1. Klasická pravděpodobnost
|
|
- Ludvík Esterka
- před 8 lety
- Počet zobrazení:
Transkript
1 Příklady 1. Klasická pravděpodobnost 1. Házíme dvakrát kostkou. Jaká je pravděpodobnost, že padne alespoň jedna šestka? 2. Základy teorie pravděpodobnosti vznikly v korespondenci mezi dvěma slavnými francouzskými matematiky B. Pascalem a P. de Fermatem v roce Zabývali se mimo jiné problémem, se kterým přišel šlechtic Chevalier de Méré (velký milovník hazardních her). Ze zkušenosti věděl, že je výhodné sázet na to, že při 4 hodech šestistěnnou kostkou padne šestka. Usuzoval, že při 24 hodech dvěmi kostkami bude opět výhodné vsadit na to, že padnou na obou kostkách šestky. Ukázalo se však, že tomu tak není. Spočtěte pravděpodobnost, že při 4 hodech padne aspoň jednou šestka a pravděpodobnost, že při 24 hodech dvěmi kostkami padnou aspoň jednou dvě šestky. 3. Jaká je pravděpodobnost nejvyšší výhry ve hře Šťastných deset? Je třeba uhodnout 10 čísel, přičemž se táhne 20 čísel z osmdesáti. 4. Ve skříni máme pět párů ponožek (černé, hnědé, bílé, modré a červené). Ponožky jsou pomíchané. Ráno náhodně vytáhneme dvě ponožky. Jaká je pravděpodobnost, že a) je mezi nimi černá ponožka, b) jedna je bílá a druhá je modrá, c) jedna je červená a druhá není hnědá, d) obě mají stejnou barvu? 5. Úloha o vadných fotoaparátech: v továrně bylo v sadě 20 aparátů objeveno, že 3 musí být znovu seřízeny. Nedopatřením však došlo k tomu, že tyto 3 přístroje byly vráceny do série a ta se teď musí prohlédnout znovu. a) Jaká je pravděpodobnost, že budeme muset prohlédnout více než 17 přístrojů? b) Jaká je pravděpodobnost, že budeme muset prohlédnout právě 17 přístrojů? c) Jaký je nejpravděpodobnější počet přístrojů, které budeme muset prohlédnout? 2. Nezávislost, podmíněná pravděpodobnost 1. A,B jsou neslučitelné jevy. P (A) 0, P (B) 0. Jsou tyto jevy nezávislé? 2. První skupina studentů vyřeší úlohu s pravděpodobností 2/5 a druhá s pravděpodobností 1/3. Každá skupina se snaží úlohu nezávisle vyřešit. S jakou pravděpodobností bude úloha vyřešena? 3. V osudí je a bílých koulí a b černých koulí. Vytáhneme jednu kouli, zaznamenáme její barvu a zase ji do osudí vrátíme. Po promíchání opět vytáhneme jednu kouli. Nechť náhodný jev A znamená, že první vytažená koule je bílá a jev B, že druhá vytažená koule je bílá. Jsou jevy A a B nezávislé? Jak je tomu v případě, kdy první vytaženou kouli do osudí nevracíme? 4. Házíme dvěma hracími kostkami. Jev A znamená, že na první kostce padlo liché číslo, jev B znamená, že na druhé kostce padlo sudé číslo, jev C znamená, že součet obou čísel je lichý. Jsou náhodné jevy A, B, C nezávislé? Jsou náhodné jevy A, B, C po dvou nezávislé? 5. Určitý člověk navštívil během dne 4 obchody. V každém obchodě s pravděpodobností 1/4 zapomněl deštník. Domů přišel bez deštníku. Jaká je pravděpodobnost, že ho zapomněl ve čtvrtém obchodě? 6. Házíme dvěma šestistěnnými kostkami. Jaká je podmíněná pravděpodobnost toho, že na jedné kostce padne šestka za podmínky, že celkový součet je 8? 7. První dítě z dvojčat je chlapec. Jaká je pravděpodobnost toho, že i druhé dítě je chlapec, jestliže je u dvojčat pravděpodobnost narození dvou chlapců rovna p, dvou děvčat rovna q a u dvojčat obojího pohlaví je pravděpodobnost dřívějšího narození stejná pro obě pohlaví? 3. Bayesův vzorec, geometrická pravděpodobnost 1
2 1. V osudí je 8 koulí (5 bílých a 3 černé). Vytáhneme postupně dvě koule (nevracíme je zpět do osudí). Určete pravděpodobnost, že právě jedna z dvou vytažených koulí je bílá (zkuste přitom využít vzorce pro úplnou pravděpodobnost). 2. Cestovatel přijede do města, kde je 30% lhářů, 15% náladových a 55% normálních lidí. Lháři lžou s pravděpodobností 0,9. Normální lidi mluví s pravděpodobností 0,75 pravdu. Náladoví lidé v polovině případů lžou a v polovině říkají pravdu. Cestovatel potkal jednoho z obyvatel města a zeptal se ho, jestli je normální. Jaká je pravděpodobnost, že mu cizinec odpoví, že je normální? 3. Ve třídě je 70% procent chlapců a 30% dívek. Dlouhé vlasy má 10% chlapců a 80% dívek. Náhodně vybraná osoba má dlouhé vlasy. Jaká je pravděpodobnost, že je to dívka? 4. V dílně pracuje 10 dělníků, kteří za směnu vyrobí stejný počet výrobků. Skupina A pěti dělníků vyrobí 96% standardních, skupina B tří dělníků 90% a skupina C dvou dělníků jen 85% standardních výrobků. Všechny výrobky jsou uložené ve skladu. Náhodně jsme vybrali jeden výrobek a zjistili, že je standardní. Jaká je pravděpodobnost, že ho vyrobila skupina A pěti dělníků? 5. Dvě osoby A a B si smluvili schůzku na daném místě v neurčitém čase mezi 12:00 a 13:00. Každý z nich je ochoten čekat na druhého maximálně 10 minut. Předpokládáme, že přijdou nezávisle na sobě a okamžiky příchodu jsou stejně možné kdykoliv během uvedené hodiny. Určete pravděpodobnost, že se opravdu sejdou. 6. Na úsečce délky l jsou náhodně umístěny 2 body. S jakou pravděpodobností lze z takto vzniklých tří úseček sestrojit trojúhelník? 7. (Maxwellův-Boltzmannův model) Mějme k koulí očíslovaných 1, 2,..., k a n přihrádek. Každou kouli náhodně vhodíme do jedné z přihrádek. Jaká je pravděpodobnost, že v první přihrádce je právě m koulí? 4. Náhodná veličina 1. Předpokládejme, že X má diskrétní rozdělení takové, že platí P (X = k) = ck 2 pro k = 1, 2, 3 a P (X = k) = 0 jinak. Spočtěte a) hodnotu c, b) P (X 2), c) P (X {1, 3}). 2. Nechť X má binomické rozdělení s parametry n = 4 a p = 2/3. Označme Y = (X 2) 2 Určete rozdělení Y (tj. jakých hodnot a s jakou pravděpodobností veličina Y nabývá) a nakreslete její distribuční funkci. 3. (Poissonova věta) Nechť náhodná veličina X n má binomické rozdělení s parametry (n; p n ), nechť p n (0, 1) tak, že lim n np n = λ, kde λ (0, ). Ukažte, že lim P (X n = k) = e n λ λk, pro k = 0, 1,.... k! 4. V urně je 8 bílých a 6 černých koulí. Vytáhneme 5 koulí (bez vracení). Určete rozdělení počtu vytažených bílých koulí. 5. Náhodná veličina X má exponenciální rozdělení s parametrem λ. Určete rozdělení náhodné veličiny Y = [X], kde [x] značí celou část čísla x. 6. Náhodná veličina X má distribuční funkci 0 pro x 0, F (x) = cx 2 pro 0 x < 1, 1 pro 1 x. Jaké hodnoty může nabývat konstanta c? 2
3 7. Rozhodněte, které z následujících funkcí jsou hustotami: a) cx pro x (0, 1), b) cx pro x ( 1, 2), c) cx sin x pro x ( π 2, π 2 ), d) ce x pro x (0, ), e) ce x pro x (0, ), c d) 1+x. 2 Mimo vymezený interval je nabízená funkce vždy rovna nule a c je vhodná konstanta. Pokud daná funkce je hustotou, tuto konstantu určete. 8. Dokažte, že exponenciální rozdělení je rozdělení bez paměti. To znamená, že pro náhodnou veličinu X, která má exponenciální rozdělení s parametrem λ, platí P (X x + y X x) = P (X y), x, y > Střední hodnota, rozptyl 1. Nechť X má rovnoměrné rozdělení na intervalu ( 1, 1). Určete distribuční funkci náhodné veličiny Y = X 2 a spočtěte P ( 1 4 Y < 3 4 ), E Y a var Y. 2. Z urny obsahující 2 bílé koule a 2 černé koule vybíráme za sebou s vracením 2 koule. Definujeme náhodné veličiny X 1, X 2 následovně: { 1 jestliže první tažená koule je bílá, X 1 = 0 jestliže první tažená koule je černá, { 1 jestliže druhá tažená koule je bílá, X 2 = 0 jestliže druhá tažená koule je černá. Určete distribuční funkci vektoru (X 1, X 2 ) a zjistěte, zda jsou náhodné veličiny X 1 a X 2 nezávislé. 3. Náhodná veličina nabývá hodnot k = 1, 2,..., n s pravděpodobností, která je úměrná k. Určete střední hodnotu takové náhodné veličiny. Návod: Využijte vztahu n k=1 k2 = 1 6n(n + 1)(2n + 1). 4. Nechť X má normované normální rozdělení N(0, 1). Spočtěte E e X2 /4. 5. Náhodná veličina X má hustotu f(x) = 1 2 sin x, 0 < x < π. Spočtěte její distribuční funkci a střední hodnotu. 6. Náhodná veličina X má hustotu f(x) = 3x 2, 0 < x < 1. Určete E 1 X a var 1 X. 6. Náhodný vektor 1. Házíme třikrát mincí. Označme X počet líců v prvních dvou hodech a Y počet rubů v posledních dvou hodech. Určete sdružené rozdělení vektoru (X, Y ). Jsou náhodné veličiny X a Y nezávislé? 2. Hodíme šestistěnnou kostkou a označíme X počet ok na kostce vydělený dvěma a zaokrouhlený nahoru. Potom hodíme X-krát mincí a počet orlů označme Y. Najděte sdružené rozdělení vektoru (X, Y ) a odtud marginální rozdělení veličiny Y. 3. Náhodný vektor (X, Y ) má hustotu f(x, y) = { cxye (x2 +y 2 ) 0 jinak. pro x 0, y 0 Určete c tak, aby f byla hustota. Spočtěte hustotu X a hustotu Y. Jsou náhodné veličiny X a Y nezávislé? Spočtěte E (X 2 + Y 2 ). 3
4 4. Dvojice součástek má dobu života popsánu sdruženou hustotou 1 f X,Y (x, y) = 2 e x y/2 pro x > 0, y > 0 0 jinak. a) Jaká je pravděpodobnost toho, že druhá součástka přežije první? b) Jaká je pravděpodobnost toho, že první součástka alespoň dvakrát přežije druhou součástku? 5. Náhodná veličina X má rovnoměrné rozdělení a) na intervalu (0, 2), b) na intervalu ( 1, 1). Označme Y = X 2. V obou případech spočtěte kovarianci veličin X a Y. 8. Asymptotické vlastnosti 1. Házíme stokrát šestistěnnou kostkou. Určete přibližnou hodnotu pravděpodobnosti, že výsledný součet leží v intervalu (320, 380). 2. Nechť ν n značí poměrnou četnost líců v n hodech mincí (mince je symetrická a hody provádíme nezávisle). Zjistěte kolik musíme provést hodů, aby pravděpodobnost jevu ν n 1 2 0, 05 byla nejméně 0, 95, a) řešte pomocí Čebyševovy nerovnosti, b) řešte pomocí centrální limitní věty. 3. Mějme náhodný pokus, který skončí s pravděpodobností p = 0, 3 úspěchem a s pravděpodobností q = 0, 7 neúspěchem. Označme ν n poměrnou četnost úspěchů v n pokusech (tj. počet úspěšných pokusů vydělený počtem všech pokusů). Pomocí aproximace normálním rozdělením určete kolik musíme provést pokusů, aby pravděpodobnost, že ν n se neliší od p o víc než 0, 01, byla alespoň 0, Pojišťovna pojišťuje lidí stejného věku. Pravděpodobnost úmrtí během roku je pro každého z nich 0, 01. Každý pojištěnec zaplatí 150 korun. V případě úmrtí vyplatí rodině korun. Jaká je pravděpodobnost, že pojišťovna utrpí ztrátu? Použijte centrální limitní větu! 9. Náhodný výběr 1. Bylo sečteno 300 čísel zaokrouhlených na 1 desetinné místo. Pomocí centrální limitní věty určete, jak velká je pravděpodobnost, že absolutní hodnota chyby součtu vzniklého zaokrouhlením není větší než Jaká je pravděpodobnost, že při hodech symetrickou mincí padne rub více než 4900 krát? Použijte centrální limitní větu. 3. Nechť X 1,..., X n jsou nezávislé stejně rozdělené náhodné veličiny s normovaným normálním rozdělením N(0, 1). Náhodná veličina Z n = n i=1 X2 i má χ2 -rozdělení o n stupních volnosti. Spočtěte střední hodnotu a rozptyl Z n. Návod: Pro výpočet rozptylu využijte toho, že EX1 4 = Nechť X 1,..., X n jsou nezávislé stejně rozdělené náhodné veličiny s rovnoměrným rozdělením na (0, 1). Označme U = max 1 i n X i, V = min 1 i n X i. Stanovte distribuční funkce a hustoty náhodných veličin U a V. Určete EU, varu, EV, varv. 10. Testování hypotéz I. 1. Nechť X 1,..., X n jsou nezávislé stejně rozdělené náhodné veličiny se střední hodnotou 2 a směrodatnou odchylkou 2, 5. Jaká je pravděpodobnost, že jejich součet nepřesáhne 1900, pokud n = 900? 4
5 2. Během 16 červencových dnů byly naměřeny následující teploty: Testujte hypotézu, že průměrná teplota v červenci je 25 C. Volte hladinu testu α = 0, Dle výrobce má mít auto na 100 km průměrnou spotřebu 9 l. U 20 náhodně vybraných aut byla zjištěna následující spotřeba: 8, 8 8, 9 9, 0 8, 7 9, 3 9, 0 8, 7 8, 8 9, 4 8, 6 8, 9 9, 2 9, 4 8, 9 9, 1 8, 8 9, 4 9, 3 9, 1 8, 9 Potvrzují naměřené hodnoty tvrzení výrobce? Volte hladinu testu α = 0, U několika leváků byla měřena síla stisku levé a pravé ruky. Levá Pravá Potvrzují data domněnku, že levá ruka je silnější? 11. Testování hypotéz II. 1. Má se rozhodnout, zda se u osobního automobilu určité značky při správném seřízení geometrie vozu sjíždějí obě přední pneumatiky stejně rychle. Bylo proto vybráno 6 nových vozů a po určité době bylo zjištěno, o kolik milimetrů se sjely jejich pravé a levé přední pneumatiky. Číslo automobilu Pravá pneumatika 1, 8 1, 0 2, 2 0, 9 1, 5 1, 6 Levá pneumatika 1, 5 1, 1 2, 0 1, 1 1, 4 1, 4 Lze na základě získaných dat zamítnout hypotézu, že se obě přední pneumatiky sjíždějí stejně rychle? 2. Ve třídě byly zjištěny následující výšky žáků: Chlapci Dívky Testujte, zda chlapci a dívky jsou v průměru stejně vysocí. Volte α = 0, Sleduje se účinek dvou protikorozních látek. První byla použita ve 20 případech, druhá ve 25 případech. Po stanovené době byl zjištěn stupeň poškození s těmito výsledky: X 1 = 82, 4, s 2 1 = 12, X2 = 80, s 2 2 = 10. Volte hladinu α = 0, 05. Jaký by byl závěr na hladině α = 0, 01? Doplňte předpoklady! 4. Bylo zjišťováno IQ u 11 chlapců a 10 dívek. Aritmetický průměr a výběrový rozptyl byl následující: průměr rozptyl Chlapci 104, , 1 Dívky 114, 3 112, 7 Umožňují nám data prohlásit, že chlapci i dívky mají v průměru stejné IQ? Jaká by byla situace v případě, že kdybychom chtěli ověřit, zda dívky mají v průměru větší IQ? Volte hladinu α = 0, Intervalové odhady 5
6 1. Předpokládáme, že výška chlapců ve věku 9, 5 až 10 let má normální rozdělení N(µ, σ 2 ) s neznámou střední hodnotou µ a známým rozptylem σ 2 = 39, 112. Změřili jsme výšku n = 15 chlapců a vypočítali výběrový průměr X = 139, 13. Určete 99%-ní interval spolehlivosti pro neznámý parametr µ. 2. Mějme náhodný výběr X 1,..., X 12 z normálního rozdělení N(µ, σ 2 ) s neznámou střední hodnotou µ a neznámým rozptylem σ 2. Vypočítali jsme výběrový průměr a výběrový rozptyl X = 14, 306, s 2 = 0, 327. Najděte 95%-ní interval spolehlivosti pro střední hodnotu µ. 3. Opět mějme náhodný výběr X 1,..., X 20 z normálního rozdělení N(µ, σ 2 ) s neznámou střední hodnotou µ a neznámým rozptylem σ 2. Vypočítali jsme výběrový průměr a výběrový rozptyl X = 995, 6, s 2 = 134, 70. Najděte 95%-ní interval spolehlivosti pro střední hodnotu µ. Pak najděte 95%-ní a 99%-ní interval spolehlivosti pro rozptyl σ 2. 6
1. Klasická pravděpodobnost
Příklady 1. Klasická pravděpodobnost 1. Házíme dvakrát kostkou. Jaká je pravděpodobnost, že padne alespoň jedna šestka? 2. Základy teorie pravděpodobnosti vznikly v korespondenci mezi dvěma slavnými francouzskými
Více1. Klasická pravděpodobnost
1. Klasická pravděpodobnost 1. Házíme postupně čtyřikrát korunovou mincí. Jaká je pravděpodobnost, že padne jednou panna a třikrát orel? Jaká se tato pravděpodobnost změní, když mince není symetrická a
VícePříklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5.
Příklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5. Řešení: Výsledky pokusu jsou uspořádané dvojice. První člen dvojice odpovídá hodu 1. kostkou a
VíceKlasická pravděpodobnost a geometrická pravděpodobnost
Klasická pravděpodobnost a geometrická pravděpodobnost 1. Házíme čtyřmi šestistěnnými hracími kostkami. Určete, jaká je pravděpodobnost, že (a) součet čísel na kostkách bude sudé číslo a zároveň součin
Vícez Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
VíceKGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Více1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!
Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k
VícePříklad 2 (klasický pravděpodobnostní prostor hod dvěma desetistěnnými kostkami). Uvažujme
Cvičení k základům pravděpodobnosti Připomeňte si: klasický pravděpodobnostní prostor, elementární jev, náhodný jev, doplňkový jev, pravděpodobnost, věta o inkluzi a exkluzi, podmíněná pravděpodobnost,
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
VícePravděpodobnost a statistika (BI-PST) Cvičení č. 4
Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015
VíceNÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?
NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU
VícePravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
VícePříklady na procvičení z NSTP022
1 Klasická pravděpodobnost Příklady na procvičení z NSTP022 Naposledy změněno: 24. března 2013 1. Z kartiček s čísly 1, 2, 3, 4, 5 náhodně vybereme tři a položíme je v pořadí, v němž jsme je vybrali. Jaká
VíceVýběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Více10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Více1 Rozptyl a kovariance
Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako
VíceS1P Příklady 01. Náhodné jevy
S1P Příklady 01 Náhodné jevy Pravděpodobnost, že jedinec z jisté populace se dožije šedesáti let, je 0,8; pravděpodobnost, že se dožije sedmdesáti let, je 0,5. Jaká je pravděpodobnost, že jedinec zemře
VícePřednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení
VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat
VíceNěkdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
VícePříklady na procvičení z NMSA202
1 Klasická pravděpodobnost Příklady na procvičení z NMSA202 Naposledy změněno: 11. května 2018 1. Z kartiček s čísly 1, 2, 3, 4, 5 náhodně vybereme tři a položíme je v pořadí, v němž jsme je vybrali. Jaká
VíceNáhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek
Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3
VíceTéma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Vícepravděpodobnosti a Bayesova věta
NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,
Více12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
VícePřednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP
IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost
Více2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz).
1 Cvičení z předmětu KMA/PST1 Pro získání zápočtu je nutno mimo docházky (max. 3 absence) uspět minimálně ve dvou ze tří písemek, které budou v průběhu semestru napsány. Součástí třetí písemky bude též
Vícesprávně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.
Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná
VícePoznámky k předmětu Aplikovaná statistika, 5.téma
Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné
VícePravděpodobnost a statistika (BI-PST) Cvičení č. 7
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
VíceMATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 3 Pravděpodobnost jevů Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola báňská Technická
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
VíceUrčete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
Více22. Pravděpodobnost a statistika
22. Pravděpodobnost a statistika Pravděpodobnost náhodných jevů. Klasická pravděpodobnost. Statistický soubor, statistické jednotky, statistické znaky. Četnosti, jejich rozdělení a grafické znázornění.
VícePRAVDĚPODOBNOST A JEJÍ UŽITÍ
PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují
VícePříklady na procvičení z NMFM202
Příklady na procvičení z NMFM202 Naposledy změněno: 24. října 203 Klasická pravděpodobnost. Z kartiček s čísly, 2, 3, 4, 5 náhodně vybereme tři a položíme je v pořadí, v němž jsme je vybrali. Jaká je pravděpodobnost,
VíceCharakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
VíceVybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceMotivace. 1. Náhodné jevy. Poznámky k předmětu Aplikovaná statistika, 1. téma
Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.
VíceTesty. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
VíceNMAI059 Pravděpodobnost a statistika
NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )
VíceNáhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost
Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením
VíceJan Hamhalter. 1. Náhodná veličina je dána maximem počtu ok při šesti hodech hrací kostkou. Určete pravděpodobnostní funkci a střední hodnotu. j.
M6C Některé příklady z přednášky a cvičení 24. února 2006 Jan Hamhalter 1 Náhodné veličiny 1. Náhodná veličina je dána maximem počtu ok při šesti hodech hrací kostkou. Určete pravděpodobnostní funkci a
VíceDiskrétní pravděpodobnost
Diskrétní pravděpodobnost Jiří Koula Definice. Konečným pravděpodobnostním prostorem nazveme dvojici(ω, P), kde Ω jekonečnámnožina {ω 1,..., ω n}apfunkcepřiřazujícíkaždépodmnožiněωčíslo zintervalu 0,1,splňujícíP(
VíceSTP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PŘÍKLADY LS 2005/2006
STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PŘÍKLADY LS 2005/2006 Příklady jsou většinou převzaté ze skript Dupač & Hušková (1999), Zvára & Štěpán (2002) a ze sbírky Potocký et al. (1986). Některé
Vícematematická statistika 1 Klasická pravděpodobnost
Příklady na procvičení z předmětu Pravděpodobnost a matematická statistika Poslední úprava 5. prosince 2017. Většina příkladů je již upravena na základě toho, co jsme propočítali na cvičení a co bylo probráno
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
VícePoznámky k předmětu Aplikovaná statistika, 1. téma
Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.
VícePravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
VícePravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015)
III Pravděpodobnost Pravděpodobnost Podmíněná p. Úplná p. Odkud se bere pravděpodobnost? 1. Pravděpodobnost, že z balíčku zamíchaných karet vytáhmene dvě esa je přibližně 0:012. Modely a teorie. 2. Pravděpodobnost,
VícePravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
VíceStatistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
VícePravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Pravděpodobnost je Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM, 24. 1. 2017 Čím se zabývá teorie pravděpodobnosti? Pokus děj, který probíhá, resp. nastává opakovaně
VíceVšechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
VíceLékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
VíceÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.
VíceMinikurz aplikované statistiky. Minikurz aplikované statistiky p.1
Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.
Vícese bude objevovat jen v 5% pokusů. Výsledky měření jsou: 0,31; 0,30; 0,29; 0,32.
Typ úlohy: A - IS pro střední hodnotu 1. Předpokládejme, že výška chlapců ve věku 9,5 až 10 roků má normální rozdělení N(µ; σ 2 )s neznámou střední hodnotou a rozptylem rovným 39,112. Změřili jsme výšku
Více5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy
Typické příklady pro zápočtové písemky DiM 70-30 (Kovář, Kovářová, Kubesa) (verze: November 5, 08) 5 Pravděpodobnost 5.. Jiří má v šuplíku rozházených osm párů ponožek, dva páry jsou černé, dva páry modré,
VíceLimitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
Více5. Jev B je částí jebu A. Co můžeme říct o podmíněné pravděpodobnosti? (1b)
TEST 3 1. U pacienta je podozření na jednu ze čtyř, navzájem se vylučujících nemocí. Pravděpodobnost výskytu těchto nemocí je 0,1, 0,2, 0,4 a 0,3. Laboratorní zkouška je v případě první nemoci pozitivní
VíceKMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných
VíceTEORIE PRAVDĚPODOBNOSTI. 2. cvičení
TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není
VíceÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
VíceMATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka
VíceCvičení ze statistiky - 5. Filip Děchtěrenko
Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost
Více2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
Více5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů?
0. Kombinatorika, pravděpodobnost, statistika Kombinatorika ) V restauraci mají na jídelním lístku 3 druhy polévek, 7 možností výběru hlavního jídla, druhy moučníku. K pití si lze objednat kávu, limonádu
VíceTestování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Více8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
VíceDobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
VíceVYBRANÁ ROZDĚLENÍ. DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová
VYBRANÁ ROZDĚLENÍ DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodná veličina (dále NV)? Číselné vyjádření výsledku náhodného pokusu. Jaké
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Vícen = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)
5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =
Vícenáhodný jev je podmnožinou
Pravděpodobnost Dovednosti a cíle - Chápat jev A jako podmnožinu množiny, která značí množinu všech výsledků náhodného děje. - Umět zapsat jevy pomocí množinových operací a obráceně umět z množinového
VíceBakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
Více11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
Více4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek
cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická
VíceAKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A
AKM - 1-2 CVIČENÍ Opakování maticové algebry Mějme matice A, B regulární, potom : ( AB) = B A 1 1 ( A ) = ( A ) ( A ) = A ( A + B) = A + B 1 1 1 ( AB) = B A, kde A je řádu mxn a B nxk Čtvercová matice
VícePravděpodobnostní rozdělení
Náhodná proměnná Pravděpodobnostní rozdělení Základy logiky a matematiky, ISS FSV UK Martin Štrobl Tento pomocný materiál neobsahuje všechnu látku k danému tématu, pouze se zaměřuje na pochopení důležitých
VíceNMAI059 Pravděpodobnost a statistika. 22. listopadu Zadání cvičení na jednotlivé týdny není myšleno tak, že se během hodiny proberou všechny
NMAI059 Pravděpodobnost a statistika Zadání cvičení a doplňkových příkladů. 22. listopadu 2017 Jak používat tuto příručku. Jde o postupně vznikající text, který bude obsahovat klíčové příklady k procvičení
VíceRadiologická fyzika pravděpodobnost měření a zpracování dat
Radiologická fyzika pravděpodobnost měření a zpracování dat podzim 2008, šestá přednáška Měření tlaku nejjednodušší úkon u lékaře aneb jak zacházet s měřenými hodnotami? Běžná situace u lékaře: Paní Nováková,
VíceŘešené příklady z pravděpodobnosti:
Řešené příklady z pravděpodobnosti: 1. Honza se ze šedesáti maturitních otázek 10 nenaučil. Při zkoušce si losuje dvě otázky. a. Určete pravděpodobnost jevu A, že si vylosuje pouze otázky, které se naučil.
VíceJiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
VíceTEST 1 (40 bodů) (9 4)! 2. Nejméně kolikrát musíme hodit kostkou, abychom měli alespoň 80% pravděpodobnost, že padne alespoň jedna šestka?
TEST (40 bodů) Jméno:. Pin karty se skládá ze čtyř náhodně vybraných číslic až 9, z nichž se žádné neopakuje. Jaká je pravděpodobnost, že všechny čtyři číslice budou liché? podíl všech možností,jak vybrat
VíceMATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
VíceLIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
VícePravděpodobnost a statistika (BI-PST) Cvičení č. 2
Pravděpodobnost a statistika (BI-PST) Cvičení č. 2 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015
VíceROZDĚLENÍ NÁHODNÝCH VELIČIN
ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Víceprof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost
VíceMatematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost
VícePravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
VíceZápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
Více1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;
I Elementární pravděpodonost 1 Házíme hrací kostkou Určete pravděpodoností těchto jevů: a) A při jednom hodu padne šestka; Řešení: P A) = 1 = 01; Je celkem šest možností {1,,, 4,, } a jedna {} je příznivá
Vícetazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve
Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný
VíceDiskrétní náhodná veličina
Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné
VíceTest z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
Více1. A c B c, 2. (A C) B, 3. A B C.
Příklad 1: V urně jsou kuličky tří barev. Nechť jevy A, B, C, postupně znamenají, že náhodně vybraná kulička je černá, červená, bílá. Určete význam následujících jevů: 1. A c B c, 2. (A C) B, 3. A B C.
Více