VÝZKUM ROTACE ZEMĚ. minulost a současnost. Jan Vondrák, Astronomický ústav AV ČR, v.v.i.
|
|
- Radovan Němeček
- před 8 lety
- Počet zobrazení:
Transkript
1 1 VÝZKUM ROTACE ZEMĚ minulost a současnost Jan Vondrák, Astronomický ústav AV ČR, v.v.i. P Parametry orientace Země; P Teorie rotace Země; P Pozorovací techniky a pozorované změny orientace Země.
2 PARAMETRY ORIENTACE ZEMĚ 2 P Rotace Země v širším smyslu - celková orientace tělesa (precese-nutace, pohyb pólu, vlastní rotace), ovlivňovaná: < vnějšími vlivy (Měsíc, Slunce, planety); < vnitřními vlivy (vnitřní stavba Země, přesuny hmot na rozhraní pláště a jádra, v oceánech, hydrosféře, atmosféře...). P R. Z. má fundamentální význam v astronomii, zejména pro transformaci mezi nebeským a pozemským souřadnicovým systémem, ale i další aplikace v příbuzných oborech: kosmická navigace; geofyzika; geodézie atd...
3 3 Parametry orientace Země Precese + nutace (odchylky nebeského pólu) Vlastní rotace (UT1, délka dne) Pohyb pólu
4 Stručná historie výzkumu rotace: 4 P precese známa již Hipparchovi (2. stol. př. Kr.); P pohyb pólu teoreticky předpověděl Euler (1765), observačně zjistil Küstner (1884/5), 2 hlavní složky zpřesnil Chandler (1891), od r Mezinárodní šířková služba (ILS) pro sledování pohybu pólu; P nutaci pozoroval Bradley a teoreticky ji vysvětlil Euler (polovina 18. stol.), od té doby neustálé zpřesňování modelu; P změny rychlosti rotace: projevy sekulárního zpomalování v pohybu Měsíce pozoroval Haley (1695), později je studoval Laplace (18. stol.) a vliv na rotaci Země naznačil G. Darwin (konec 19. stol.). Teprve v 1. pol. 20. stol. observačně zjištěny dekádové a sezónní variace.
5 Teorie rotace Země 5 Časově proměnný vztah mezi dvěma soustavami: xyz - rotující, spojená se Zemí XYZ - nerotující, vázaná na mimogalaktické objekty Z z θ ψ n X XN Y y x Eulerovy úhly: ψ precesní úhel θ nutační úhel n úhel vlast. rotace
6 II. impulsová věta: časová změna točivosti = moment vnějších sil 6 v rotující soustavě xyz: dh dt H L Pro obecné netuhé těleso platí H = Cω + h, a odtud Liouvillovy rovnice d dt ( C h) ( C h) L C je tensor setrvačnosti, ω vektor rotace, h relativní moment hybnosti a L moment vějších sil.
7 7 C A c c c c A c c c c C c h h1 h2 h 3 Označíme-li h h ih, c c ic, L L il m ( i )/, m / c h i( c h L)/ ( C A) ( c h L )/ C m im / E m 3 3 (Ω je střední rychlost rotace Země) (excitační funkce) dostaneme linearizované L. rovnice v komplexním tvaru: c - vliv rotačních, slapových deformací + změn tlaku vzduchu, h - vliv větru, oceánického proudění atd..
8 U GM dm r M ' L r' 1 gradu L z U y y U z L x U z z U x L y U x x U y Moment vnějších sil L (Měsíc, Slunce, planety): M MN dm r rn Silová funkce: Možno rozvinout do trigonometrické řady (na základě znalosti pohybu Měsíce, Slunce, planet).
9 9 Řešením Liouvillových rovnic dostaneme vektor rotace ω v rotující soustavě, tj. pohyb pólu ( x /, y / ) 1 2 a relativní změny rychlosti rotace ( / ). Pohyb pólu: Volná složka pohybu pólu (Chandler wobble), pro tuhou Zemi s Eulerovou periodou 305 dní (z pozorování 435 dní) + vynucené složky. Při integraci L. rovnic se geofyzikální vlivy stávají dominantními, protože změny tenzoru setrvačnosti C a relativního momentu hybnosti h jsou v terestrické soustavě dlouhoperiodické. Naopak, vnější síly L mají vliv minimální, protože mají krátkoperiodický charakter. 3
10 10 Rychlost rotace: Pro tuhou Zemi je rychlost rotace konstantní, pro netuhou Zemi vedou slapové změny tenzoru setrvačnosti (Měsíc, Slunce, planety - zonální složky jsou dlouhoperiodické) + geofyzikální vlivy ke změnám rychlosti rotace. Vnější vlivy - sekulární zpomalování (slapové tření) + spektrum period od 14 dní po 18.6 roku; Geofyzikální vlivy - dominantní půlroční a roční člen (zonální větry) + dekádové variace (změny na rozhraní jádra a pláště).
