Jméno: P íjmení: Datum: 17. ledna 2018 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu.
|
|
- Pavlína Křížová
- před 5 lety
- Počet zobrazení:
Transkript
1 Jméno: P íjmení: Datum: 7. ledna 28 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu. Rotující nádoba Otev ená válcová nádoba napln ná do poloviny vý²ky vodou se za n otá et kolem svislé osy. Roztá ení je pomalé, neuvaºujte tedy proud ní vzhledem k nádob. Ur ete, která situace nastane d íve zda se hladina v prost edku dotkne dna nádoby, nebo zda kapalina za ne p etékat na okraji. Vypo t te, p i jakých otá kách ur ená situace nastane. Zadané hodnoty: Pr m r nádoby D = 25 cm, vý²ka nádoby H = 25 cm, po áte ní napln ní nádoby h (ω = ) = 2 H. ω H h(ω>) h(ω=) D. e²ení Vyjdeme z Eulerovy rovnice hydrostatiky p = ρ R, ()
2 kde R je vektor vn j²ích zrychlení, explicitn ve válcových sou adnicích, které jsou vhodné pro tuto úlohu: ω 2 r p = ρ g, (2) tedy r y ϕ ω 2 r = ρ g. (3) Podmínka pro volnou hladinu zní dp = = r dr + y dosadíme odst edivé a gravita ní zrychlení dy + dϕ, (4) ϕ dp = ρω 2 rdr ρgdy + dϕ =, (5) a integrujeme p = ρω 2 rdr ρgdy = C, (6) a vyjád íme y (r; ω) y (r; ω) = 2g ω2 r 2 + C. (7) Sem se je²t v t²ina z Vás dostala. Problémy d lalo ur ení integra ní konstanty C, která nám ur uje, jak je parabola posunutá ve svislém sm ru. Je t eba vyuºít n co, co je stálé a co známe; v t²ina z Vás se snaºila dosadit n jaký bod na okraji, nebo v prost edku, ale to nikam nevedlo, nebo jste si n co p imysleli a vedlo to k chybnému záv ru. To, co se zachovává bez ohledu na ω, je objem kapaliny v nádob : V = R 2π y dydϕdr = = πω2 2g R R ( ) y2πrdr = 2g ω2 r 2 + C 2πrdr = r 3 dr + 2πC R rdr = πω2 4g R4 + πcr 2, jen doplním, ºe objem musí být stejný, jako kdyº nádoba nerotovala, tedy V = πd2 4 2 (8) H, (9) 2
3 (zde jen p ipome me, ºe D = 2R). Porovnáním 8 a 9 získáme integra ní konstantu C C = H 2 ω2 R 2 4g. () Dosazením do 7 máme y (r; ω) = 2g ω2 (r 2 2 R2 ) + H. () 2 Nyní uº jen vy²et íme, p i jakém ω nastane dotek dna, respektive p ete ení. Dotek dna nastane, pokud y() = : y() = = 4g ω2 dr H ω2 d = 2Hg R 2 (2) a p ete ení nastane, pokud y(r) = H: y(r) = H = 4g ω2 dr H ω2 d = 2Hg R 2. (3) Ob události tedy nastanou p i stejných otá kách ω d,p = 7, 7 rad/s = 2, 8 Hz. 3
4 Jméno a p íjmení: 2 Výtok z nádoby Vypo t te výtokový sou initel µ ze zm ené doby výtoku vody kruhovým otvorem ve dn válcové nádoby zadaných rozm r a s po áte ní vý²kou hladiny H. Zadané hodnoty: doba výtoku T = 257 s, pr m r nádoby D = 2 cm, pr m r otvoru d = cm, H =, 3 m, ρ = kg/m 3. D H d 2. e²ení Vý²ka hladiny H platí jen na za átku d je, postupn se hladina sniºuje, ozna me si tedy aktuální hladinu v n jakém ase t jako h(t). Bernoulliovu rovnici mezi bodem ve výtoku (2) a n jakým bodem na aktuální hladin () lze zapsat jako 2 ρv2 + ρgh(t) + p = 2 ρv2 2 + p 2. (4) 4
5 BR uº jsme zapsali mezi dv ma body, tedy se net eba trápit s konstantou (ta uº se ode etla), vý²ka bodu (2) nech je a h(t) je p evý²ení mezi () a (2). N kte í tuto potenciální energii zapo etli obrácen. Tlaky p a p 2 jsou stejné, nebo nádoba i výtok jsou otev ené, lze je tedy ode íst. Vyuºijeme rovnici kontinuity v S = v 2 S 2, (5) kde S,2 jsou plochy hladiny v nádob a pr ezu výtokového otvoru, S = πd 2 /4, S 2 = πd 2 /4, vyjád íme v, dosadíme do 4 a získáme výtokovou rychlost v 2 V objemovém toku ven z nádoby 2gh(t) v 2 = (d/d) 4. (6) V = µv 2 S 2 = v S se uplatní ten výtokový sou initel µ tím, ºe efektivn zmen²í výtokovou plochu. Rychlost polesu hladiny v = dh/dt, tedy dt = dh/v a integrujeme: dt = T = dh = S H v S 2 µ ( ) 4 dh = D2 d H h /2 dh v 2 d 2 µ D 2g (7) N kte í z Vás neumí integrovat, ale, ud láte-li to správn, vyjde a nyní jen vyjád íme µ µ = T A je to bez jednotky. ƒlen T = D2 d 2 µ ( ) 4 d 2H D 2g ( ) D 2 4 d 2H d 2 D 2g (8) =, 8. (9) (d/d) 4 lze zanedbat. N kte í z vás rovnou uhádli vyjád ení asu, i kdyº mi nebylo jasné, kde se to vzalo, ale jelikoº jsem v zadání nespecikoval, ºe chci postup, hodnotil jsem to 7 body. 5
6 Jméno a p íjmení: 3 Pohybující se lopatka Proud vody o pr m ru d = 2 cm a rychlosti w = 6, 5 m/s dopadá na zahnutou lopatku, která se pohybuje stejným sm rem rychlostí u = 4 m/s. Lopatka ohýbá vodní proud o úhel α = 2. Ur ete sílu na lopatku. Zadané hodnoty: pr m r vodní paprsku d =, 2 m, ρ = kg/m 3, w = 6, 5 m/s, u = 4 m/s, α = 2. (Nezapome te, ºe na zapsání 2D-vektoru jsou pot eba 2 ísla ). w d β u α γ 3. e²ení Prvním krokem je Galileovská transformace do sou adné soustavy pohybující se s lopatkou rychlostí u = (u, ) T, lopatka tedy nyní stojí a proud vody st íká transformovanou rychlostí v = w u = (w u, ) T. Zapí²eme si v tu o zm n toku hybnosti vektorov : F = ṁ v ṁ 2 v 2, (2) kde v je transformovaná rychlost vody do systému vstupující a v 2 ze systému vystupující. Toky ṁ,2 jsou stejné kv li zákonu zachování hmotnosti ṁ = ṁ 2 = ρ πd2 4 v. (2) 6
7 N kte í z vás si neuv domili, ºe tok se musí také transformovat, dosazujeme v, nikoli w. Dosadíme do 2 a zapí²eme do sloºek F = ṁ v ṁ 2 v 2 = ρ πd2 4 v ( v v 2 ) (22) F x = ρ πd2 4 v 2 ( + cos β) = 6 N, (23) kde β je úhel, pod kterým se paprsek vrací, viz obrázek, β = π α. Velikost síly: F y = ρ πd2 4 v 2 ( sin β) = 6 N. (24) F = ρ πd2 4 v cos β = 22 N, (25) a sm r lze uhádnout ze symetrie úlohy nebo spo ítat: γ = arctg sin β cos β + =, 52 = π 6 = 3. (26) 7
Vektory. Vektorové veli iny
Vektor je veli ina, která má jak velikost tak i sm r. Ob tyto vlastnosti musí být uvedeny, aby byl vektor stanoven úpln. V této ásti je návod, jak vektory zapsat, jak je s ítat a od ítat a jak je pouºívat
CVIČENÍ č. 8 BERNOULLIHO ROVNICE
CVIČENÍ č. 8 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Z injekční stříkačky je skrze jehlu vytlačovaná voda. Průměr stříkačky je D, průměr jehly d. Určete výtokovou rychlost,
Skalární sou in. Úvod. Denice skalárního sou inu
Skalární sou in Jedním ze zp sob, jak m ºeme dva vektory kombinovat, je skalární sou in. Výsledkem skalárního sou inu dvou vektor, jak jiº název napovídá, je skalár. V tomto letáku se nau íte, jak vypo
1.7. Mechanické kmitání
1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody
e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody V praxi se asto setkávame s p ípady, kdy je pot eba e²it více rovnic, takzvaný systém rovnic, obvykle s více jak jednou neznámou.
Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A 18. dubna 2016, 11:2013:20 ➊ (1 bod) Nalezn te kritický bod soustavy generujících rovnic e x 6y 6z 2 + 12z = 13, 2e 2x 6y z 3 = 6. Uºijte faktu,
CVIČENÍ č. 3 STATIKA TEKUTIN
Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením
nazvu obecnou PDR pro neznámou funkci
Denice. Bu n N a Ω R d otev ená, d 2. Vztah tvaru F (x, u(x), Du(x),..., D (n 1) u(x), D (n) u(x)) = 0 x Ω (1) nazvu obecnou PDR pro neznámou funkci u : Ω R d R Zde je daná funkce. F : Ω R R d R dn 1 R
Práce s dokumentem. 1. Úvod do konstruování. 2. Statistické zpracování dat. 4. Analýza zatíºení a nap tí. Aktuální íslo revize: REV_40
Aktuální íslo revize: REV_0 Práce s dokumentem Jednotlivé opravy (revize) jsou v dokumentu Errata ozna eny popiskem REV_a íslo revize ƒíslování revizí je provedeno chronologicky asov, tak jak p icházely
VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. (f(x) g(x)) dx.
VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. Výpo et obsahu rovinných ploch a) Plocha ohrani ená k ivkami zadanými v kartézských sou adnicích. Obsah S rovinné plochy ohrani ené dv ma spojitými
11.12.2013, Brno ipravil: Tomáš Vít z Mechanika tekutin
11.12.2013, Brno ipravil: Tomáš Vít z Mechanika tekutin erpadla strana 2 erpadla - za ízení pro dopravu tekutin Doprava tekutin m že být uskute ována pomocí erpadel, - ventilátor, - kompresor. Tato za
1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) =
I. L'HOSPITALOVO PRAVIDLO A TAYLOR V POLYNOM. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) a) lim tg sin ( + ) / e e) lim a a i) lim a a, a > P ipome me si: 3 tg 4 2 tg b) lim 3 sin 4 2 sin
Transformace Aplikace Trojný integrál. Objem, hmotnost, moment
Trojný integrál Dvojný a trojný integrál Objem, hmotnost, moment obecne ji I Nez zavedeme transformaci dvojne ho integra lu obecne, potr ebujeme ne kolik pojmu. Definice Necht je da no zobrazenı F : R2
Zkou²ková písemná práce. 1 z p edm tu 01MAB4
Zkou²ková písemná práce. 1 z p edm tu 1MAB4 29/5/218, 9: 11: ➊ (8 bod ) Pro parametry a > a b R vypo t te ur itý integrál e ax2 cos(bx2 ) 1 x Uºijte v tu o derivaci integrálu s parametrem. Spln ní p edpokladu
Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.
Vektor náhodných veli in - práce s více prom nnými
Vektor náhodných veli in - práce s více prom nnými 12. kv tna 2015 N kdy k popisu n jaké situace pot ebujeme více neº jednu náhodnou veli inu. Nap. v k, hmotnost, vý²ku. Mezi t mito veli inami mohou být
c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.
9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte
e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016
e²ení testu Mechania a ontinuu NAFY00 8. listopadu 06 P ílad Zadání: Eletron o ineticé energii E se srazí s valen ní eletrone argonu a ionizuje jej. P i ionizaci se ást energie nalétávajícího eletronu
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
3. Dynamika. Obecné odvození: a ~ F a ~ m. Zrychlení je přímo úměrné F a nepřímo úměrné m. 3. 2. 1 Výpočet síly a stanovení jednotky newton. F = m.
3. Dynamika Zabývá se říčinou ohybu (jak vzniká a jak se udržuje). Vše se odehrávalo na základě řesných okusů, vše shrnul Isac Newton v díle Matematické základy fyziky. Z díla vylývají 3 ohybové zákony.
P íklad 1 (Náhodná veli ina)
P íklad 1 (Náhodná veli ina) Uvaºujeme experiment: házení mincí. Výsledkem pokusu je rub nebo líc, ºe padne hrana neuvaºujeme. Pokud hovo íme o náhodné veli in, musíme p epsat výsledky pokusu do mnoºiny
Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady
Státní maturita 0 Maturitní testy a zadání jaro 0 Matematika: didaktický test - základní úrove obtíºnosti MAMZDC0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 0. srpna 0 http://www.vachtova.cz/ Obsah Úloha
Pomůcka pro demonstraci dynamických účinků proudu kapaliny
Pomůcka pro demonstraci dynamických účinků proudu kapaliny Energie proudící vody je lidmi využívána již několik tisíciletí. Základní otázkou vždy bylo, kolik energie lze z daného zdroje využít. Úkolem
Integrování jako opak derivování
Integrování jako opak derivování V tomto dokumentu budete seznámeni s derivováním b ºných funkcí a budete mít moºnost vyzkou²et mnoho zp sob derivace. Jedním z nich je proces derivování v opa ném po adí.
1. Člun o hmotnosti m = 50 kg startuje kolmo ke břehu a pohybuje se dále v tomto směru konstantní rychlostí v 0 = 2 m.s -1 vůči vodě. Současně je unášen podél břehu proudem vody, který na něj působí silou
Kuželosečky a kvadriky ve škole i kolem
Kuželosečky a kvadriky ve škole i kolem nás Bc. Aneta Mirová Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím
Limity funkcí v nevlastních bodech. Obsah
Limity funkcí v nevlastních bodech V tomto letáku si vysv tlíme, co znamená, kdyº funkce mí í do nekone na, mínus nekone na nebo se blíºí ke konkrétnímu reálnému íslu, zatímco x jde do nekone na nebo mínus
1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost
(8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo
Jevy, nezávislost, Bayesova v ta
Jevy, nezávislost, Bayesova v ta 17. b ezna 2015 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a vy- e²te p íklad podobný. Tím se ujistíte, ºe p íkladu rozumíte.
Substituce ve vícenásobném integrálu verze 1.1
Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.
7. Odraz a lom. 7.1 Rovinná rozhraní dielektrik - základní pojmy
Trivium z optiky 45 7 draz a lom V této kapitole se budeme zabývat průchodem (lomem) a odrazem světla od rozhraní dvou homogenních izotropních prostředí Pro jednoduchost se omezíme na rozhraní rovinná
DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA
DOPLŇKOVÉ TEXTY BB0 PAVEL CHAUER INTERNÍ MATERIÁL FAT VUT V BRNĚ HYDRODYNAMIKA Obsah Úod... Průtok kapaliny... Ronice kontinuity... 3 Energie proudící kapaliny... 3 Objemoá hustota energie... 3 Bernoulliho
SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNÍ A STAVEBNÍ TÁBOR, KOMENSKÉHO 1670 SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 ŠKOLNÍ ROK 2014/2015 Obsah 1 Dělitelnost přirozených čísel... 3 2 Obvody a obsahy
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Rovnice a jejich soustavy Petra Směšná žák měří dané veličiny, analyzuje a zpracovává naměřená data, rozumí pojmu řešení soustavy dvou lineárních rovnic,
I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY
I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY 1. Ur ete a nakreslete deni ní obor a vrstevnice funkcí: a) f(, y) = + y b) f(, y) = y c) f(, y) = 2 + y 2 d) f(, y) = 2 y 2 e) f(, y) = y f) f(, y) =
P íklady k prvnímu testu - Pravd podobnost
P íklady k prvnímu testu - Pravd podobnost 28. února 204 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a vy- e²te p íklad podobný. Tím se ujistíte, ºe p íkladu
2. referát (Pruºnost a pevnost I.)
2. referát (Pruºnost a pevnost I.) 1 Zadání. 1 aº 16 Zadána je prutová konstrukce dle obrázku 1 sestávající se ze t í prut. Oba krajní pruty jsou vzhledem k symetrii ozna eny íslem 2, prost ední prut pak
Projekty - Vybrané kapitoly z matematické fyziky
Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................
PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE
PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE Příklad Představme si, že máme vypočítat integrál I = f(, y) d dy, M kde M = {(, y) R 2 1 < 2 + y 2 < 4}. y M je mezikruží mezi kružnicemi o poloměru 1 a 2 a se
Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe
Derivování sloºené funkce
Derivování sloºené funkce V tomto letáku si p edstavíme speciální pravidlo pro derivování sloºené funkce (te funkci obsahující dal²í funkci). Po p e tení tohoto tetu byste m li být schopni: vysv tlit pojem
Měření momentu setrvačnosti z doby kmitu
Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných
(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3)
Učební tet k přednášce UFY1 Předpokládejme šíření rovinné harmonické vln v kladném směru os z. = i + j kde i, j jsou jednotkové vektor ve směru os respektive a cos ( ) ω ϕ t kz = + () = cos( ωt kz+ ϕ )
Zkoušení cihlářských výrobků
Keramika je pevná anorganická polykrystalická látka vyrobená keramickým výrobním způsobem z minerálních surovin s převládající složkou jílových minerálů, vytvarovaná a potom vypálená a vysokou teplotu
5 - Stanovení teoretické a experimentální hodnoty koeficientu prostupu tepla
5 - Stanovení teoretické a experimentální hodnoty koeficientu prostupu tepla I Základní vztahy a definice Sdílením tepla rozumíme převod energie z místa s vyšší teplotou na místo s nižší teplotou vlivem
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 6. prosince 2016, 13:2015:20 ➊ (8 bod ) Vy²et ete stejnom rnou konvergenci ady na mnoºin R +. n=2 x n 1 1 4n 2 + x 2 ln 2 (n) ➋ (5 bod ) Detailn
Dvojné a trojné integrály příklad 3. x 2 y dx dy,
Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je
Semestrální práce z p edm tu URM (zadání), 2014/2015:
Semestrální práce z p edm tu URM (zadání), 2014/2015: 1. Vyzna te na globusu cestu z jihu Grónska na jih Afriky, viz Obrázek 1. V po áte ní a cílové destinaci bude zapíchnutý ²pendlík sm ující do st edu
Sbírka p íklad z Fyziky I. Jana Jire²ová a kol.
Sbírka p íklad z Fyziky I Jana Jire²ová a kol. Obsah 1 Vektorová algebra 3 2 Kinematika hmotného bodu 8 2.1 Poloha, rychlost, zrychlení........................ 8 2.2 P ímo arý rovnom rn zrychlený pohyb................
Válec - slovní úlohy
Válec - slovní úlohy VY_32_INOVACE_M-Ge. 7., 8. 20 Anotace: Žák řeší slovní úlohy z praxe. Využívá k řešení matematický aparát. Vzdělávací oblast: Matematika Autor: Mgr. Robert Kecskés Jazyk: Český Očekávaný
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A
Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A st eda 19. listopadu 2015, 11:2013:20 ➊ (3 body) Pro diferenciální operátor ˆL je mnoºina W q denována p edpisem W q = { y(x) Dom( ˆL) : ˆL(y(x))
DYNAMICKÉ VÝPOČTY PROGRAMEM ESA PT
DYNAMICKÉ VÝPOČTY PROGRAMEM ESA PT Doc. Ing. Daniel Makovička, DrSc.*, Ing. Daniel Makovička** *ČVUT v Praze, Kloknerův ústav, Praha 6, **Statika a dynamika konstrukcí, Kutná Hora 1 ÚVOD Obecně se dynamickým
4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů
4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici
Typové příklady ke zkoušce z Fyziky 1
Mechanika hmotného bodu Typové příklady ke zkoušce z Fyziky 1 1. Těleso padá volným pádem. V bodě A své trajektorie má rychlost v 4 m s -1, v bodě B má rychlost 16 m s -1. Určete: a) vzdálenost bodů A,
Část 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA HYDROSTATIKA základní zákon hdrostatik Část 3 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA Hdrostatika - obsah Základn
Osvětlovací modely v počítačové grafice
Západočeská univerzita v Plzni Fakulta aplikovaných věd Semestrální práce z předmětu Matematické modelování Osvětlovací modely v počítačové grafice 27. ledna 2008 Martin Dohnal A07060 mdohnal@students.zcu.cz
a) Jaká je hodnota polytropického exponentu? ( 1,5257 )
Ponorka se potopí do 50 m. Na dně ponorky je výstupní tunel o průměru 70 cm a délce, m. Tunel je napojen na uzavřenou komoru o objemu 4 m. Po otevření vnějšího poklopu vnikne z části voda tunelem do komory.
4. V p íprav odvo te vzorce (14) a (17) ze zadání [1].
FYZIKÁLNÍ PRAKTIKUM II FJFI ƒvut v Praze Úloha #4 Balmerova série Datum m ení: 28.4.2014 Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace: 1 Pracovní úkoly 1.
Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (
Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o
Spoje se styčníkovými deskami s prolisovanými trny
cvičení Dřevěné konstrukce Spoje se styčníkovými deskami s prolisovanými trny Úvodní poznámky Styčníkové desky s prolisovanými trny se používají pro spojování dřevěných prvků stejné tloušťky v jedné rovině,
MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA)
PH-M5MBCINT MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA) 1. TYPY TESTOVÝCH ÚLOH V TESTU První dvě úlohy (1 2) jsou tzv. úzce otevřené
2.2.10 Slovní úlohy vedoucí na lineární rovnice I
Slovní úlohy vedoucí na lineární rovnice I Předpoklady: 0, 06 Pedagogická poznámka: Řešení slovních úloh představuje pro značnou část studentů nejobtížnější část matematiky Důvod je jednoduchý Po celou
TVAROVÉ A ROZMĚROVÉ PARAMETRY V OBRAZOVÉ DOKUMENTACI. Druhy kót Části kót Hlavní zásady kótování Odkazová čára Soustavy kót
TVAROVÉ A ROZMĚROVÉ PARAMETRY V OBRAZOVÉ DOKUMENTACI Druhy kót Části kót Hlavní zásady kótování Odkazová čára Soustavy kót KÓTOVÁNÍ Kótování jednoznačné určení rozměrů a umístění všech tvarových podrobností
L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméno TUREČEK Daniel Datum měření 3..6 Stud. rok 6/7 Ročník. Datum odevzdání 3..7 Stud. skupina 3 Lab.
ZAŘÍZENÍ K DOPRAVĚ VZDUCHU A SPALIN KOTLEM
ZAŘÍZENÍ K DOPRAVĚ VZDUCHU A SPALIN KOTLEM spaliny z kotle nesmějí pronikat do prostoru kotelny => ohniště velkých kotlů jsou převážně řešena jako podtlaková podtlak v kotli je vytvářen účinkem spalinového
MECHANICKÁ PRÁCE A ENERGIE
MECHANICKÁ RÁCE A ENERGIE MECHANICKÁ RÁCE Konání práce je podmíněno silovým působením a pohybem Na čem závisí velikost vykonané práce Snadno určíme práci pro případ F s ráci nekonáme, pokud se těleso nepřemísťuje
Elektrická měření 4: 4/ Osciloskop (blokové schéma, činnost bloků, zobrazení průběhu na stínítku )
Elektrická měření 4: 4/ Osciloskop (blokové schéma, činnost bloků, zobrazení průběhu na stínítku ) Osciloskop měřicí přístroj umožňující sledování průběhů napětí nebo i jiných elektrických i neelektrických
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
NÁVOD NA OBSLUHU A ÚDRŽBU PRO. čistící pistole s tlakovou nádobou obj. č. AA 5000 rozprašovací čistící pistole obj. č. AA 3080
autorizovaný distributor NÁVOD NA OBSLUHU A ÚDRŽBU PRO čistící pistole s tlakovou nádobou obj. č. AA 5000 rozprašovací čistící pistole obj. č. AA 3080 AA 5000 AA 3080 ATMOS Chrást, s.r.o.; Plzeňská 168;
Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY
Statistika pro geografy Rozd lení etností DEPARTMENT OF GEOGRAPHY Faculty of Science Palacký University Olomouc t. 17. listopadu 1192/12, 771 46 Olomouc Pojmy etnost = po et prvk se stejnou hodnotou statistického
Rovnice a nerovnice. Posloupnosti.
.. Veronika Sobotíková katedra matematiky, FEL ƒvut v Praze, http://math.feld.cvut.cz/ 30. srpna 2018.. 1/75 (v reálném oboru) Rovnicí resp. nerovnicí v reálném oboru rozumíme zápis L(x) P(x), kde zna
KUFŘÍK MECHANIKA MA1 419.0006
KUFŘÍK MECHANIKA MA1 419.0006 MECHANIKA 1 José Luis Hernández Pérez José Maria Vaquero Guerri Maria Jesùs Carro Martinez Carlos Parejo Farell Departamento de Material Diddctico de ENOSA Francouzský překlad
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
AMC/IEM HLAVA B PŘÍKLAD OZNAČENÍ PŘÍMOČARÉHO POHYBU K OTEVÍRÁNÍ
ČÁST 2 Hlava B JAR-26 AMC/IEM HLAVA B [ACJ 26.50(c) Umístění sedadla palubních průvodčí s ohledem na riziko zranění Viz JAR 26.50 (c) AC 25.785-1A, Část 7 je použitelná, je-li prokázána shoda s JAR 26.50(c)]
( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty
Fyzikální praktikum IV. Měření ryhlosti zvuku a Poissonovy konstanty - verze Úloha č. 9 Měření ryhlosti zvuku a Poissonovy konstanty 1) Pomůky: Kundtova trubie, mikrofon se sondou, milivoltmetr, měřítko,
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
PRUŽNOST A PEVNOST. Zadané a vypočtené hodnoty. 1. Délka táhla b 4.41. Určete potřebnou délku b táhla. Navrhněte: 1. Délka táhla b. Osová síla.
4.41 Určete potřebnou délku b táhla. Navrhněte: 1. Délka táhla b 8kN R e 50MPa h 16mm τ Ds 40MPa Osová síla Mez kluzu materiálu kolíku Výška táhla Dovolené smykové napětí mezi kolíkem a táhlem 1. Délka
Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - vy²²í úrove obtíºnosti MAGVD10C0T01 e²ené p íklady
Státní maturita 00 Maturitní generálka 00 Matematika: didaktický test - vy²²í úrove obtíºnosti MAGVD0C0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 6. b ezna 0 http://www.vachtova.cz/ Obsah Úloha Úloha
Binární operace. Úvod. Pomocný text
Pomocný text Binární operace Úvod Milí e²itelé, binární operace je pom rn abstraktní téma, a tak bude ob as pot eba odprostit se od konkrétních p íklad a podívat se na v c s ur itým nadhledem. Nicmén e²ení
Příloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
OBSAH. Katalog zubových čerpadel Obsah
OBSAH Obsah POPIS... 2 ZÁKADNÍ DÍY ČEPADA... 2 TABUKA PAAMETŮ... 3 VZOCE POUŽITÉ PO VÝPOČET... 4 ÚČINNOSTI ČEPADA... 4 PACOVNÍ KAPAINA... 5 TAKOVÉ ZATÍŽENÍ... 5 SMĚ OTÁČENÍ... 6 DAŠÍ POŽADAVKY... 6 PŘÍPUSTNÝ
Zápo tová písemná práce. 1 z p edm tu 01RMF varianta A
Zápo tová písemná práce. 1 z p edm tu 1MF varianta A tvrtek 19. listopadu 215, 13:215:2 ➊ (5 bod ) Nech f (x), g(x) L 1 () a f (x) dx = A, x f (x) dx = µ, Vypo ítejte, emu se rovná z( f g)(z) dz. g(x)
Kótování na strojnických výkresech 1.část
Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických
SIGMA PUMPY HRANICE HORIZONTÁLNÍ 426 2.98 12.06
SIGMA PUMPY HRANICE HORIZONTÁLNÍ ČLÁNKOVÁ ODSTŘEDIVÁ ČERPADLA LV SIGMA PUMPY HRANICE, s.r.o. Tovární 605, 753 01 Hranice tel.: 0642/261 111, fax: 0642/202 587 Email: sigmahra@sigmahra.cz 426 2.98 12.06
Závěrečné shrnutí jednoduché pokusy z fyziky
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 10 Závěrečné shrnutí jednoduché
Příklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
7.8 Kosmická loď o délce 100 m letí kolem Země a jeví se pozorovateli na Zemi zkrácena na 50 m. Jak velkou rychlostí loď letí?
7. Speciální teorie relativity 7.1 Kosmonaut v kosmické lodi, přibližující se stálou rychlostí 0,5c k Zemi, vyšle směrem k Zemi světelný signál. Jak velká je rychlost signálu a) vzhledem k Zemi, b) vzhledem
odvodit vzorec pro integraci per partes integrovat sou in dvou funkcí pouºitím metody per partes Obsah 2. Odvození vzorce pro integraci per partes
Integrce per prtes Speciální metod, integrce per prtes (integrce po ástech), je pouºitelná p i integrování sou inu ou funkcí. Tento leták oozuje zmín nou meto ilustruje ji n d p íkld. Abychom zvládli tuto
FYZIKÁLNÍ SEKCE P írodov decká fakulta Masarykovy univerzity v Brn KORESPONDEN NÍ SEMINÁ Z FYZIKY 8. ro ník μ 2001/2002 Vzorová e ení druhé série úloh
FYZIKÁLNÍ SEKCE P írodov decká fakulta Masarykovy univerzity v Brn KOESPONDEN NÍ SEMINÁ Z FYZIKY 8. ro ník μ 001/00 Vzorová e ení druhé série úloh (5 bod ) Vzorové e ení úlohy. 1 (4 body) Kniha na válci
Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2
Po etní geometrie Pythagorova v ta Obsah tverce nad p eponou je roven sou tu obsah tverc nad ob ma odv snami. Výpo et délky p epony: c = a + b Výpo et délky odv sny: a = c b, b = c a P íklad 1: Vypo t
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
Proč funguje Clemův motor
- 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout
Dolní odhad síly pro ztrátu stability obecného prutu
ƒeské vysoké u ení technické v Praze 9. února 216 Vedoucí seminární práce: doc. RNDr. Ivana Pultarová, Ph.D. prof. Ing. Milan Jirásek, DrSc. Osnova 1 2 Cíl práce Cíl práce Nalézt velikost síly, která zp
6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi
6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
Obklady podhledů krovů lamelami z PVC montážní návod
Obklady podhledů krovů lamelami z PVC montážní návod Účelem tohoto návodu je popsání základních pravidel a doporučení, které je potřeba dodržovat během montáže střešního podbití z PVC lamel a profilů při
13. Přednáška. Problematika ledových jevů na vodních tocích
13. Přednáška Problematika ledových jevů na vodních tocích Obsah: 1. Úvod 2. Základní pojmy 3. Vznik a vývoj ledu 4. Vznik ledových jevů 5. Proudění pod ledem 1.Úvod Při déle trvajícím mrazivém počasí
13. cvičení z Matematické analýzy 2
. cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2
Geodézie. přednáška 3. Nepřímé měření délek. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.
Geodézie přednáška 3 Nepřímé měření délek Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Nepřímé měření délek při nepřímém měření délek se neměří přímo žádaná