH BODŮ
F9 SOUSTAVA HMOTNÝCH BODŮ Evopský sociální fon Ph & EU: Investujee o vší buoucnosti F9 SOUSTAVA HMOTNÝCH BODŮ Nyní se nučíe popisovt soustvu hotných boů Přepokláeje, že áe N hotných boů 1,,, N N násleující
VíceGEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU
Integální počet funkcí jedné eálné poměnné - 4. - GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU PŘÍKLAD Učete plochu pod gfem funkce f ( x) = sinx n intevlu,. Ploch pod gfem nezáponé funkce f(x) se n intevlu,
VíceObsah přednášky : Dynamika mechanismů. dynamika mechanismů - metoda uvolňování, dynamika mechanismů - metoda redukce
Obsh přednášky : Dynik echnisů dynik echnisů - etod uvolňování, dynik echnisů - etod edukce Dynik echnisů Dynik echnisů pojednává o vzthu ezi sili, působícíi n soustvu těles - echnisus, pohybe echnisu,
Víces N, r > s platí: Základní požadavek na krásu matematického pravidla: Musí být co nejobecnější s minimem a a = a = a. Nemohli bychom ho upravit tak,
.6. Mocniny celý ocnitele I Předpokldy: 6, 6 Př. : Kteé ze dvou pvidel je teticky hezčí? ) Po kždé R, N pltí: +. ) Po kždé R,, N, > pltí:. Zákldní poždvek n káu tetického pvidl: Muí ýt co nejoecnější inie
VíceAlgebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.
9 očník - lomený lgeický vý, lineání ovnice nenámo ve jmenovteli Lomený lgeický vý Lineání ovnice nenámo ve jmenovteli Doočjeme žákům okovt voce t ( ) od úv vý n očin Lomený vý Číelné vý jo vý v nichž
VíceZákladní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku
Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.
Vícemetoda uvolňování metoda redukce G 1 G 2
Dynik echnisů Dynik echnisů pojednává o vzthu ezi sili, působícíi n soustvu těles - echnisus, pohybe echnisu, těito sili způsobené. Seznáíe se se dvě zákldníi etodi řešení dyniky echnisů. etod uvolňování
VíceVÝPOČET HLAVNÍCH ROZMĚRŮ ČTYŘTAKTNÍHO SPALOVACÍHO MOTORU
Pítový alovací troj je teelný otor, kde e čát energie vzniklá álení aliva řeění v tlakovou energii. Tato energie oocí vhodného echaniu e ění v echanickou energii. Jako nejoužívanější echaniu k řeěně tlakové
VíceExponenciální výrazy a rovnice
Epoeciálí výzy ovice Epoeciálí výzy ovice - jou ovice výzy ezáou v epoetu = 7 + + + + = 7 = 6 + + 6 Pvidl po počítáí ocii Při úpvě výzů ocii řešeí epoeciálích ovic je tře dodžovt áledující pvidl (jou uvede
VíceNázev školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika 02a Racionální čísla. Text a příklady.
Čílo ojektu CZ..07/..00/4.074 Název školy Movké gymnázium Bno..o. Auto Temtiká olt Mg. Mie Chdimová Mg. Vě Jeřáková Mtemtik 0 Rionální číl. Text říkldy. Ročník. Dtum tvoy.. 0 Anote ) o žáky jko text látky,
VíceDynamika tuhého tělesa
Dnaika tuhého tělesa Pet Šidlof ECHNCKÁ UNVERZA V LBERC Fakulta echatonik, infoatik a eioboových studií ento ateiál vnikl v áci pojektu ESF CZ..7/../7.47 Reflexe požadavků půslu na výuku v oblasti autoatického
Vícea q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)
..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí
VíceMolekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc.
Molekulová fyzik Reálný lyn Prof. RNDr. Enuel Svood, CSc. Reálný lyn Existence vzájeného silového ůsoení ezi částicei (tzv. vn der Wlsovské síly) Odudivá síl ezi částicei (interkce řekryvová) ři dosttečně
VíceOdraz na kulové ploše Duté zrcadlo
Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku
VíceGeometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný.
