VÝUKA MOŽNOSTÍ MATLABU
|
|
- Luděk Růžička
- před 8 lety
- Počet zobrazení:
Transkript
1 VÝUKA MOŽNOSTÍ MATLABU Miroslav Olehla Technická univerzita v Liberci, Fakulta strojní, Katedra aplikované kybernetiky V následujícím příspěvku jsou uvedeny některé oblasti MATLABU ve výuce. Vychází se z učebních textů Metody zpracování dat MATLAB a snahou je, provést studenty možnostmi uvedeného programovacího jazyka. Jsou uvedeny možnosti vizualizace, řízení průběhu výpočtu, relační a logické operátory, základní operace s maticemi. Řešení soustavy lineárních rovnic. Řešme soustavu přeurčených lineárních rovnic různými metodami Gausova metoda, metoda Gauss Jordanova eliminace s částečnou pivotací, inverzí a pomocí determinantů. Uvažujme soustavu A.x = b x 4x x x + 7x + x + x + 7x x + x 6x + x = = 5 = = Zadání koeficientů řešené soustavy: >> A=[ 7 -; 4 ; -6; - 7 ] A= >> b=[;5;-;-]%nebo b=[ 5 - -]' b = Kontrola řešitelnosti soustavy určením hodnosti a determinantu matice: >> rank(a) ans = >> rank([a,b]) ans = >>det(a'*a) ans = 8750 Gausova metoda >> x=a\b x = Metoda Gauss Jordanova eliminace s částečnou pivotací >> C=rref([A,b]) C =
2 Řešení pomocí inverze >>x=inv(a'*a)*(a'*b) x = Řešení pomocí determinantů. >> bt=a'*b bt = 5 9 >> At=A'*A At = >> A=[bt,At(:,:)] A = >> A=[At(:,),bt,At(:,)] A = >> A=[At(:,:),bt] A = >> x=det(a)/det(at) x =.74 >> x=det(a)/det(at) x = >> x=det(a)/det(at) x = 0.7 Aproximace periodické funkce V případě, že je nutné aproximovat periodické funkce f(x), získané na základě měření, lze aproximace získat funkcemi ve tvaru trigonometrických polynomů M a0 fm( xi ) = + ( an cos nxi + bn sin nxi ) n= Uvažujme, že aproximovaná funkce f má periodu π a že jsou známy její hodnoty v intervalu <-π,π>. Označme
3 a n b n π = ( ) cos, π f x nx dx π π = ( )sin, π f x nx dx π n = 0,,,... n = 0,,,... Předpokládejme, že známe N+ hodnot funkce f, která má periodu π. Využitím numerické N π π N integrace obdržíme v bodech x i = π, π,...,,0,,..., π, π N N N N a pro M N, kde M je stupeň trigonometrického polynomu (počet koeficientů a, b) vztahy a N 0 = f ( x i ) N i= N N an = f ( xi )cos mxi, m = 0,,,..., M N i= N N bn = f ( xi )sin mxi, m = 0,,,..., M N i= N %Program v MATLABU: % simulace vstupních dat x=-pi:0.:pi; N=length(x) y=(cos(x)+sin(*x)+cos(*x))+0.9; % výpočet koeficientů N=(N-)/; a0=/n*sum(y) a=/n*(sum(y*cos(x)')) a=/n*( sum(y*cos(*x)')) a=/n*(sum(y*cos(*x)')) b=/n*(sum(y*sin(x)')) b=/n*( sum(y*sin(*x)')) b=/n*(sum(y*sin(*x)')) %výpočet aproximační funkce f=a0/+(a*cos(x) +b*sin(x)); f=a0/+(a*cos(x) +b*sin(x)+ a*cos(*x) +b*sin(*x) ); f=a0/+(a*cos(x) +b*sin(x)+ a*cos(*x) +b*sin(*x) + a*cos(*x) +b*sin(*x)); %grafické zobrazení plot(x,y, '*',x,f, x,f, x,f) grid on legend('body', ' řád', ' řád', ' řád') nebo lépe: % simulace vstupních dat x=-pi:0.:pi; N=length(x) y=(cos(x)+sin(*x)+cos(*x))+0.9; % výpočet koeficientů N=(N-)/; a0=/n*sum(y); M=; % stupeň trigonometrickeho polynomu M for k=:m a(k)=/n*(sum(y*cos(k*x)')); b(k)=/n*(sum(y*sin(k*x)')); end a0 a b