11 11 Polohu osy z v nerotující nebeské soustavě (precese/nutace - úhly ψ, θ) a úhel vlastní rotace (n) pak řeší Eulerovy kinematické rovnice: sin 1sin 2 cos 1cos 2 sin cos 3 Při integraci Eulerových kinematických rovnic se naopak geofyzikální vlivy potlačují, protože jsou v nebeské nerotující soustavě krátkoperiodické, a vnější síly L mají vliv dominantní, protože jsou dlouhoperiodické.
12 12 POSTUP ŘEŠENÍ TEORIE NUTACE: P rotace tuhé Země pod vlivem vnějších těles (Měsíc, Slunce, planety); P vlivy modelovatelných netuhých částí Země (elastický plášť, tekuté vnější jádro, tuhé vnitřní jádro...): frekvenčně závislá přenosová funkce = poměr mezi amplitudou nutace a její hodnotou pro tuhou Zemi;
13 Přenosová funkce pro různé modely Poincaré FCN 18,6 r. Wahr, MHB Elastická Tuhá 13,7 d. 13,7 d. 0,5 r α/ω
14 14 Rekapitulace: P Vnější síly (tělesa sluneční soustavy): < Dominantní vliv na precesi a nutaci; < Částečný vliv na rychlost rotace (slapové deformace); P Vnitřní síly (geofyzikální): < Dominantní vliv na pohyb pólu (změny tensoru setrvačnosti); < Částečný vliv na rychlost rotace (změny tensoru setrvačnosti); < Malý vliv na nutaci; P Precese jen velmi málo závisí na přijatém modelu vnitřní stavby Země (pouze na celkových momentech setrvačnosti).
15 Geofyzikální vlivy podrobněji: 15 P Vliv oceánů: < Prodloužení periody Chandlerova pohybu o cca 35 dní; < Excitace Chandlerova pohybu; < Vynucené pohyby pólu (sezónní, jednodenní); < Excitace FCN... P Vliv atmosféry: < Vynucené pohyby pólu (změny tlaku); < Vynucené změny rychlosti rotace (zonální větry) < Excitace FCN... P Viskozita pláště: < Postupné tlumení Chandlerova pohybu; < Fázový posuv nutačních členů...
16 16 P Elasticita: < Prodloužení Chandlerovy periody o cca 125 dní; < Frekvenčně závislé změny amplitud nutace. P Tekuté vnější jádro: < Retrográdní volný pohyb jádra (RFCN): P = 430 dní (v nebeském systému); < Prográdní volný pohyb jádra (PFCN): P = 1020 dní (v nebeském systému); < Zkrácení Chandlerovy periody o cca 30 dní; < Resonanční efekty ve velikosti amplitud nutace kolem FCN. P Tuhé vnitřní jádro: < Volný pohyb vnitřního jádra (ICW): P = 2400 (v terestrickém systému); < Resonanční efekty ve velikosti amplitud nutace kolem ICW.
17 Používané modely nutace: 17 P Do r Woolard (1953): Tuhá Země; Vliv pouze Měsíce a Slunce; 69 členů. P IAU1980 (Kinoshita 1977/ Wahr 1979): Netuhá Země (stratifikovaný elastický plášť, tekuté jádro); Vliv pouze Měsíce a Slunce; 106 členů. P IAU2000 (Souchay et al. 1997/ Mathews et al. 2002): Netuhá Země (viskózně-elastický plášť, vnější tekuté jádro, vnitřní pevné jádro, atmosféra, oceán, elmg. vazby vnější jádro-plášť, vnitřní-vnější jádro); Vliv Měsíce, Slunce a planet; 1360 členů
18 18 Pozorovací techniky: P Do cca 17. stol. (pouze vlastní rotace, precese): < Prosté oko (polohy hvězd, sluneční zatmění); P Do konce 19. stol. (vlastní rotace, precese, nutace): < Dalekohled (polohy hvězd, zákryty hvězd Měsícem, přechody Venuše a Marsu přes Slunce). P Do devadesátých let 20. stol. (všechny složky): < Optická astrometrie (zenitteleskop, pasážník, PZT, astroláb, cirkumzenitál...) - změny zeměpisných souřadnic. P Od cca 1970: < Techniky kosmické goedézie (SLR, LLR, VLBI, GPS, DORIS).
19 Některé výsledky 19 A. Vlastní rotace ET-UT [sec] z pozorování zatmění (dle Stephensona 1997), zákrytů hvězd Měsícem a astrometrických pozorování Babylon Řecko Čína Arabie Zákryty + astrometrie Parabola Slapy
20 20 ET-UT [sec] z pozorování zákrytů hvězd Měsícem a z astrometrických pozorování Zákryty+astrometrie Parabola Slapy
21 Variace délky dne z pozorování astrometrických a moderních kosmických technik (v sekundách) 21 Length-of-day changes: observed Length-of-day changes: observed - tidal changes Length-of-day changes: observed - (tidal changes + atmospheric effects)
22 22 Změny rychlosti rotace - závěry: P Postupné zpomalování rychlosti rotace: < Slapové tření, sekulární zmenšování zploštění Země. P Dekádové kvaziperiodické změny: < Změny na rozhraní tekutého jádra a visko-elastického pláště. P Změny o periodách několik dní - deset let: < Zonální proudění v atmosféře (delší periody); < Slapové změny hlavního momentu setrvačnosti Země (kratší periody).
23 B. Pohyb pólu Kombinace astrometrických a moderních kosmických technik 23
24 24 Secular and long-periodic polar motion 0.4 pole coordinates x, y ["] y 0.277"/cy x 0.072"/cy year
25 25 Parameters of annual wobble (computed at 6y intervals) orientation of the ellipse amplitudes ["] semi-major axis phase phases [ ] 0.05 semi-minor axis year -540
26 26 Parameters of Chandler wobble (computed at 6y intervals) amplitude ["] amplitude phase phase [ ] year -360
27 Pohyb pólu - závěry 27 P Sekulární/dlouhoperiodická složka: < Odlednění polárních oblastí. P Roční složka: < Stabilnější nežli Chandlerovská; < Vynucená změnami tlaku vzduchu, pohyby oceánů a změnami podzemních vod. P Chandlerovská složka (P=435 dní): < Nestabilní, proměnlivá amplituda i fáze; Tlumená viskozitou pláště; Excitovaná kombinovaným vlivem atmosféry a oceánu o frekvenci blízké 14 měsícům.
28 28 C. Odchylky nebeského pólu 20 od IAU1980 (v tisícinách vteřiny) ψsing MJD g
29 29 od IAU2000 (v tisícinách vteřiny) dx dy
30 Pozorované a integrované odchylky nebeského pólu atmosféra NCEP AAM (pib+w), v 0,001" dx dy year
31 31 Odchylky nebeského pólu - závěry P Nový model IAU2000 souhlasí s pozorováním na úrovni ±0,2 mas; P Dominantní odchylka má periodu cca dní a proměnlivou amplitudu. 0,1 mas (FCN); P Významná je sezónní excitace atmosférou a oceány s amplitudou cca 0,1 mas.
32 Závěrem poznámka o vlivu zemětřesení 32 P Zemětřesení ovlivňují pouze rychlost rotace a pohyb pólu; P Zemětřesení poblíž rovníku mají větší vliv na rychlost rotace, vliv na pohyb pólu roste se zeměpisnou šířkou; P Vliv je velmi malý (nepozorovatelný v případě délky dne, na hranici pozorovatelnosti v případě pohybu pólu), ve srovnání s dominantním vlivem atmosféry a oceánů < (během roku kolísání délky dne o 1-2 milisekundy, pohyb pólu o amplitudě několika metrů): zemětřesení změna délky dne [μs] skok v poloze pólu [cm] Sumatra ,8 7 Chile ,3 8 Japonsko ,8 17 (podle R. Grosse, JPL Pasadena)
Jak ovlivňují geofyzikální procesy orientaci Země v prostoru
Jak ovlivňují geofyzikální procesy orientaci Země v prostoru Obsah: Jan Vondrák, Česká astronomická společnost a Astronomický ústav AV ČR P Parametry orientace Země; P Stručná teorie rotace Země; P Geofyzikální
Krátkoperiodické geofyzikální excitace a jejich vliv na nutaci
1 Krátkoperiodické geofyzikální excitace a jejich vliv na nutaci Obsah: Úvod; Jan Vondrák, Astronomický ústav AV ČR, Praha Rezonance kolem FCN, geofyzikální excitace; Širokopásmové Liouvillovy rovnice,
5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk
5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk Teoretická geodézie 4 FSV ČVUT 2017/2018 LS 1 Celková orientace zemského tělesa, tj. precese-nutace+pohyb pólu+vlastní rotace,
Rotace Země a její sledování
Rotace Země a její sledování Cyril Ron, Astronomický ústav AV ČR, Praha Rotace a čas, teorie, Referenční soustavy a transformace, Pozorování rotace Země OA, VLBI, GPS, SLR, LLR, DORIS,... Výsledky, aplikace,...
Historie sledování EOP (rotace)
Historie sledování EOP (rotace) 1895 IAG > ILS, 7 ZT na 39 s.š., stejné hvězdy, stejné přístroje. 1962 IPMS (Mizusawa, JPN), až 80 přístrojů. FK4, různé metody, různé přístroje, i jižní polokoule. 1921
Dynamika rotace Země. Jan Vondrák. Země
Dynamika rotace Země Jan Vondrák Pod dynamikou zemské rotace rozumíme změny její úplné orientace v prostoru. Jde tedy nejenom o změny rychlosti vlastní rotace, ale též o pohyb osy rotace vzhledem k tělesu
pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy pohyb, změna, souřadné soustavy vzhledem ke stálicím precese,
Změny souřadnic nebeských těles pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy vlastní pohyb max. 10 /rok, v průměru 0.013 /rok pohyb, změna, souřadné soustavy vzhledem ke stálicím precese, nutace,
Astronomická pozorování
KLASICKÁ ASTRONOMIE Astronomická pozorování Základní úloha při pozorování nějakého děje, zejména pohybu těles je stanovení jeho polohy (rychlosti) v daném okamžiku Astronomie a poziční astronomie Souřadnicové
Základní jednotky v astronomii
v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve
Nový software VieVS na analýzu VLBI dat
Nový software VieVS na analýzu VLBI dat Hana Špičáková, Johannes Böhm, Harald Schuh Seminář Výzkumného centra dynamiky Země 14. 16. listopadu 2011, zámek Třešť VLBI Very Long Baseline Interferometry radiointerferometrie
FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar
Vnitřní život krátkoperiodických exoplanet
Vnitřní život krátkoperiodických exoplanet Semianalytický model a ukázka jeho aplikací Michaela Walterová a Marie Běhounková Geodynamický seminář 23. 5. 2018 Motivace Jak vypadá vzájemná vazba mezi vývojem
Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele
OPT/AST L07 Korekce souřadnic malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů výška pozorovatele konečný poloměr země R výška h objektu závisí na výšce s stanoviště
ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM
ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM Hynčicová Tereza, H2IGE1 2014 ČAS Jedna ze základních fyzikálních veličin Využívá se k určení časových údajů sledovaných jevů Časovou škálu
7. Rotace Slunce, souřadnice
7. Rotace Slunce, souřadnice Sluneční fyzika LS 2007/2008 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Sluneční rotace Pomalá ~měsíc, ~1610 podle pohybů skvrn, Galileo 1858, Carrington,
I. MECHANIKA 5. Otáčení tuhého tělesa III
I. MECHANIKA 5. Otáčení tuhého tělesa III Obsah setrvačníky volný setrvačník kulový setrvačník symetrický setrvačník asymetrický setrvačník volná osa rotace, stabilita těžký setrvačník principy využití
DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH
DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH VLASTNOSTÍ MECHANISMU TETRASPHERE Vypracoval: Jaroslav Štorkán Vedoucí práce: prof. Ing. Michael Valášek, DrSc. CÍLE PRÁCE Sestavit programy pro kinematické, dynamické
Tělesa sluneční soustavy
Tělesa sluneční soustavy Měsíc dráha vzdálenost 356 407 tis. km (průměr 384400km); určena pomocí laseru/radaru e=0,0549, elipsa mění tvar gravitačním působením Slunce i=5,145 deg. měsíce siderický 27,321661
Slapový vývoj oběžné dráhy. Michaela Káňová, Marie Běhounková Geodynamický seminář
Slapový vývoj oběžné dráhy Michaela Káňová, Marie Běhounková Geodynamický seminář 20. 5. 2015 Problém dvou těles v nebeské mechanice: dva hmotné body + gravitační síla = Keplerova úloha m keplerovská rychlost
ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA
ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Pojem šroubového pohybu Šroubový pohyb je definován jako pohyb, jejž lze ve vhodném referenčním bodě rozložit
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
Modelování anelastické odezvy vlastních kmitů zemětřesení v Chile 2010
Modelování anelastické odezvy vlastních kmitů zemětřesení v Chile 2010 Eliška Zábranová Katedra geofyziky MFF UK, VCDZ Úvod Vlastní kmity jsou elementy stojatého vlnění s nekonečným počtem stupňů volnosti.
Dvojné a trojné integrály příklad 3. x 2 y dx dy,
Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je
Odhad změny rotace Země při změně poloměru
Odhad změny rotace Země při změně poloměru NDr. Pavel Samohýl. Seznam symbolů A, A, A součinitel vztahu pro závislost hustoty Země na vzdálenosti od středu, totéž v minulosti a současnosti B, B, B součinitel
Měsíc přirozená družice Země
Proč je ěsíc kulatý? ěsíc přirozená družice Země Josef Trna, Vladimír Štefl ěsíc patří ke kosmickým tělesům, která podstatně ovlivňuje gravitační síla, proto zaujímá kulový tvar. Ve vesmíru u těles s poloměrem
6c. Techniky kosmické geodézie VLBI Aleš Bezděk
6c. Techniky kosmické geodézie VLBI Aleš Bezděk Teoretická geodézie 4 FSV ČVUT 2017/2018 LS 1 Radiointerferometrie z velmi dlouhých základen Very Long Baseline Interferometry (VLBI) Jediná metoda kosmické
Úvod do nebeské mechaniky
OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Slapy na terestrických exoplanetách Michaela Káňová, Marie Běhounková
Slapy na terestrických exoplanetách 30. 3. 2016 Michaela Káňová, Marie Běhounková Slapové modely slapová deformace tradičné popisována statickým Loveovým číslem k 2 a slapovým rozestupem (geometrickým,
LET Z KULOVNICE. Petr Lenhard
LET Z KULOVNICE Petr Lenhard OBSAH Balistika Vnější balistika Síly a momenty Aerodynamické síly a momenty Výsledný rotační pohyb Shrnutí a literatura BALISTIKA ROZDĚLENÍ BALISTIKY Obor mechaniky zabývající
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu
Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse
ÚTFA,Přírodovědecká fakulta MU, Brno, CZ březen 2005 březnového tématu Březnové téma je věnováno klasické sférické astronomii. Úkol se skládá z měření, výpočtu a porovnání výsledků získaných v obou částech.
Úvod do nebeské mechaniky
OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1
PLANETA ZEMĚ A JEJÍ POHYBY Maturitní otázka č. 1 TVAR ZEMĚ Geoid = skutečný tvar Země Nelze vyjádřit matematicky Rotační elipsoid rovníkový poloměr = 6 378 km vzdálenost od středu Země k pólu = 6 358 km
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony
Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony Astronomové při sledování oblohy zaznamenávají především úhly a pozorují něco, co se nazývá nebeská sféra. Nicméně, hvězdy nejsou od Země vždy
ČAS, KALENDÁŘ A ASTRONOMIE
ČAS, KALENDÁŘ A ASTRONOMIE Čas Založen na základě praktických zkušeností s následností dějů Je vzájemně vázán s existencí hmoty a prostoru, umožňuje rozhodnout o následnosti dějů, neexistuje možnost zpětné
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole
5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.
MODIFIKOVANÝ KLIKOVÝ MECHANISMUS
MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS
Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze
Seminář z geoinformatiky Úvod do geodézie Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Úvod do geodézie
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny
Téma: Dynamika - Úvod do stavební dynamiky
Počítačová podpora statických výpočtů Téma: Dynamika - Úvod do stavební dynamiky 1) Úlohy stavební dynamiky 2) Základní pojmy z fyziky 3) Základní zákony mechaniky 4) Základní dynamická zatížení Katedra
Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport.
Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. R. Mendřický, M. Lachman Elektrické pohony a servomechanismy 31.10.2014 Obsah prezentace
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
Abstrakt: Autor navazuje na svůj referát z r. 2014; pokusil se porovnat hodnoty extrémů některých slunečních cyklů s pohybem Slunce kolem barycentra
Úvaha nad slunečními extrémy - 2 A consideration about solar extremes 2 Jiří Čech Abstrakt: Autor navazuje na svůj referát z r. 2014; pokusil se porovnat hodnoty extrémů některých slunečních cyklů s pohybem
úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,
Pohyb mechanismu Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Doba studia : asi,5 hodiny Cíl přednášky : uvést studenty do problematiky mechanismů, seznámit
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
i j antisymetrický tenzor místní rotace částice jako tuhého tělesa. Každý pohyb částice lze rozložit na translaci, deformaci a rotaci.
KOHERENTNÍ STRUKTURY Kinematika proudění Rozhodující je deformace částic tekutiny wi wi ( x j + dx j, t) = wi ( x j, t) + dx j x j tenzor rychlosti deformace: wi 1 w w i j w w i j 1 = + + = sij + r x j
10. cvičení z Matematické analýzy 2
. cvičení z Matematické analýzy 3. - 7. prosince 8. (dvojný integrál - Fubiniho věta Vhodným způsobem integrace spočítejte daný integrál a načrtněte oblast integrace (a (b (c y ds, kde : y & y 4. e ma{,y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 5/ Určování astronomických zeměpisných
VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY
VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY Planety Terestrické planety Velké planety Planety sluneční soustavy a jejich rozdělení do skupin Podle fyzikálních vlastností se planety sluneční soustavy
Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15
Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
Nabídka vybraných pořadů
Hvězdárna Valašské Meziříčí, p. o. Vsetínská 78 757 01 Valašské Meziříčí Nabídka vybraných pořadů Pro 1. stupeň základních škol Pro zvídavé školáčky jsme připravili řadu naučných programů a besed zaměřených
1. Regulace otáček asynchronního motoru - skalární řízení
1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán
Soutěžní úlohy části A a B (12. 6. 2012)
Soutěžní úlohy části A a B (1. 6. 01) Pokyny k úlohám: Řešení úlohy musí obsahovat rozbor problému (náčrtek dané situace), základní vztahy (vzorce) použité v řešení a přesný postup (stačí heslovitě). Nestačí
Systémy pro využití sluneční energie
Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie
Měření momentu setrvačnosti
Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal
Přechodné děje 2. řádu v časové oblasti
Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Těžíc z GOPE dat: Tohoku 2011
Těžíc z GOPE dat: Tohoku 2011 Eliška Zábranová Katedra geofyziky MFF UK, VÚGTK Úvod motivace přehled základních vztahů přiblížení výpočetní metody použité přístroje modely zdroje zemětřesení Tohoku 2011
Dynamika soustav hmotných bodů
Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
i β i α ERP struktury s asynchronními motory
1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází
Identifikace práce prosíme vyplnit čitelně tiskacím písmem
Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na http://olympiada.astro.cz/korespondencni. Jeho vyplnění je nutné.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU
Dynamika vázaných soustav těles
Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro
Téma: Fáze Měsíce a planet, zdánlivý pohyb oblohy na planetách
Téma: Fáze Měsíce a planet, zdánlivý pohyb oblohy na planetách Zpracoval Doc. RNDr. Zdeněk Hlaváč, Cc Vlivem vzájemné polohy lunce, Země a dalšího tělesa(např. jiné planety nebo Měsíce) dochází k jevu,
Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 13.10.2014 Mechanika tekutin 1/13 1 Mechanika tekutin - přednášky 1. Úvod, pojmy,
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
Slovo úvodem 9 1 Klasická astronomie, nebeská mechanika 11 1.1 Časomíra...... 11 1.1.1 Sluneční hodiny.... 11 1.1.2 Pravý místní sluneční čas versus pásmový středoevropský čas.. 13 1.1.3 Přesnější definice
Relativistické jevy při synchronizaci nové generace atomových hodin. Jan Geršl Český metrologický institut
Relativistické jevy při synchronizaci nové generace atomových hodin Jan Geršl Český metrologický institut Objasnění některých pojmů Prostoročas Vlastní čas fyzikálního objektu Souřadnicový čas bodů v prostoročase
Úvod do předmětu geodézie
1/1 Úvod do předmětu geodézie Ing. Hana Staňková, Ph.D. IGDM, HGF, VŠB-TU Ostrava hana.stankova@vsb.cz A911, 5269 1 Geodézie 1/2 vědní obor o měření části zemského povrchu, o určování vzájemných vztahů
Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
1 Mechanika hmotného bodu a soustav hmotných bodů
1 Mechanika hmotného bodu a soustav hmotných bodů Základní kinematické veličiny, Newtonovy pohybové zákony, inerciální soustavy, I. a II. impulzová věta. Keplerovy zákony, harmonický oscilátor (tlumený
Insolace a povrchová teplota na planetách mimo sluneční soustavu. Michaela Káňová
Insolace a povrchová teplota na planetách mimo sluneční soustavu Michaela Káňová Obsah Extrasolární planety Insolace Rovnice vedení tepla v 1D a 3D Testy Výsledky Závěr Extrasolární planety k 11.6. potvrzeno
Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
Transformace dat mezi různými datovými zdroji
Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace
Mechanika
Mechanika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Mechanika Kinematika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence
Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku
4 ZÁKLADY SFÉRICKÉ ASTRONOMIE K posouzení proslunění budovy nebo oslunění pozemku je vždy nutné stanovit polohu slunce na obloze. K tomu slouží vztahy sférické astronomie slunce. Pro sledování změn slunečního
Okruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
Kinematika. Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha.
Kinematika Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha. Statika studuje vliv sil působících na robota v klidu a jejich vliv
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 6. 2. 2013 Pořadové číslo 12 1 Země, Mars Předmět: Ročník: Jméno autora: Fyzika
Venuše druhá planeta sluneční soustavy
Venuše druhá planeta sluneční soustavy Planeta Venuše je druhá v pořadí vzdáleností od Slunce (střední vzdálenost 108 milionů kilometrů neboli 0,72 AU) a zároveň je naším nejbližším planetárním sousedem.
Dynamika rotačního pohybu
Číslo úlohy: 11 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum : 2. 11. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Dynamika rotačního
Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)
Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Transverzální magnetizace, která vykonává precesi
MFT - Matamatika a fyzika pro techniky
MFT - Matamatika a fyzika pro techniky Pro každou přednášku by zde měl být seznam klíčových témat, odkaz na literaturu, zápočtový příklad k řešení a další příklady k procvičování převážně ze sbírky příkladů
Roztřeseným pohledem na jinak obyčejnou hvězdu za humny
Roztřeseným pohledem na jinak obyčejnou hvězdu za humny Michal Švanda Astronomický ústav AV ČR Ondřejov Astronomický ústav UK Praha Hvězda zvaná Slunce GV M=1,99 1030 kg Tef=5778 K R=695 000 km L=3,85
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
Souřadnicové systémy jak je to s nimi v současnosti?
http:/hvr.cz Únor 2011 (2) Souřadnicové systémy jak je to s nimi v současnosti? Prof. Ing. Jan KOSTELECKÝ, DrSc. Otázka souřadnicových systémů úzce souvisí s problémem lokalizace, tj. určování polohy objektu
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí
Fourierova transformace
Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen
2. Kinematika bodu a tělesa
2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a
OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21
OBSAH I. ČÁST ZEMĚ A GEODÉZIE 1 Úvod... 1 1.1 Historie měření velikosti a tvaru Země... 1 1.1.1 První určení poloměru Zeměkoule... 1 1.1.2 Středověké měření Země... 1 1.1.3 Nové názory na tvar Země...
Profilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: FYZIKA
1 Rozdělení mechaniky a její náplň 2
Obsah 1 Rozdělení mechaniky a její náplň 2 2 Kinematika hmotného bodu 6 2.1 Křivočarý pohyb bodu v rovině................. 7 2.2 Přímočarý pohyb hmotného bodu................ 9 2.2.1 Rovnoměrný pohyb....................