4. přednášk Geometické zikální plikce učitého integálu Geometické plikce. Osh ovinného útvu A. Pokud se jedná o ovinný útv omezený osou přímkmi gem spojité nezáponé unkce pk je jeho osh dán učitým integálem
VíceObsah dnešní přednášky : Obecný rovinný pohyb tělesa. Teorie současných pohybů, Coriolisovo zrychlení, dynamika obecného rovinného pohybu.
Obsh dnešní řednášky : Obecný oinný ohyb těles. eoie součsných ohybů, Coiolisoo zychlení, dynik obecného oinného ohybu. Obecný oinný ohyb zákldní ozkld. osu osu = A otce = A otce A A A A efeenční bod sueosice
Více7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.
75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,
Více11. cvičení z Matematiky 2
11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv
VíceTeorie současných pohybů, Coriolisovo zrychlení, dynamika obecného rovinného pohybu.
Obsh dnešní řednášky : Alikoná echnik, 4. řednášk Obecný oinný ohyb těles. eoie součsných ohybů, Coiolisoo zychlení, dynik obecného oinného ohybu. Obecný oinný ohyb zákldní ozkld. Alikoná echnik, 4. řednášk
VíceDráhy planet. 28. července 2015
Dáhy plnet Pet Šlecht 28. čevence 205 Výpočet N střední škole se zpvidl učí, že dáhy plnet jsou elipsy se Sluncem v ohnisku. Tké se učí, že tento fkt je možné dokázt z Newtonov gvitčního zákon. Příslušný
VíceKONSTRUKTIVNÍ GEOMETRIE. Mgr. Petra Pirklová, Ph.D. kmd.fp.tul.cz Budova G, 4. patro
KONSTRUKTIVNÍ GEOMETRIE Mg. Pet Piklová, Ph.D. kmd.fp.tul.cz Budov G, 4. pto SYLBUS. Mongeovo pomítání.. nltická geometie v E 3. 3. Vektoová funkce jedné eálné poměnné. Křivk. 4. Šoubovice - konstuktivní
VíceVýpočty za použití zákonů pro ideální plyn
ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání
Vícevzhledem k ose kolmé na osu geometrickou a procházející hmotným středem válce. c) kužel o poloměru R, výšce h, hmotnosti m
8. Mechanika tuhého tělesa 8.. Základní poznatky Souřadnice x 0, y 0, z 0 hmotného středu tuhého tělesa x = x dm m ( m) 0, y = y dm m ( m) 0, z = z dm m ( m) 0. Poznámka těžiště tuhého tělesa má v homogenním
Více3.1.7 Kyvadlo. Předpoklady: 3106
37 Kyvado ředpokady: 306 edaoická poznámka: Ceý obsah hodiny není možné stihnout za 45 minut Je třeba se ozhodnout, co je podstatné: testování vzoce paktickým sestojováním kyvade, povídání o kyvadových
VíceUniverzita Karlova v Praze Pedagogická fakulta
Uivezit lov v Pze Pedgogiká fkult SEMINÁRNÍ PRÁCE Z POLYNOMICÉ ALGEBRY ZVOLENÝ POLYNOM / CIFRI Zdáí: Zvol olyom f ( x) stuě 6 tkový y 6 f ( ) { 87868}. Uči všehy kořey s ásoostí. Vyováí: Zdáí vyhovuje
Více25 Měrný náboj elektronu
5 Měrný náboj elektronu ÚKOL Stnovte ěrný náboj elektronu e výsledek porovnejte s tbulkovou hodnotou. TEORIE Poěr náboje elektronu e hotnosti elektronu nzýváe ěrný náboj elektronu. Jednou z ožných etod
Více= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný.
5. přednášk APLIKAE URČITÉHO INTERÁLU Pomocí integálního počtu je možné vpočítt osh ovinných útvů ojem otčních těles délk ovinných křivek. Velké upltnění má učitý integál tké ve zice chemii. eometické
Více( a ) s. Exponenciální rovnice teorie. Exponenciální rovnice ukázkové úlohy. Příklad 1.
eg. č. pojektu CZ..07/..0/0.0007 Eponenciální ovnice teoie - ovnice, ve kteých e neznámá vykytuje v eponentu Řešíme je v záviloti n typu ovnice několik zákldními metodmi. A. metod převedení n tejný zákld
Více8. Elementární funkce
Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne
VíceObsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
VíceC Charakteristiky silničních motorových vozidel
C Chaaktetky lnčních otoových vozel Toto téa e zabývá záklaní etoa tanovení někteých povozních chaaktetk lnčních otoových vozel, kteé pak náleně louží k pouzování užtných vlatnotí těchto vozel. Stanovení
VíceTéma: Analýza kmitavého pohybu harmonického oscilátoru
PRACOVNÍ LIST č. Téa úlohy: Analýza kitavého pohybu haronického ocilátoru Pracoval: Třída: Datu: Spolupracovali: Teplota: Tlak: Vlhkot vzduchu: Hodnocení: Téa: Analýza kitavého pohybu haronického ocilátoru
Vícea polohovými vektory r k
Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,
Více1.2.4 Racionální čísla II
.2.4 Racionální číla II Předoklady: 20 Pedagogická oznámka: S říkladem 0 je třeba začít nejozději 0 minut řed koncem hodiny. Př. : Sečti. Znázorni vůj otu graficky. 2 2 = = 2 Sčítáme netejné čáti muíme
VíceStřední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT
Střední půmyslová škola a Vyšší odboná škola technická Bno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechanika, dynamika Pohybová ovnice po
VíceDOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE
DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE Obsa Energie... 1 Kinetická energie... 1 Potenciální energie... Konzervativní síla... Konzervativníu silovéu oli odovídá dru otenciální
VíceFunkce. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce Mg. Jmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Eponenciální ovnice VY INOVACE_05 M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Eponenciální ovnice = ovnice, ve kteých se neznámá vyskytuje v eponentu
VíceLINEÁRNÍ TRANSFORMACE V ROVINĚ
LINEÁRNÍ TRANSFORMACE V ROVINĚ Kil Mleček Dgr Szrková FSv ČVUT Prh Thákurov 7 66 9 Prh 6 ČR e-il: kil@tfsvvutz SjF STU Brtislv Ná Slood 7 8 3 Brtislv SR e-il: szrkov@sjfstusk Astrkt V řísěvku je osý geoetriký
Více( ) 1.2.19 Zákon zachování hybnosti II. Předpoklady: 010218
..9 Záon zchoání hybnoti II Předoldy: 8 Pedgogicá ozná: Cíl hodiny je jednoduchý. Studenti by e ěli nučit ottně rozhodot, j bude ydt dození onrétní ituce do záon zchoání hybnoti. Jde o jednu z nejleších
Více3. Kvadratické rovnice
CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:
VíceAutomaty a gramatiky. Trochu motivace. Roman Barták, KTIML. rní jazyky. Regulárn. Kleeneova věta. L = { w w=babau w=uabbv w=ubaa, u,v {a,b}* }
ochu motivce L = { w w=u w=uv w=u, u,v {,}* } Automty gmtiky Romn Bták, KIML tk@ktiml.mff.cuni.cz htt://ktiml.mff.cuni.cz/~tk L = L L L, kde L = { w w=u, u {,}* }, L = { w w=uv, u,v {,}* } L = { w w=u,
VíceHlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů
Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,
VíceK přednášce NUFY080 Fyzika I prozatímní učební materiál, verze 01 Keplerova úloha Leoš Dvořák, MFF UK Praha, Keplerova úloha
K řednášce NUFY080 Fyzika I ozatímní učební mateiál, veze 01 Keleova úloha eoš Dvořák, MFF UK Paha, 014 Keleova úloha Chceme sočítat, jak se ohybuje hmotný bod gavitačně řitahovaný nehybným silovým centem.
VíceHmotnostní tok výfukových plynů turbinou, charakteristika turbiny
Hotnostní tok výfukových lynů tubinou, chaakteistika tubiny c 0 c v v Hotnostní tok tubinou lze osat ovnicí / ED cs /ED je edukovaný ůtokový ůřez celé tubiny Úloha je řešena jako ůtok stlačitelné tekutiny
Více1 Tuhé těleso a jeho pohyb
1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité
Více3.4.3 Množiny bodů dané vlastnosti I
3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost
Víceř é Ů é ř ž ř é é ř ž ř Ů ř ř ř Ú é Í ř ř ř é Ž é Í ř é Ý ř ř é é é é ř ř ř é é ř é é ř é Ž ř Ý é ří ř Ř é ř ř Ž Ů ř ř ř Š Í ří ř ř řň é ř Ú řň é ř řň é ř Š ř ž é ř Ž ř Ž ř ř ř Ž Á Ž Ž Š ř ř ř ř ř é é
VícePříklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem
Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je
Více( a) Okolí bodu
0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,
VíceTECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Hálkova 6, Liberec
TECHNICKÁ UNIVERITA V LIBERCI Ktedr fyziky, Hálkov 6, 46 7 Liberec htt://www.f.tul.cz/kfy/bs_uf_r.html POŽADAVKY PRO PŘIJÍMACÍ KOUŠKY FYIKY Akdemický rok: 008/009 fkult edgogická Témtické okruhy. Kinemtik
VíceVlnová teorie. Ing. Bc. Michal Malík, Ing. Bc. Jiří Primas. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií
Ing. Bc. Michl Mlík, Ing. Bc. Jiří Prims ECHNICKÁ UNIVERZIA V LIBERCI Fkult mechtroniky, informtiky mezioborových studií ento mteriál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinncován
VíceLABORATORNÍ CVIČENÍ Z FYZIKY
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY ABORATORNÍ CVIČENÍ Z FYZIKY Jéno: Petr Česák Datu ěření: 7.. Studijní rok: 999-, Ročník: Datu odevzdání:.5. Studijní skupina: 5 aboratorní skupina: Klasifikace:
VíceSbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť
Sík úloh z tetik po 9.očík I. Loeé výz ZŠ Třešť . Loeý výz je zloek. Jeovtel zloku e eí ovt ule. U loeých výzů učujee vžd podík, po kteé á loeý výz l. Řešeý příkld Uči podík, po kteé jí výz l, řeš dlší
Více4. TROJFÁZOVÉ OBVODY
Katedra obecné elektrotechniky Fakulta elektrotechniky a inforatiky, VŠB - T Otrava 4. TROJFÁZOVÉ OBVODY rčeno pro poluchače všech bakalářkých tudijních prograů FS 4. Úvod 4. Trojfázová outava 4. Spojení
Více3.1.8 Přeměny energie v mechanickém oscilátoru
3..8 Přeěny energie v echanické oscilátoru Předoklady: 0050, 03007 Pedagogická oznáka: Odvození zákona zachování energie rovádí na vodorovné ružině, rotože je říočařejší. Pro zájece je uvedeno na konci
VícePLANIMETRIE ZÁKLADNÍ POJMY PŘÍMKA A JEJÍ ČÁSTI
Předmět: Ročník: ytvořil: Dtum: MTEMTIK DRUHÝ Mg. Tomáš MŇÁK 17. květn 2012 Název zcovného celku: PLNIMETRIE ZÁKLDNÍ POJMY Plnimetie = geometie v ovině. Zákldními útvy eukleidovské geometie jsou: bod římk
VíceFYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava
VícePístový efekt výtahů ve stavebních objektech
Pístový efekt výthů ve stvebních objektech Ing. Jiří Pokorný, Ph.D. Hsičský záchrnný sbor Morvskoslezského krje úzení odbor Opv Těšínská 39, 746 01 Opv e-il: jiripokorny@ujil.cz Klíčová slov Pístový efekt,
VíceVYVAŽOVÁNÍ VNĚJŠÍCH ÚČINKŮ ZPŮSOBENÝCH SETRVAČNÝMI SILAMI OD ROTAČNÍCH A POSUVNÝCH HMOT
VYVAŽOVÁNÍ VNĚJŠÍCH ÚČINKŮ ZPŮSOBENÝCH SETRVAČNÝMI SILAMI OD ROTAČNÍCH A POSUVNÝCH HMOT Předěte vyvažování jsou sekundání síly vyvolané účinky ohybujících se hot otačních a osuvných. o Setvačná síla otačních
VíceAutomaty a gramatiky. Pro připomenutí. Roman Barták, KTIML. Důkaz věty o dvousměrných automatech (1)
4 Automty gmtiky omn Bták, KTIML tk@ktiml.mff.cuni.cz htt://ktiml.mff.cuni.cz/~tk Po řiomenutí Automt může tké ovládt čtecí hlvu dvousměný (dvoucestný) utomt řechodová funkce: Q X Q {-,,+} Slovo w je řijto
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY MĚŘENÍ HMOTNOSTNÍCH PARAMETRŮ VOZIDEL
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ÚSTAV SOUDNÍHO INŽENÝRSTVÍ INSTITUTE OF FORENSIC ENGINEERING MĚŘENÍ HMOTNOSTNÍCH PARAMETRŮ VOZIDEL MEASUREMENT OF THE WEIGHT PARAMETERS OF VEHICLES
VíceOdraz na kulové ploše
Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. tojúhelníků
VíceCílem kapitoly je zvládnutí řešení determinantů čtvercových matic.
temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme
VíceII. kolo kategorie Z5
II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem
VíceObecný rovinný pohyb. teorie současných pohybů, Coriolisovo zrychlení dynamika obecného rovinného pohybu,
Obecný oinný pohyb ynik, 7. přednášk Obsh přednášky : teoie součsných pohybů, Coiolisoo zychlení dynik obecného oinného pohybu, ob studi : si 1,5 hodiny Cíl přednášky : seznáit studenty se zákldy teoie
Více3.2.8 Oblouková míra. Předpoklady:
3..8 Oblouková mía Předpoklady: Pedagogická poznámka: Tato hodina zabee přibližně jednu a půl vyučovací hodiny. Na 45 minut je možné hodinu zkátit buď vynecháním někteých převodů na konci (vzhledem k tomu,
VíceDynamika mechanismů. dynamika mechanismů - metoda uvolňování, dynamika mechanismů - metoda redukce. asi 1,5 hodiny
Dynaika echanisů Dynaika I, 0. přednáška Obsah přednášky : dynaika echanisů - etoda uvolňování, dynaika echanisů - etoda edukce Doba studia : asi,5 hodiny Cíl přednášky : seznáit studenty se dvěa základníi
Více13. Exponenciální a logaritmická funkce
@11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze
VíceZÁKLADY ROBOTIKY Denavit-Hartenbergova transformace
ZÁKLADY ROBOIKY Denvt-Hrtenbergov trnforme Ing. Joef Černohorký, Ph.D. ECHNICKÁ UNIVERZIA V LIBERCI Fkult mehtronky, nformtky mezoborovýh tuí ento mterál vznkl v rám projektu ESF CZ..7/../7.47 Reflexe
VíceSeminární práce z fyziky
Seminání páce z fyziky školní ok 005/006 Jakub Dundálek 3.A Jiáskovo gymnázium v Náchodě Přeměny mechanické enegie Přeměna mechanické enegie na ovnoamenné houpačce Název: Přeměna mechanické enegie na ovnoamenné
VícePosouzení stability svahu
Verifikční nuál č. 3 Aktulizce 04/016 Posouzení stbility svhu Progr: Soubor: Stbilit svhu Deo_v_03.gst V toto verifikční nuálu je uveden ruční výpočet posouzení stbility svhu posouzení stbility svhu zbezpečeného
VíceROVNOBĚŽNÉ PROMÍTÁNÍ, VOLNÉ ROVNOBĚŽNÉ PROMÍTÁNÍ
Technická univerzit v Liberci Fkult přírodovědně-humnitní pedgogická Ktedr mtemtiky didktiky mtemtiky ROVNOĚŽNÉ PROMÍTÁNÍ, VOLNÉ ROVNOĚŽNÉ PROMÍTÁNÍ Pomocný učební text Petr Pirklová Liberec, září 2013
VícePředmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ
Předmět: Ročík: Vytvořil: Dtum: MATEMATIKA TŘETÍ MGR JÜTTNEROVÁ Název zprcového celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ GEOMETRICKÁ POSLOUPNOST Defiice: Poloupot e zývá geometrická právě tehdy, když
Více1.2.2 Síly II. Předpoklady: 1201
1.. Síly II Předoklady: 101 Oakování z minulé hodiny: Pohyb a jeho změny zůobují íly. Pro každou ravou ílu můžeme najít: ůvodce (těleo, které ji zůobuje), cíl (těleo, na které íla ůobí), artnerkou ílu
VíceKlíčové pojmy Vypište hlavní pojmy: b) Tíhová síla. c) Tíha. d) Gravitační zrychlení. e) Intenzita gravitačního pole
Pojekt Efektivní Učení Refomou oblastí gymnaziálního vzdělávání je spolufinancován Evopským sociálním fondem a státním ozpočtem České epubliky. GRAVITAČNÍ POLE Teoie Slovně i matematicky chaakteizujte
VíceVYVAŽOVÁNÍ VNĚJŠÍCH ÚČINKŮ ZPŮSOBENÝCH SETRVAČNÝMI SILAMI OD ROTAČNÍCH A POSUVNÝCH HMOT
VYVAŽOVÁNÍ VNĚJŠÍCH ÚČINKŮ ZPŮSOBENÝCH SETRVAČNÝMI SILAMI OD ROTAČNÍCH A POSUVNÝCH HMOT Předěte vyvažování jsou sekundání síly vyvolané účinky ohybujících se hot otačních a osuvných. Fo Setvačná síla otačních
VíceLineární nerovnice a jejich soustavy
teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice
VíceS t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006
8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný
Více( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t
7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách
VíceLABORATORNÍ CVIČENÍ Z FYZIKY
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY méno Stanilav Matoušek Datum měření 16. 5. 5 Stud. rok 4/5 Ročník 1. Datum odevzdání 3. 5. 5 Stud. kupina 158/45 Lab. kupina
VíceCavendishův pokus: Určení gravitační konstanty,,vážení Země
Cavendishův pokus: Učení gavitační konstanty,,vážení Země Jiří Kist - Mendlovo gymnázium, Opava, SO@seznam.cz Teeza Steinhatová - gymnázium J. K. Tyla Hadec Kálové, SteinT@seznam.cz 1. Úvod Abstakt: Cílem
Víceňď Ó Ó Š ť ř ř ř Č ř ť ř Ř Š Ě Č Č ř Č Ý Ě ť Ě ť ř ý ř Ř ť ň Ě Ý ř Ě ř ř ň ť Š Š Š ň ť Ó ť Á ť ř Ů Ú Ě Č ť ň Š ř Ď Č Š ň Ř Ě ň ý řň ř ř ř Č Š ť Š Š Š Ú Š Á Ý Ú Š Š Š Š Š ť Á ť ť Ě ť ť ť ř Ú Ú Ú Š Ů Š ý
VíceŘešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2
Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Dobaprvníjízdynaprvníčtvrtinětratije 1 4 1 4 48 t 1 = = h= 1 v 1 60 60 h=1min anazbývajícíčátitrati t = 4 v = 4
VíceMechanika hmotného bodu
Mechanika hmotného bodu Pohybové zákony klaické fyziky Volný hmotný bod = hmotný bod (HB), na kteý nepůobí žádné íly (je to abtaktní objekt). Ineciální vztažná (ouřadná) outava = vztažná (ouřadná) outava,
VíceN. Určete velikosti sil, kterými trám působí na vzpěry.
0. Tué těeo 0 N 0. béníoá tená e ozěy 0 c 90 c je otáčiá oe oy joucí její třee oé oině ey. N eu ůobí íy oe obázu. Učete eiot ě ýenéo oentu íy ě otáčení ey, teý tento oent íy zůobí. 0 N 0 c 0 N 90 c 0 N
VíceNakloněná rovina II
1215 Nkloněná rovin II Předokldy: 1214 Pomůcky: siloměr 2,5 N, sd n měření řecí síly Pedoická oznámk: V éo následující hodině se nerobírá žádná nová lák Přeso jde o oměrně důležié hodiny, roože žáci se
Více( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308
731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost
VíceHustota plynů - jak ji změřit?
eletrh náadů učitelů fyziky 9 Hustota lynů - jak ji zěřit? ER SÁDEK, UKÁŠ AWERA edagogická fakulta U, Brno Abstrakt ěření hustoty evných látek a kaalin je běžná laboratorní úloha na řadě škol, nicéně ěření
Více5.1.5 Základní vztahy mezi body, přímkami a rovinami
5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin
Více