4 %výpočet aproximační funkce f=a0/+(a()*cos(x) +b()*sin(x)); f=a0/+(a()*cos(x) +b()*sin(x)+ a()*cos(*x) +b()*sin(*x) ); f=a0/+(a()*cos(x) +b()*sin(x)+ a()*cos(*x) +b()*sin(*x) + a()*cos(*x) +b()*sin(*x)); %grafické zobrazení plot(x,y, '*',x,f, x,f, x,f) grid on legend('body', ' řád', ' řád', ' řád') Výsledek: N = 6 a0 =.878 a = b = obr.- Aproximace periodických funkcí pomocí Fourierovy řady Lineární regrese. Jednoparametrová lineární regrese Obecný tvar lineárního modelu s jednou nezávisle proměnnou je dán vztahem j y = a0 + ag( x), kde g(x) může být nelineární, např. g( x) = x, j =,,..., nebo hyperbola, logaritmická funkce atd. U těchto funkcí můžeme k určení regresních koeficientů použít přímo metodu nejmenších čtverců. r y = a0 + ax pro r<0 musí být x 0 y = a + 0 a log x pro x>0 x y = a + 0 ae
5 Určeme koeficienty pro aproximační funkci y = a a ln x pro naměřená data 0 + x y x=::0; y=[ ]; X=[ ; log(x)]; a=x'\y' xgraf=:0.:0; ygraf=a()+a()*log(xgraf); plot(x,y,'*', xgraf,ygraf) % nebo po dosazení a(), a() % plot(x,y,'*') % hold on %fplot(' *log(x)',[,0]) a = V některých případech je možno provést následující transformaci Obr. - Lineární regrese x y = a0 a log y = log a0 + x log a a y = a x log = log a + a x y 0 = a + a x 0 y 0 log / = a + a x y 0. Víceparametrová lineární regrese Uvažujme naměřené hodnoty: x x y a určeme koeficienty regresní funkce y=a 0.+a.x + a.x.
6 Doplněním vektoru jedniček má matice X tvar X=[ ; ;0 8 5 ]; y=[ ]; a=x'\y' a = Poznámka: Výsledkem X*X T je matice symetrická X*X' ans = Vytvoření grafu: xp=[0::6]; yp=[0::6]; [XP,YP]=meshgrid(xp,yp); zp=a()+a()*xp+a()*yp; surf(xp,yp,zp) obr. - Víceparametrová lineární regrese. Aproximace pomocí polynomu Pro uvedené výsledky měření uvažujme aproximaci ve tvaru polynomu. stupně, tedy y = a + a x + a x + a. 0 x x=[ 4 5]; X=[ ;x;x.^;x.^]; y=[ ]; a=x'\y' a=
7 % Vykreslení grafu: xgraf=:0.0:5; graf=a()+a()*xgraf+a()*xgraf.^+a(4)*xgraf.^; plot(x,y,'*',xgraf,ygraf); %nebo po dosazení koeficientů % plot(x,y,'*') % hold on %fplot(' *x+6.696*x.^-6.858*x.^',[,5]) %není povolen zápis fplot('a()+a()*x+a()*x.^',[,5]) Obr. - Regrese polynomem. stupně V případě, že chceme data aproximovat polynomem n-tého stupně, můžeme to provést pomocí funkce p=polyfit(x,y,n). Výsledek je stejný, jako v předchozích případech. x je vektor hodnot nezávisle proměnné, y je vektor hodnot závisle proměnné, n je stupeň polynomu, jímž chceme aproximovat body [x i,y i ], p je vektor koeficientů výsledného polynomu P(x) = a n.x n + a n-.x n a.x + a 0 x=[ ]; y=[ ]; x=0:0.:70; p=polyfit(x,y,) y=polyval(p,x); plot(x,y,'*',x,y) p = Musíme připravit datové vektory odpovídající jednotlivým grafům. Zkusme nadefinovat několik bodů a proložit jimi polynomy různých stupňů pomocí funkce polyfit. Prokládané body jsou dány vektory x a y. V grafu budou vyznačeny hvězdičkami. Za povšimnutí stojí průběh polynomu y8 aproximace tohoto stupně je interpolací.
