Příklady k přednášce 6 - Spojování a struktury
|
|
- Emilie Říhová
- před 6 lety
- Počet zobrazení:
Transkript
1 Příklad k přednášce 6 - Spojování a truktur Michael Šebek Automatické řízení
2 Automatické řízení - Kbernetika a robotika Zpětnovazební pojení tavových modelů Odvození obecného případu (značení viz přednáška) u u, u Cx + Du Cx + D( u ) Cx + Du D ( Cx + D) ( I+ Cx + DC x+ D u ( I+ Cx ( I+ + ( I + + D u DC x ( ) ( ) x Ax + Bu Ax + B u Ax + Bu B Cx + D Ax + BuBCx BD ( I+ A x B D C x BC x ( I+ u ( I+ BD DCx + B BD Du x Ax + Bu Ax + B ( I+ ( I+ A x + B Cx + B DC x + B I+ D D ( ) D u ( I+ DD ) ( I+ DD ) ( I + + ( I + ABD C BC BD DC x x B C A B DC ( I DD ) ( I + D B BD + D + u B ( I+ [ C DC ] x ( I+ + Du ( I+ det 0 I+ DD ( f f ) lim + () () Michael Šebek Pr-ARI-06-08
3 Zpětnovazební pojení - MIMO Automatické řízení - Kbernetika a robotika MIMO verze ( I G () G () ) () + G ()() u u u, u ( I + G G ) ( I + G G ) det () () det () () k l Ik G() det () I G l ( I G G ) ( I+ lim + () () det 0 Michael Šebek Pr-ARI
4 Automatické řízení - Kbernetika a robotika Pokud Kdž Platí ( () ()) + F F 0 ( I+ det 0, ložený tém nemá přeno!, ložený tém nemá tavový popi! ( F F ) I+ DD lim + () (), takže det( I+ DD ) 0 + F() F() 0 Kdž je jeden ze ubtémů rzí a druhý triktně rzí, pak je výledný tém rzí ( ) deg a() a() + b() b() deg a() a()) > deg b() a() Pokud ten triktně rzí je, pak je výledek triktně rzí. Rzot tému deg a ( ) < deg b( ) deg a ( ) deg b ( ) F () F () + F() F() b () a() b() a () a() a() + b() b() Obojí zřejmé i ze tavového popiu ( I x + x + + Du Michael Šebek Pr-ARI
5 Automatické řízení - Kbernetika a robotika () F Výledný tém není rzí, nemá tavový popi Přeto, že dílčí ubtém rzí jou a tavové popi mají Spojením rzích témů vznikl tém nerzí Příklad - rzot F () Výledný tém nemá přeno Přeto, že dílčí ubtém rzí jou a přeno Spojením rzích témů vznikl tém bez přenou, nekonečným zeílením Michael Šebek Pr-ARI
6 Automatické řízení - Kbernetika a robotika tzv. dekriptorový model Příklad Ex Ax + Bu Cx + Du je obecnější a umožnuje popat i nerzí tém Pro ně je matice E ingulární Přeno e z něj vpočte takto ( ) () C E A Bu() dekriptorový popi derivátoru 0 x 0 x 0 u 0 0 x 0 x + x [ 0] x x x x x 0 x u x u x x u x x 0 0 C ( E A) B [ 0] [ 0] [ 0] 0 0 Michael Šebek Pr-ARI
7 Co zhruba můžeme řízením doáhnout Automatické řízení - Kbernetika a robotika S () V čitateli S jou pól L, ted pól outav a regulátoru (pokud nedojde k vkrácení) L () GK () () Ve jmenovateli je nový polnom můžeme ted tabilizovat netabilní outavu Kdž je outava / regulátor netabilní, má S netabilní nul (důležité pro ervo-tém). Stabilizace něco tojí - možnot ovlivnit chování je pak omezená T() ap () () ap () () + bq ()() bq ()() ap () () + bq ()() q () p () V čitateli T jou nul L (nul outav a regulátoru), pokud nekrátíme Kdž má outava netabilní nul, má je i T Netabilních nul e nemůžeme zbavit b () a () bq ()() ap () () Michael Šebek ARI
8 Užitečné poučk pro Model matching Automatické řízení - Kbernetika a robotika Jak můžeme změnit přeno pomocí FF a FB br ()() g () ap () () + bq ()() f() b()() r g () ap () () + bq ()() f() b()() r g () f() b()() t f() unew r () p () u outava b () a () q () p () Výledný tém b () b() g () g () ap () () + bq ()() f() b () r () g () unew g () f() Vzorový model Nul: Některé ponecháme, některé vkrátíme, některé přidáme Pól: pouneme, pokud to jde Tvrdá omezení Netabilní nul nemůžeme vkrátit Neřiditelné/nepozorovatelné pól nemůžeme pounout Další, měkčí omezení později Michael Šebek ARI
9 Automatické řízení - Kbernetika a robotika od enzoru čato čekáme jednu potíž: přidává šum měření ale někd to netačí a muíme počítat i jeho dnamikou! Dnamika enzoru q () p () b () a () g () f() bq ()() () ref () ap () () f( ) + bq ()() g () b () a () Michael Šebek ARI
10 Vjanění divných příkladů Automatické řízení - Kbernetika a robotika Příklad e vtupní nulou: Celkový charakteritický polnom je u v x ( ) c ( ) + ( ) Příklad větve bez vtupu Celkový charakteritický polnom je u x ( ) c ( ) + ( ) x Michael Šebek Pr-ARI
11 Rozdíl Automatické řízení - Kbernetika a robotika Jaký je rozdíl mezi těmito dvěma tém? r () u b () ref ref u b () r () p () a () p () a () q () p () q () Přeno z reference na výtup je zdá e tejný, ale zkume charakteritický polnom: Za předpokladu, že ubtém nemají krté mód, tj. jou charakteritické polnom ve vých blocích má tém nalevo charakteritický polnom a tém vpravo V čem je rozdíl? a (), p () ( ) c () ap () () + bq ()() p () c () ap () () + bq ()() Michael Šebek Pr-ARI-06-06
7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy
7 - Utálený tav kmitavý a nekmitavý, ledování a zadržení poruchy Michael Šebek Automatické řízení 018 31-3-18 Automatické řízení - ybernetika a robotika zeílení ytému na frekvenci ω je G( jω) - viz amplitudový
Příklady k přednášce 16 - Pozorovatel a výstupní ZV
Příklady k přednášce 6 - Pozorovatel a výtupní ZV Michael Šebek Automatické řízení 08 6-4-8 Příklad: Pozorovatel pro kyvadlo naivně pro kyvadlo frekvencí ω 0 a rovnicemi x 0 x 0 navrhneme pozorovatel dvojitým
21 Diskrétní modely spojitých systémů
21 Dikrétní modely pojitýc ytémů Micael Šebek Automatické řízení 2015 29-4-15 Metoda emulace Automatické řízení - Kybernetika a robotika pojitý regulátor nazývá e také aproximace, dikrétní ekvivalent,
Příklady k přednášce 19 - Polynomiální metody
Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 016 15-4-17 Dělení polynomů: e zbytkem a bez Polynomy netvoří těleo (jako reálná číla, racionální funkce, ) ale okruh (jako
10 - Přímá vazba, Feedforward
0 - Přímá vazba, Feedforward Michael Šebek Automatické řízeí 03 4--3 Motivace (FF podle Atroma) Automatické řízeí - Kberetika a robotika Už máme avržeu zpětovazebí čát Chceme zajitit přeo referece rový
Příklady k přednášce 19 - Polynomiální metody
Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 013 7-4-14 Opakování: Dělení polynomů: e zbytkem a bez Polynomy tvoří okruh, ale ne těleo (Okruh tvoří také celá číla, těleo
8 - Geometrické místo kořenů aneb Root Locus
8 - Geometrické míto kořenů aneb Root Locu Michael Šebek Automatické řízení 206 0-3-6 Metoda Root Locu Walter R. Evan, AIEE Tranaction, 948 Metoda root locu neboli geometrické míto kořenů vykreluje polohu
25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13
5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )
Doplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky
Doplňky k přednášce 3 Dikrétní ytémy Dikrétní frekvenční charakteritiky Michael Šebek Automatické řízení 011-1-11 Automatické řízení - Kybernetika a robotika e jω Matematika: Komplexní exponenciála = coω+
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VOKÁ ŠKOLA BÁŇKÁ TECHNICKÁ NIVEZITA OTAVA FAKLTA TOJNÍ ZÁKLAD ATOMATICKÉHO ŘÍZENÍ 9. týden doc. Ing. enata ANEOVÁ, Ph.D. Otrava 03 doc. Ing. enata ANEOVÁ, Ph.D. Vyoká škola báňká Technická univerzita Otrava
3 - Póly, nuly a odezvy
3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 8 9-6-8 Automatické řízeí - Kyberetika a robotika Póly přeou a póly ytému Póly přeou jou kořey jmeovatele pro g () = b () a () jou to komplexí číla
Příklady k přednášce 25 Dopravní zpoždění
Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 28 5-5-8 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { } t f(): t f() t = t
Příklady k přednášce 25 Dopravní zpoždění
Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 23 2-4-3 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { f t } { } t f(): t f() t = t
24 - Diskrétní řízení
24 - Diskrétní řízení Michael Šebek Automatické řízení 213 13-5-14 Metody návrhu diskrétního řízení Automatické řízení - Kybernetika a robotika Návrh pro čistě diskrétní systémy Mnohé metody jsou analogické
teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů
Jiří Petržela příklad nalezněte dvě různé realizace admitanční funkce zadané formou racionální lomené funkce Y () () ( ) ( ) : první krok rozkladu do řetězového zlomku () 9 7 9 výledný rozklad ( ) 9 9
19 - Polynomiální metody
19 - Polynomiální metody Automatické řízení 218 16-4-18 Opakování - Vlastnosti polynomů Polynomy netvoří těleso, ale okruh - obecně jimi nelze dělit beze zbytku! Proto existuje: dělitel, násobek, společný
Příklady k přednášce 20 - Číslicové řízení
Příklady k přednášce 0 - Čílicové řízení Micael Šebek Automatické řízení 07-4- Vzorkování: vzta mezi a z pro komplexní póly Spojitý ignál má Laplaceův obraz póly v, Dikrétní ignál má z-obraz αt yt ( )
Vysokofrekvenční obvody s aktivními prvky
Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor
Příklady k přednášce 2 - Spojité modely
Příklady k přednášce - Spojité modely Michael Šebek Atomatické řízení 5 Evropký ociální fond Praha & EU: Invetjeme do vaší bdocnoti -5-5 Atomatické řízení - Kybernetika a robotika Řešení tavové rovnice
Teorie elektronických obvodů (MTEO)
Teorie elektronických obvodů (MTEO) Laboratorní úloha čílo teoretická čát Filtry proudovými konvejory Laboratorní úloha je zaměřena na eznámení e principem činnoti proudových konvejorů druhé generace a
s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do
Vážení zákazníci, dovolujeme i Vá upozornit, že na tuto ukázku knihy e vztahují autorká práva, tzv. copyright. To znamená, že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø
IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL
IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL Ing. Zeněk Němec, CSc. VUT v Brně, Fakulta trojního inženýrtví, Útav automatizace a informatiky. Úvo, vymezení problematiky Přípěvek ouvií řešením
Vzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012)
Vzorový tet k přijímacím zkouškám do navazujícího magiterkého tudijního oboru Automatické řízení a informatika (22). Sekvenční logický obvod je: a) obvod, v němž je výtupní tav určen na základě vtupních
Zpětná vazba, změna vlastností systému. Petr Hušek
Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze
Doplňky k přednášce 24 Diskrétní řízení Diskrétní metody analogické spojitým
Doplňky k přednášce 24 Diskrétní řízení Diskrétní metody analogické spojitým Michael Šebek Automatické řízení 2013 21-4-13 Metody diskrétního návrhu Metody diskrétního návrhu, které jsou stejné (velmi
( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. )
( LEVEL 3 Laplaceova tranformace jako nátroj řešení lineárních diferenciálních rovnic. ) Podívejme e tentokrát na dynamiku pracovní edačky řidiče prizmatem matematiky aneb trocha teorie jitě nikomu neuškodí...
Příklady k přednášce 2 - Spojité modely
Příklady k přednášce - Spojité modely Michael Šebek Atomatické řízení 8 Evropký ociální fond Praha & EU: Invetjeme do vaší bdocnoti 9-6-8 Atomatické řízení - Kybernetika a robotika Řešení tavové rovnice
Systém vztahů obecné pružnosti Zobecněný Hookeův zákon
Stém vtahů obecné pružnoti Zobecněný Hookeův ákon V PPI e řešil úloh pružnoti u prutů. Pro řešení pouvů napětí a přetvoření obecného 3D těleo je třeba etavit a řešit tém vtahů obecné pružnoti. Jeho řešení
19 - Polynomiální metody
19 - Polynomiální metody Automatické řízení 215 19-4-15 Opakování - Vlastnosti polynomů Polynomy tvoří okruh, ne těleso. Obecně nelze polynomy dělit. Proto existují: dělitel, násobek, společný dělitel,
Násobení. INP 2008 FIT VUT v Brně
Náobení INP 2008 FIT VUT v Brně Náobení a náobičky Při náobení číel v dvojkové outavě můžeme náobit abolutní hodnoty číel a pak doplnit do výledku znaménko, anebo raději náobit přímo číla e znaménkem.
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita
15 - Stavové metody. Michael Šebek Automatické řízení
15 - Stavové metody Michael Šebek Automatické řízení 2016 10-4-16 Stavová zpětná vazba Když můžeme měřit celý stav (všechny složky stavového vektoru) soustavy, pak je můžeme využít k řízení u = K + r [
Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík
Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík Bakalářká práce 6 ABSTRAKT Abtrakt čeky Tato bakalářká práce e zabývá vzorovým vypracováním zápočtových protokolů polu návrhem zadání
Zadávání pomocí Obrazového přenosu
Zdáváí poocí Ozového přeou Defiice: kde: Jko Lplceův oz výtupí veličiy ku Lplceově ozu vtupí veličiy při ulových počátečích podíkách zlev.. +... +. + 0.(. +... +. je řád ttiu + je řád outvy V Mtlu e po
16 - Pozorovatel a výstupní ZV
16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje
Automatizační technika. Obsah. Algebra blokových schémat Vývojové diagramy. Algebra blokových schémat
Akademický rok 07/08 Připravil: adim Farana Automatizační technika Algebra blokových chémat, vývojové diagramy Obah Algebra blokových chémat ývojové diagramy Algebra blokových chémat elikou výhodou popiu
4 HMM a jejich trénov
Pokročilé metody rozpoznávánířeči Přednáška 4 HMM a jejich trénov nování Skryté Markovovy modely (HMM) Metoda HMM (Hidden Markov Model kryté Markovovy modely) reprezentujeřeč (lovo, hláku, celou promluvu)
ň ť Č Á ť ň ň Ú Ú Á Ň ď Ú Ů Ý É Ů Ď Č ň ď ň ň ň ň Č ň ň Ď Č ň Š ň Š Š Č ň Ú Š Š Š Ě Ú ť ď ď Á Ď ť É Č ť Ó ň ť Ď Ď Ď Ý Ď Ž Ď Ď Ý Ď Ú ň ň Ď Ď Ý Ď Ď Ď ň ť Ť Ů Ú ň ď ň Ř Ů ň Á Š ť Č ň Š Š ň ň ň ť ť ť ť ť ť
Teorie systémů a řízení
VYSOKÁ ŠKOLA BÁŇSKÁ ECHNICKÁ UNIVERZIA V OSRAVĚ FAKULA HORNICKO - GEOLOGICKÁ INSIU EKONOMIKY A SYSÉMŮ ŘÍZENÍ eorie ytémů a řízení Prof.Ing.Aloi Burý,CSc. OSRAVA 2007 Předmluva Studijní materiály eorie
11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15
- Regulátory Michael Šebe Automaticé řízení 5 4-3-5 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní
Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň
Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í
Frekvenční metody syntézy
Frevenční metody yntézy Autor: etr Havel, havelp@fel.cvut.cz 23..25 Frevenční metody návrhu e naží upravit frevenční charateritiu otevřené myčy L ta, aby výledná frevenční charateritia uzavřené myčy T
Příklady k přednášce 3 - Póly, nuly a odezvy
Příklady k předášce 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 08 9-6-8 Nuly přeou Automatické řízeí - Kyberetika a robotika Pro přeo G ( ) = ( + ) ( + ) pólem = a ulou z = porovejme odezvy
ÚSTAV PRO VÝZKUM MOTOROVÝCH VOZIDEL s.r.o. TÜV Süddeutschland Holding AG TECHNICKÁ ZPRÁVA
TÜV Süddeutchland Holding AG Lihovarká 12, 180 68 Praha 9 www.uvmv.cz TECHNICKÁ ZPRÁVA Metodika pro hodnocení vozidel v jízdních manévrech na základě počítačových imulací a jízdních zkoušek. Simulační
Algebra blokových schémat Osnova kurzu
Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova
26 Nelineární systémy a řízení
6 Nelineární systémy a řízení Michael Šebek Automatické řízení 016 18-5-16 Lineární vs. nelineární Reálné systémy jsou většinou (ne vždy) nelineární, při relativně malých signálech (výchylkách) je často
Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus
Příklady k přednášce 8 - Geometrické místo kořenů aneb Root Locus Michael Šebek Automatické řízení 018 1-3-18 Automatické řízení - Kybernetika a robotika Pro bod na RL platí (pro nějaké K>0) KL( s) = (k
Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.
Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak
Splnění harmonizovaných norem ČSN EN 1917 a ČSN EN 206. Splnění požadavků TKP ŘSD kapitola č. 3 a 18.
plu pro Váš projekt kompaktní jednolitá šachtová dna PERFECT Šachtové dno PERFECT je kompaktní monolitické dno, celé kompletně průmylově odlité z jedné betonové měi. Má kontantní parametry ve všech čátech
1.2.4 Racionální čísla II
.2.4 Racionální číla II Předoklady: 20 Pedagogická oznámka: S říkladem 0 je třeba začít nejozději 0 minut řed koncem hodiny. Př. : Sečti. Znázorni vůj otu graficky. 2 2 = = 2 Sčítáme netejné čáti muíme
Server Internetu prostøednictvím slu eb (web, e-mail, pøenos souborù) poskytuje data. Na na í pracovní stanici Internet
Server Internetu prostøednictvím slu eb (web, e-mail, pøenos souborù) poskytuje data. Na na í pracovní stanici Internet
Vytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů
Vytvoření kriptů pro webové rozhraní předmětu Analýza a imulace technologických proceů M-file for the Internet Interface Ued in the Subject Analyi and Simulation of Technological Procee. Petr Tomášek Bakalářká
1.4.3 Zrychlující vztažné soustavy II
143 Zrychlující vztažné outavy II Předoklady: 1402 Př 1: Vaón SVARME rovnoměrně zrychluje dorava Rozeber ilové ůobení a tav čidel na nátuišti z ohledu MOBILů Čidla na nátuišti (ohled MOBILŮ ze zrychlujícího
Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů.
Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl loužit jako vzor pro tvorbu vašich vlatních protokolů. Na příkladech je zde ukázán právný zápi výledků i formát tabulek a grafů.
Milí závodníci, Občas sledujte náš i váš web WWW.XTERRA.CZ, který už brzy změní svou tvář a všechny aktuální informace najdete právě tam.
Milí závodníci, Chceme, aby jste na své výkony ze závodů XTERRA nikdy nezapomněli, proto vydáváme tuto ročenku, která vám kdykoliv připomene výsledky ze sezóny 2009. Celkem sedm závodů Českého poháru Xterra
5. cvičení z Matematické analýzy 2
5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v
Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička
Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2 Semestrální práce Plzeň, 2008 Jan Krčmář Pavel Jedlička 1 Měřený model Je zadán systém (1), který budeme diskretizovat použitím funkce c2d
4. Práce, výkon, energie
4. Práce, výkon, energie Mechanická práce - konání mechanické práce z fyzikálního hledika je podmíněno vzájemným ilovým půobením těle, která e přitom vzhledem ke zvolené vztažné outavě přemíťují. Vztahy
13 - Návrh frekvenčními metodami
3 - Návrh frekvenčními metodami Michael Šebek Automatické říení 208 28-3-8 Návrh pomocí Bodeho grafu Automatické říení - Kybernetika a robotika Návrh probíhá v OL s konečným cílem lepšit stabilitu a chování
Příklady k přednášce 3 - Póly, nuly a odezvy
Příklady k předášce 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 06 9--6 Schurův doplěk - odvozeí Automatické řízeí - Kyberetika a robotika Obecě ( + l) ( + l) ( + l) ( + m) ( + m) ( + m) I 0
11 - Regulátory. Michael Šebek Automatické řízení
- Regulátory Michael Šebe Automaticé řízení 7 6-3-7 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní
ň ú Ě É Ř ď ú ú ú ú Č Č Č Č ú ú ú ú Ú ú ú Ú ú ú Ú ú ú ň ú ú ú Ť ú ň ú ť ú ť ú ú ú ť ú ň ú ú Ú Č ú ť ú ú Ď ú ú Ú ú ú ú Ý ú ň ť Ř ť Ř ť ť Ř ť ť ť ť Ý Ž ť ť ť ť ň ť Ř ť É ť ť ňů Ý ť Č ú ť ť Ů ť ť ú Ý ť ť
přírodovědných a technických oborů. Scientia in educatione, roč. 5 (2014), č. 1, s
[15] Nováková, A., Chytrý, V., Říčan, J.: Vědecké myšlení a metakognitivní monitorování tudentů učiteltví pro 1. tupeň základní školy. Scientia in educatione, roč. 9 (2018), č. 1,. 66 80. [16] Bělecký,
Inovace ve vnìjší ochranì pøed bleskem Izolovaný svod HVI s vysokonapěťovou izolací
Ochrana pøed pøepìtím Ochrana pøed blekem/uzemnìní Ochrana pøi práci DEHN chrání. DEHN + SÖHNE GmbH + Co.KG Han-Dehn-Str. 1 Potfach 1640 92306 Neumarkt Nìmecko. Tel. +49 9181 906-0 Fax +49 9181 906-1100
LIMITA FUNKCE, SPOJITOST FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
3 - Póly, nuly a odezvy
3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud
ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM
ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM P Kytka J Novák ČVUT v Praze Fakulta tavební katedra fyziky Práce e zabývá analýzou průchodu paprků koutovým odražečem což je typ hranolu který je
Aplikace experimentálních identifikačních metod pro modelování reálných procesů. Bc. Miroslav Husek
Aplikace experimentálních identifikačních metod pro modelování reálných proceů Bc. Mirolav Huek Diplomová práce 017 ***nacannované zadání. 1*** ***nacannované zadání. *** Prohlašuji, že beru na vědomí,
ŽB DESKA Dimenzování na ohyb ZADÁNÍ, STATICKÉ SCHÉMA ZATÍŽENÍ. Prvky betonových konstrukcí ŽB deska
ŽB DESKA Dienzování na ohyb Potup při navrhování kontrukce (obecně): 1. zatížení, vnitřní íly (E). návrh kontrukce (např. deky) - R. poouzení (E R) 4. kontrukční záady 5. výkre výztuže Návrh deky - určíe:
Laboratorní model CE 151 Kulička na ploše
Laboratorní model CE 5 Kulička na ploše CE 5 Ball and Plate Apparatu Bc. Mirolav Kirchner Diplomová práce 0 UTB ve Zlíně, Fakulta aplikované informatiky, 0 4 ABSTRAKT Tato diplomové práce e zabývá reálným
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY
VYSOKÉ UČENÍ TECHNICKÉ V BNĚ FAKULTA ELEKTOTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ADIOELEKTONIKY Ing. oman Šotner STUDIUM ELEKTONICKÉHO ŘÍZENÍ A EÁLNÉHO CHOVÁNÍ VAIABILNÍCH FILTAČNÍCH A OSCILAČNÍCH
M - Lomené algebraické výrazy pro učební obory
M - Lomené algebraické výrazy pro učební obory Určeno jako studijní materiál pro třídy učebních oborů. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
Příklad 1 Ověření šířky trhlin železobetonového nosníku
Příklad 1 Ověření šířky trhlin železobetonového noníku Uvažujte železobetonový protě podepřený noník (Obr. 1) o průřezu b = 00 mm h = 600 mm o rozpětí l = 60 m. Noník je oučátí kontrukce objektu pro kladování
Lomené výrazy (sčítání, odčítání, násobení, dělení, rozšiřování, krácení,.)
Lomené výrz (čítání, odčítání, náoení, dělení, rozšiřování, kráení, ) Lomené výrz jo výrz ve tvr zlomk, v jehož jmenovteli je proměnná, npříkld r ( ) ( ) 9 Počítání lomenými výrz má podoné vltnoti jko
27 Systémy s více vstupy a výstupy
7 Systémy s více vstupy a výstupy Mchael Šebek Automatcké řízení 017 4-5-17 Stavový model MIMO systému Automatcké řízení - Kybernetka a robotka Má obecně m vstupů p výstupů x () t = Ax() t + Bu() t y()
ESKÉ VYSOKÉ U ENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA ÍDÍCÍ TECHNIKY. Vedení letadla po trati v horizontální rovin.
ESKÉ VYSOKÉ UENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA ÍDÍCÍ TECHNIKY Vedení letadla po trati v horizontální rovin Diplomová práce Autor: Martin Jaanký Vedoucí práce: doc. Ing. Zdilav Pech
Příklady k přednášce 6 - Ustálený stav, sledování a zadržení poruchy
Přílady přdnášc 6 - Utálný tav, ldování a zadržní poruchy Mchal Šb Automatcé řízní 05 9-3-5 Frvnční odzva - odvozní Automatcé řízní - Kybrnta a robota Na vtup tablního ytému přnom y () = Gu ()(), trý j
Příklady k přednášce 9 - Zpětná vazba
Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat
Betonové a zděné konstrukce Přednáška 4 Spojité desky Mezní stavy použitelnosti
Betonové a zděné kontrukce Přednáška 4 Spojité deky Mezní tavy použitelnoti Ing Pavlína Matečková, PhD 2016 Spojitá deka: deka o více polích, zpravidla jako oučát rámové kontrukce Řeší e MKP Zjednodušené
II. 3. Speciální integrační metody
48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou
ELEKTRICKÝ OBVOD, ZÁKLADNÍ OBVODOVÉ VELIČINY,
ELEKRCKÝ OBVOD, ZÁKLADNÍ OBVODOVÉ VELČNY, CHARAKERSCKÉ HODNOY Elektrotechnické zařízení Schéa Elektrický obvod Elektrotechnické zařízení druh technického zařízení, které využívá přeěny elektrické energie
2.6.5 Další použití lineárních lomených funkcí
.6.5 Další použití lineárních lomených funkcí Předpoklady: 60, 603 U předchozích funkcí jsme měli vždy s funkcemi rovnice existují lineární lomené rovnice a nerovnice? Jak by vypadaly? Například takto:
1. Matematický model identifikované soustavy
IDENTIFIKACE SOUSTAVY SEDAČKY SEDAČKA C.I.E.B TYPOVÉ ŘADY 5 A NÁVRH REGULAČNÍHO OBVODU GHARAZI SAYED MOHSEN Technická univerita v Liberci, fakulta trojní, katedra aplikované kybernetiky, Hálkova 6, 46
Rovnice rovnoměrně zrychleného pohybu
..8 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 7 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně píše minut na řešení příkladů
Michal Zamboj. December 23, 2016
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky. Bakalářská práce. Řízení Trojkolového vozíku
Západočeká univerzita v Plzni Fakulta aplikovaných věd Katedra kbernetik Bakalářká práce Řízení Trojkolového vozíku Plzeň, 23 Jan Holub Prohlášení Předkládám tímto k poouzení a obhajobě bakalářkou práci
Příklady k přednášce 24 Diskrétní řízení
Příklady k přednášce 4 Diskrétní řízení Michael Šebek Automatické řízení 03 3-5-4 Automatické řízení - Kybernetika a robotika Vezměme opět dvojitý integrátor vzorkovaný s periodou h h h xk ( + ) 0 xk +
č č ť š č Š č ý Í Ž ý Ďš Ž č ň ŇŇ ý č ý Ž č č Í š ý Č Ž ý Í č š Š Í š č š Í Í Č č ý ů Ž č Í Ž š Í Ž č Š Ž Ž ÍŽ Í Ž Ž Í č ý ý Š ý ů Ž Í Č Ó Č Ž Ž Ú ž Č ň Ž ý Í Úč Ú Ž ýš ý č Č Ž Ž Č ú Í š š Ž Ž č Ž ý Š
SKATEPARK PRACHATICE. Studie přestavby stávajících objektů na zázemí skateparku
SKATEPARK PRACHATICE Studie přetavby távajících objektů na zázemí kateparku SKATEPARK PRACHATICE Studie přetavby távajících objektů na zázemí kateparku Objednavatel: Sportovní zařízení Prachatice, přípěvková
4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost
4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně
Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu
Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita
ANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík,, CSc. III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných dat je vyjádřen n-rozměrným loupcovým vektorem hodnot x i,
Vážený aritmetický průměr se používá pro výpočet průměrné ceny u čtyř významných sortimentů (III A/B smrk, IIIC.smrk, IIID. smrk, V. smrk).
Respondent Modelové příklady výpočtů jednotlivých druhů indexů 1. Příklad výpočtu průměrných cen jednotlivých sortimentů surového dříví 1.1 Výpočet průměrných cen vlastníci: 1. Cena vykázaná Váha respondenta
ů Í ÁŠ č ý ž š ů ž Řž š š Ď ž ž č Ú ž š č č ů ž č č č ý ž ž ž Ď ž Ďý č ž č ú č ž ý č ý š ž ž ý č š č š č č č č č Ď š ú Ý ý š č š ý ů ý ž úč Ú ů č ý Ť ž č ů Ú Ď ů ž Ú ý ó ž ý š Ď ž č É Ó ž ó ý ý ú č ú š