8 x=[ ]; y=[ ]; x=:0.:9; y=polyval(polyfit(x,y,),x); y=polyval(polyfit(x,y,),x); y5=polyval(polyfit(x,y,5),x); y8=polyval(polyfit(x,y,8),x); plot(x,y,'*',x,y,x,y,x,y5,x,y8) Obr. -4 Grafické okno funkce polyfit Dalším příkladem je nalezení koeficientů polynomu zvoleného stupně prokládajícího naměřená data podle kritéria nejmenších čtverců: x=[ 4 5]; y=[ ]; r=polyfit(x,y,) % nalezení koeficientů polynomu. stupně yp=polyval(r,x); plot(x,y,'*',x,yp) Výsledek: r = tedy polynom ve tvaru x^+5.54.x obr. -5 Polynomická aproximace
9 S proložením bodů pomocí polynomu úzce souvisí interpolace, respektive proložení polynomem je jeden typ interpolace. MATLAB poskytuje několik standardních funkcí pro různé typy interpolačních funkcí. Popis všech funkcí a jejich použití přesahuje rozsah tohoto textu. Uveďme názornou ukázku použití funkce polyval pro aproximaci, interp, spline pro interpolaci a použijeme příkaz plot pro grafické zobrazení zadaných bodů a bodů získaných proložením polynomem. a 6. stupně, interpolační funkcí a kubickými spline. obr. -6 Nevhodně použitá polynomiální interpolace x = [:7]; y=[ ]; % interpolace xp=:0.:7; yi=interp(x,y,xp); %spline yp=spline(x,y,xp); %aproximace yp=polyval(polyfit(x,y,),xp); %aproximace = interpolace yp6=polyval(polyfit(x,y,6),xp); plot(x,y,'*',xp,yi, ':',xp,yp,xp,yp,'--',xp,yp6, '-.') legend('body', 'interp','spline','polynom ','polynom 6') Příklad ukazuje nebezpečí bezmyšlenkového použití polynomiální aproximace. Pokud je aproximujeme polynomem 6. stupně a dopočítáme hodnoty pro dané x dostaneme ideální shodu. Pokud se však podíváme i na hodnoty mimo sledované body už spokojeni nebudeme. Aproximace se sice přesně shoduje v zadaných bodech, ovšem průběh mezi zadanými body se značně odchyluje od očekávaného průběhu. Polynomiální aproximace není rovněž vhodná pro aproximaci průběhů s ostrými zlomy. Literatura: Olehla, M., Dušek, F.: Metody zpracování dat MATLAB. Technická Univerzita Liberec 0, ISBN Aproximace polynomem n- stupně
Lineární a polynomická regrese, interpolace, hledání v tabulce
co byste měli umět po dnešní lekci: proložit body přímku, parabolu,... a určit chyby parametrů (u přímky) interpolovat mezi hodnotami v tabulce hledat v tabulce (1D) prokládání (fitování) křivek metoda
Pozn. 1. Při návrhu aproximace bychom měli aproximační funkci vybírat tak, aby vektory ϕ (i) byly lineárně
9. Řešení typických úloh diskrétní metodou nejmenších čtverců. DISKRÉTNÍ METODA NEJMENŠÍCH ČTVERCŮ použití: v případech, kdy je nevhodná interpolace využití: prokládání dat křivkami, řešení přeurčených
Interpolace a aproximace dat.
Numerické metody Interpolace a aproximace dat. Interpolace dat křivkou (funkcí) - křivka (graf funkce) prochází daty (body) přesně. Aproximace dat křivkou (funkcí) - křivka (graf funkce) prochází daty
Aproximace a interpolace
Aproximace a interpolace Aproximace dat = náhrada nearitmetické veličiny (resp. složité funkce) pomocí aritmetických veličin. Nejčastěji jde o náhradu hodnot složité funkce g(x) nebo funkce zadané pouze
APROXIMACE KŘIVEK V MATLABU TRIGONOMETRICKÉ POLYNOMY CURVE FITTING IN MATLAB TRIGONOMETRIC POLYNOMIAL
APROXIMACE KŘIVEK V MATLABU TRIGONOMETRICKÉ POLYNOMY CURVE FITTING IN MATLAB TRIGONOMETRIC POLYNOMIAL Jiří Kulička 1 Anotace: Článek se zabývá odvozením, algoritmizací a popisem konstrukce trigonometrického
Interpolace pomocí splajnu
Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom
Aplikovaná matematika I
Metoda nejmenších čtverců Aplikovaná matematika I Dana Říhová Mendelu Brno c Dana Říhová (Mendelu Brno) Metoda nejmenších čtverců 1 / 8 Obsah 1 Formulace problému 2 Princip metody nejmenších čtverců 3
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení
Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná
Odhad stavu matematického modelu křižovatek
Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0
Numerická integrace a derivace
co byste měli umět po dnešní lekci: integrovat funkce různými metodami (lichoběžníkové pravidlo, Simpson,..) počítat vícenásobné integrály počítat integrály podél křivky a integrály komplexních funkcí
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
5. Aproximace funkcí. Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita. Hana Hladíková
5 Aproximace funkcí Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita Hana Hladíková V praxi je často potřeba složitou funkci f nahradit funkcí jednodušší, která v nějakém vhodném
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí.
NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí. RNDr. Radovan Potůček, Ph.D., K-15, FVT UO, KŠ 5B/11, Radovan.Potucek@unob.cz, tel. 443056 -----
Numerická matematika Písemky
Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL
APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL Jiří Kulička 1 Anotace: Článek se zabývá odvozením, algoritmizací a popisem konstrukce
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
Základy numerické matematiky. Interpolace a aproximace funkcí
Základy numerické matematiky Interpolace a aproximace funkcí Nejdříve se podíváme na interpolaci. Lagrangeovu interpolaci počítá Maple pomocí funkce interp. Jejími parametry jsou - soubor uzlů, funkčních
Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry TU v Liberci Jiří Hozman 1. dubna 2010 Cvičení 2 Příklad 1. Rozhodněte, zda lze vektor x vyjádřit jako lineární kombinaci vektorů u, v, w, v
Interpolace, aproximace
11 Interpolace, aproximace Metoda nejmenších čtverců 11.1 Interpolace Mějme body [x i,y i ], i =0, 1,...,n 1. Cílem interpolace je najít funkci f(x), jejíž graf prochází všemi těmito body, tj. f(x i )=y
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
Řešení diferenciálních rovnic v MATLABu
Řešení diferenciálních rovnic v MATLABu Základy algoritmizace a programování Přednáška 23. listopadu 2011 Co řešíme Obyčejné diferenciální rovnice prvního řádu: separovatelné lineární exaktní druhého řádu,
Popis metod CLIDATA-GIS. Martin Stříž
Popis metod CLIDATA-GIS Martin Stříž Říjen 2008 Obsah 1CLIDATA-SIMPLE...3 2CLIDATA-DEM...3 2.1Metodika výpočtu...3 2.1.1Výpočet regresních koeficientů...3 2.1.2 nalezených koeficientu...5 2.1.3Výpočet
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
Typy příkladů na písemnou část zkoušky 2NU a vzorová řešení (doc. Martišek 2017)
Typy příkladů na písemnou část zkoušky NU a vzorová řešení (doc. Martišek 07). Vhodnou iterační metodou (tj. metodou se zaručenou konvergencí) řešte soustavu: x +x +4x 3 = 3.5 x 3x +x 3 =.5 x +x +x 3 =.5
Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel
Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23
a a
1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)
REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB
62 REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB BEZOUŠKA VLADISLAV Abstrakt: Text se zabývá jednoduchým řešením metody nejmenších čtverců v prostředí Matlab pro obecné víceparametrové aproximační funkce. Celý postup
Numerické metody a programování
Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským
Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1
ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Integrace funkcí více proměnných, numerické metody
Matematika III 6. přednáška Integrace funkcí více proměnných, numerické metody Michal Bulant Masarykova univerzita Fakulta informatiky 27. 10. 2010 Obsah přednášky 1 Literatura 2 Integrální počet více
Jméno... Cvičení den... hodina... Datum...rok... Počet listů... Varianta A
æ æ Jméno... Cvičení den... hodina... Datum...rok... Počet listů.......... Varianta A 4 3 2 1 2 8 0 1 0 3 1. Vzhledem k reálnému parametru a diskutujte hodnost matice 2 1 0 1 2. 0 1 2 1 2 4 3 1 1 a 2.
Zápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová
1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,
POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými.
POLYNOMICKÁ REGRESE Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými. y = b 0 + b 1 x + b 2 x 2 + + b n x n kde b i jsou neznámé parametry,
18 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách
13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních
Soustavy lineárních rovnic
Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a
Základy algoritmizace a programování
Základy algoritmizace a programování Příklady v MATLABu Přednáška 10 30. listopadu 2009 Řídící instrukce if else C Matlab if ( podmínka ) { } else { } Podmíněný příkaz if podmínka elseif podmínka2... else
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ
9 INTERPOLACE A APROXIMACE
1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí
Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a
Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?
Čebyševovy aproximace
Čebyševovy aproximace Čebyševova aproximace je tzv hledání nejlepší stejnoměrné aproximace funkce v daném intervalu Hledáme funkci h x, která v intervalu a,b minimalizuje maximální absolutní hodnotu rozdílu
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:
Škola matematického modelování 2015. Petr Beremlijski, Rajko Ćosić, Lukáš Malý, Marie Sadowská, Robert Skopal
Počítačová cvičení Škola matematického modelování 2015 Petr Beremlijski, Rajko Ćosić, Lukáš Malý, Marie Sadowská, Robert Skopal Počítačová cvičení Škola matematického modelování Petr Beremlijski, Rajko
Ukázka závěrečného testu
Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál
4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
Příklad animace změny prokládané křivky při změně polohy jednoho z bodů
3. Polynomy p x x x 3 ( ) = 2 5 Polynom je reprezentován řádkovým vektorem koeficientů jednotlivých řádů od nejvyššího dolů p = [1 0-2 -5]; kořeny polynomu r = roots(p) r = 2.0946-1.0473 + 1.1359i -1.0473-1.1359i
EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření
FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých
Základy matematiky pracovní listy
Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Numerické metody a programování. Lekce 4
Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A
Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt
VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM
OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
Integrace. Numerické metody 7. května FJFI ČVUT v Praze
Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
KTE / PPEL Počítačová podpora v elektrotechnice
KTE / PPEL Počítačová podpora v elektrotechnice 2. 11. 2011 Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov Polynomiální regrese polyfit(x, y, st) proloží množinu bodů
Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ
Přijímací zkoušky z matematiky pro akademický rok 8/9 NMgr studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 3 4 5 Celkem Body Ke každému příkladu uved te
Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.
Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace
5. Maticová algebra, typy matic, inverzní matice, determinant.
5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.
Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.
@083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x
Aproximace a vyhlazování křivek
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Přednášející: Prof. Ing. Jiří Militký, Csc 1. SLEDOVÁNÍ ZÁVISLOSTI HODNOTY SFM2 NA BARVIVOSTI
APROXIMACE FUNKCÍ. Jedním ze základních úkolů numerických metod matematické analýzy je studium aproximací
APROXIMACE FUNKCÍ Jedním ze základních úkolů numerických metod matematické analýz je studium aproimací funkcí. Při numerickém řešení úloh matematické analýz totiž často nahrazujeme danou funkci f, vstupující
Aproximace funkcí. Polynom Φ m (x) = c 0 + c 1 x + c 2 x c m x m. Φ m (x) = c 0 g 0 (x) + c 1 g 1 (x) + c 2 g 2 (x) +...
Aproximace funkcí 1 Úvod Aproximace funkce - výpočet funkčních hodnot nejbližší (v nějakém smyslu) funkce v určité třídě funkcí (funkce s nějakými neznámými parametry) Příklady funkcí používaných pro aproximaci
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Matematika 1 sbírka příkladů
Matematika 1 sbírka příkladů RNDr. Rudolf SCHWARZ, CSc. Brno 2012 1. Poznámka Výsledky jednotlivých příkladů mají tuto barvu. 2. Poznámka Pokud je v hranatých závorkách uvedeno písmeno, označuje, ze které
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
16 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 16: Fourierovy řady 1 16 Fourierovy řady 16.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
Matematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
KTE / PPEL Počítačová podpora v elektrotechnice
KTE / PPEL Počítačová podpora v elektrotechnice Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov Polynomy opakování a pokračování 31. 10. 2012 Příklad: Funkce, která vykreslí
Lineární algebra : Změna báze
Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,
Modelování ternárních systémů slitin
Software pro modelování ternárních systémů slitin Modelování ternárních systémů slitin pomocí B-splajnových ploch Zuzana Morávková Jiří Vrbický Katedra matematiky a deskriptivní geometrie Vysoká škola
5. Interpolace a aproximace funkcí
5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:
Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky
Arnoldiho a Lanczosova metoda
Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat
% vyhledání prvku s max. velikostí v jednotlivých sloupcích matice X
%------------------------------------- % 4. cvičení z předmětu PPEL - MATLAB %------------------------------------- % Lenka Šroubová, ZČU, FEL, KTE % e-mail: lsroubov@kte.zcu.cz %-------------------------------------
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost