1. Klasická pravděpodobnost

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Klasická pravděpodobnost"

Transkript

1 Příklady 1. Klasická pravděpodobnost 1. Házíme dvakrát kostkou. Jaká je pravděpodobnost, že padne alespoň jedna šestka? 2. Základy teorie pravděpodobnosti vznikly v korespondenci mezi dvěma slavnými francouzskými matematiky B. Pascalem a P. de Fermatem v roce Zabývali se mimo jiné problémem, se kterým přišel šlechtic Chevalier de Méré (velký milovník hazardních her). Ze zkušenosti věděl, že je výhodné sázet na to, že při 4 hodech šestistěnnou kostkou padne šestka. Usuzoval, že při 24 hodech dvěmi kostkami bude opět výhodné vsadit na to, že padnou na obou kostkách šestky. Ukázalo se však, že tomu tak není. Spočtěte pravděpodobnost, že při 4 hodech padne aspoň jednou šestka a pravděpodobnost, že při 24 hodech dvěmi kostkami padnou aspoň jednou dvě šestky. 3. Jaká je pravděpodobnost nejvyšší výhry ve hře Šťastných deset? Je třeba uhodnout 10 čísel, přičemž se táhne 20 čísel z osmdesáti. 4. Ve skříni máme pět párů ponožek (černé, hnědé, bílé, modré a červené). Ponožky jsou pomíchané. Ráno náhodně vytáhneme dvě ponožky. Jaká je pravděpodobnost, že a) je mezi nimi černá ponožka, b) jedna je bílá a druhá je modrá, c) jedna je červená a druhá není hnědá, d) obě mají stejnou barvu? 5. Úloha o vadných fotoaparátech: v továrně bylo v sadě 20 aparátů objeveno, že 3 musí být znovu seřízeny. Nedopatřením však došlo k tomu, že tyto 3 přístroje byly vráceny do série a ta se teď musí prohlédnout znovu. a) Jaká je pravděpodobnost, že budeme muset prohlédnout více než 17 přístrojů? b) Jaká je pravděpodobnost, že budeme muset prohlédnout právě 17 přístrojů? c) Jaký je nejpravděpodobnější počet přístrojů, které budeme muset prohlédnout? 2. Nezávislost, podmíněná pravděpodobnost 1. A,B jsou neslučitelné jevy. P (A) 0, P (B) 0. Jsou tyto jevy nezávislé? 2. První skupina studentů vyřeší úlohu s pravděpodobností 2/5 a druhá s pravděpodobností 1/3. Každá skupina se snaží úlohu nezávisle vyřešit. S jakou pravděpodobností bude úloha vyřešena? 3. V osudí je a bílých koulí a b černých koulí. Vytáhneme jednu kouli, zaznamenáme její barvu a zase ji do osudí vrátíme. Po promíchání opět vytáhneme jednu kouli. Nechť náhodný jev A znamená, že první vytažená koule je bílá a jev B, že druhá vytažená koule je bílá. Jsou jevy A a B nezávislé? Jak je tomu v případě, kdy první vytaženou kouli do osudí nevracíme? 4. Házíme dvěma hracími kostkami. Jev A znamená, že na první kostce padlo liché číslo, jev B znamená, že na druhé kostce padlo sudé číslo, jev C znamená, že součet obou čísel je lichý. Jsou náhodné jevy A, B, C nezávislé? Jsou náhodné jevy A, B, C po dvou nezávislé? 5. Určitý člověk navštívil během dne 4 obchody. V každém obchodě s pravděpodobností 1/4 zapomněl deštník. Domů přišel bez deštníku. Jaká je pravděpodobnost, že ho zapomněl ve čtvrtém obchodě? 6. Házíme dvěma šestistěnnými kostkami. Jaká je podmíněná pravděpodobnost toho, že na jedné kostce padne šestka za podmínky, že celkový součet je 8? 7. První dítě z dvojčat je chlapec. Jaká je pravděpodobnost toho, že i druhé dítě je chlapec, jestliže je u dvojčat pravděpodobnost narození dvou chlapců rovna p, dvou děvčat rovna q a u dvojčat obojího pohlaví je pravděpodobnost dřívějšího narození stejná pro obě pohlaví? 3. Bayesův vzorec, geometrická pravděpodobnost 1

2 1. V osudí je 8 koulí (5 bílých a 3 černé). Vytáhneme postupně dvě koule (nevracíme je zpět do osudí). Určete pravděpodobnost, že právě jedna z dvou vytažených koulí je bílá (zkuste přitom využít vzorce pro úplnou pravděpodobnost). 2. Cestovatel přijede do města, kde je 30% lhářů, 15% náladových a 55% normálních lidí. Lháři lžou s pravděpodobností 0,9. Normální lidi mluví s pravděpodobností 0,75 pravdu. Náladoví lidé v polovině případů lžou a v polovině říkají pravdu. Cestovatel potkal jednoho z obyvatel města a zeptal se ho, jestli je normální. Jaká je pravděpodobnost, že mu cizinec odpoví, že je normální? 3. Ve třídě je 70% procent chlapců a 30% dívek. Dlouhé vlasy má 10% chlapců a 80% dívek. Náhodně vybraná osoba má dlouhé vlasy. Jaká je pravděpodobnost, že je to dívka? 4. V dílně pracuje 10 dělníků, kteří za směnu vyrobí stejný počet výrobků. Skupina A pěti dělníků vyrobí 96% standardních, skupina B tří dělníků 90% a skupina C dvou dělníků jen 85% standardních výrobků. Všechny výrobky jsou uložené ve skladu. Náhodně jsme vybrali jeden výrobek a zjistili, že je standardní. Jaká je pravděpodobnost, že ho vyrobila skupina A pěti dělníků? 5. Dvě osoby A a B si smluvili schůzku na daném místě v neurčitém čase mezi 12:00 a 13:00. Každý z nich je ochoten čekat na druhého maximálně 10 minut. Předpokládáme, že přijdou nezávisle na sobě a okamžiky příchodu jsou stejně možné kdykoliv během uvedené hodiny. Určete pravděpodobnost, že se opravdu sejdou. 6. Na úsečce délky l jsou náhodně umístěny 2 body. S jakou pravděpodobností lze z takto vzniklých tří úseček sestrojit trojúhelník? 7. (Maxwellův-Boltzmannův model) Mějme k koulí očíslovaných 1, 2,..., k a n přihrádek. Každou kouli náhodně vhodíme do jedné z přihrádek. Jaká je pravděpodobnost, že v první přihrádce je právě m koulí? 4. Náhodná veličina 1. Předpokládejme, že X má diskrétní rozdělení takové, že platí P (X = k) = ck 2 pro k = 1, 2, 3 a P (X = k) = 0 jinak. Spočtěte a) hodnotu c, b) P (X 2), c) P (X {1, 3}). 2. Nechť X má binomické rozdělení s parametry n = 4 a p = 2/3. Označme Y = (X 2) 2 Určete rozdělení Y (tj. jakých hodnot a s jakou pravděpodobností veličina Y nabývá) a nakreslete její distribuční funkci. 3. (Poissonova věta) Nechť náhodná veličina X n má binomické rozdělení s parametry (n; p n ), nechť p n (0, 1) tak, že lim n np n = λ, kde λ (0, ). Ukažte, že lim P (X n = k) = e n λ λk, pro k = 0, 1,.... k! 4. V urně je 8 bílých a 6 černých koulí. Vytáhneme 5 koulí (bez vracení). Určete rozdělení počtu vytažených bílých koulí. 5. Náhodná veličina X má exponenciální rozdělení s parametrem λ. Určete rozdělení náhodné veličiny Y = [X], kde [x] značí celou část čísla x. 6. Náhodná veličina X má distribuční funkci 0 pro x 0, F (x) = cx 2 pro 0 x < 1, 1 pro 1 x. Jaké hodnoty může nabývat konstanta c? 2

3 7. Rozhodněte, které z následujících funkcí jsou hustotami: a) cx pro x (0, 1), b) cx pro x ( 1, 2), c) cx sin x pro x ( π 2, π 2 ), d) ce x pro x (0, ), e) ce x pro x (0, ), c d) 1+x. 2 Mimo vymezený interval je nabízená funkce vždy rovna nule a c je vhodná konstanta. Pokud daná funkce je hustotou, tuto konstantu určete. 8. Dokažte, že exponenciální rozdělení je rozdělení bez paměti. To znamená, že pro náhodnou veličinu X, která má exponenciální rozdělení s parametrem λ, platí P (X x + y X x) = P (X y), x, y > Střední hodnota, rozptyl 1. Nechť X má rovnoměrné rozdělení na intervalu ( 1, 1). Určete distribuční funkci náhodné veličiny Y = X 2 a spočtěte P ( 1 4 Y < 3 4 ), E Y a var Y. 2. Z urny obsahující 2 bílé koule a 2 černé koule vybíráme za sebou s vracením 2 koule. Definujeme náhodné veličiny X 1, X 2 následovně: { 1 jestliže první tažená koule je bílá, X 1 = 0 jestliže první tažená koule je černá, { 1 jestliže druhá tažená koule je bílá, X 2 = 0 jestliže druhá tažená koule je černá. Určete distribuční funkci vektoru (X 1, X 2 ) a zjistěte, zda jsou náhodné veličiny X 1 a X 2 nezávislé. 3. Náhodná veličina nabývá hodnot k = 1, 2,..., n s pravděpodobností, která je úměrná k. Určete střední hodnotu takové náhodné veličiny. Návod: Využijte vztahu n k=1 k2 = 1 6n(n + 1)(2n + 1). 4. Nechť X má normované normální rozdělení N(0, 1). Spočtěte E e X2 /4. 5. Náhodná veličina X má hustotu f(x) = 1 2 sin x, 0 < x < π. Spočtěte její distribuční funkci a střední hodnotu. 6. Náhodná veličina X má hustotu f(x) = 3x 2, 0 < x < 1. Určete E 1 X a var 1 X. 6. Náhodný vektor 1. Házíme třikrát mincí. Označme X počet líců v prvních dvou hodech a Y počet rubů v posledních dvou hodech. Určete sdružené rozdělení vektoru (X, Y ). Jsou náhodné veličiny X a Y nezávislé? 2. Hodíme šestistěnnou kostkou a označíme X počet ok na kostce vydělený dvěma a zaokrouhlený nahoru. Potom hodíme X-krát mincí a počet orlů označme Y. Najděte sdružené rozdělení vektoru (X, Y ) a odtud marginální rozdělení veličiny Y. 3. Náhodný vektor (X, Y ) má hustotu f(x, y) = { cxye (x2 +y 2 ) 0 jinak. pro x 0, y 0 Určete c tak, aby f byla hustota. Spočtěte hustotu X a hustotu Y. Jsou náhodné veličiny X a Y nezávislé? Spočtěte E (X 2 + Y 2 ). 3

4 4. Dvojice součástek má dobu života popsánu sdruženou hustotou 1 f X,Y (x, y) = 2 e x y/2 pro x > 0, y > 0 0 jinak. a) Jaká je pravděpodobnost toho, že druhá součástka přežije první? b) Jaká je pravděpodobnost toho, že první součástka alespoň dvakrát přežije druhou součástku? 5. Náhodná veličina X má rovnoměrné rozdělení a) na intervalu (0, 2), b) na intervalu ( 1, 1). Označme Y = X 2. V obou případech spočtěte kovarianci veličin X a Y. 8. Asymptotické vlastnosti 1. Házíme stokrát šestistěnnou kostkou. Určete přibližnou hodnotu pravděpodobnosti, že výsledný součet leží v intervalu (320, 380). 2. Nechť ν n značí poměrnou četnost líců v n hodech mincí (mince je symetrická a hody provádíme nezávisle). Zjistěte kolik musíme provést hodů, aby pravděpodobnost jevu ν n 1 2 0, 05 byla nejméně 0, 95, a) řešte pomocí Čebyševovy nerovnosti, b) řešte pomocí centrální limitní věty. 3. Mějme náhodný pokus, který skončí s pravděpodobností p = 0, 3 úspěchem a s pravděpodobností q = 0, 7 neúspěchem. Označme ν n poměrnou četnost úspěchů v n pokusech (tj. počet úspěšných pokusů vydělený počtem všech pokusů). Pomocí aproximace normálním rozdělením určete kolik musíme provést pokusů, aby pravděpodobnost, že ν n se neliší od p o víc než 0, 01, byla alespoň 0, Pojišťovna pojišťuje lidí stejného věku. Pravděpodobnost úmrtí během roku je pro každého z nich 0, 01. Každý pojištěnec zaplatí 150 korun. V případě úmrtí vyplatí rodině korun. Jaká je pravděpodobnost, že pojišťovna utrpí ztrátu? Použijte centrální limitní větu! 9. Náhodný výběr 1. Bylo sečteno 300 čísel zaokrouhlených na 1 desetinné místo. Pomocí centrální limitní věty určete, jak velká je pravděpodobnost, že absolutní hodnota chyby součtu vzniklého zaokrouhlením není větší než Jaká je pravděpodobnost, že při hodech symetrickou mincí padne rub více než 4900 krát? Použijte centrální limitní větu. 3. Nechť X 1,..., X n jsou nezávislé stejně rozdělené náhodné veličiny s normovaným normálním rozdělením N(0, 1). Náhodná veličina Z n = n i=1 X2 i má χ2 -rozdělení o n stupních volnosti. Spočtěte střední hodnotu a rozptyl Z n. Návod: Pro výpočet rozptylu využijte toho, že EX1 4 = Nechť X 1,..., X n jsou nezávislé stejně rozdělené náhodné veličiny s rovnoměrným rozdělením na (0, 1). Označme U = max 1 i n X i, V = min 1 i n X i. Stanovte distribuční funkce a hustoty náhodných veličin U a V. Určete EU, varu, EV, varv. 10. Testování hypotéz I. 1. Nechť X 1,..., X n jsou nezávislé stejně rozdělené náhodné veličiny se střední hodnotou 2 a směrodatnou odchylkou 2, 5. Jaká je pravděpodobnost, že jejich součet nepřesáhne 1900, pokud n = 900? 4

5 2. Během 16 červencových dnů byly naměřeny následující teploty: Testujte hypotézu, že průměrná teplota v červenci je 25 C. Volte hladinu testu α = 0, Dle výrobce má mít auto na 100 km průměrnou spotřebu 9 l. U 20 náhodně vybraných aut byla zjištěna následující spotřeba: 8, 8 8, 9 9, 0 8, 7 9, 3 9, 0 8, 7 8, 8 9, 4 8, 6 8, 9 9, 2 9, 4 8, 9 9, 1 8, 8 9, 4 9, 3 9, 1 8, 9 Potvrzují naměřené hodnoty tvrzení výrobce? Volte hladinu testu α = 0, U několika leváků byla měřena síla stisku levé a pravé ruky. Levá Pravá Potvrzují data domněnku, že levá ruka je silnější? 11. Testování hypotéz II. 1. Má se rozhodnout, zda se u osobního automobilu určité značky při správném seřízení geometrie vozu sjíždějí obě přední pneumatiky stejně rychle. Bylo proto vybráno 6 nových vozů a po určité době bylo zjištěno, o kolik milimetrů se sjely jejich pravé a levé přední pneumatiky. Číslo automobilu Pravá pneumatika 1, 8 1, 0 2, 2 0, 9 1, 5 1, 6 Levá pneumatika 1, 5 1, 1 2, 0 1, 1 1, 4 1, 4 Lze na základě získaných dat zamítnout hypotézu, že se obě přední pneumatiky sjíždějí stejně rychle? 2. Ve třídě byly zjištěny následující výšky žáků: Chlapci Dívky Testujte, zda chlapci a dívky jsou v průměru stejně vysocí. Volte α = 0, Sleduje se účinek dvou protikorozních látek. První byla použita ve 20 případech, druhá ve 25 případech. Po stanovené době byl zjištěn stupeň poškození s těmito výsledky: X 1 = 82, 4, s 2 1 = 12, X2 = 80, s 2 2 = 10. Volte hladinu α = 0, 05. Jaký by byl závěr na hladině α = 0, 01? Doplňte předpoklady! 4. Bylo zjišťováno IQ u 11 chlapců a 10 dívek. Aritmetický průměr a výběrový rozptyl byl následující: průměr rozptyl Chlapci 104, , 1 Dívky 114, 3 112, 7 Umožňují nám data prohlásit, že chlapci i dívky mají v průměru stejné IQ? Jaká by byla situace v případě, že kdybychom chtěli ověřit, zda dívky mají v průměru větší IQ? Volte hladinu α = 0, Intervalové odhady 5

6 1. Předpokládáme, že výška chlapců ve věku 9, 5 až 10 let má normální rozdělení N(µ, σ 2 ) s neznámou střední hodnotou µ a známým rozptylem σ 2 = 39, 112. Změřili jsme výšku n = 15 chlapců a vypočítali výběrový průměr X = 139, 13. Určete 99%-ní interval spolehlivosti pro neznámý parametr µ. 2. Mějme náhodný výběr X 1,..., X 12 z normálního rozdělení N(µ, σ 2 ) s neznámou střední hodnotou µ a neznámým rozptylem σ 2. Vypočítali jsme výběrový průměr a výběrový rozptyl X = 14, 306, s 2 = 0, 327. Najděte 95%-ní interval spolehlivosti pro střední hodnotu µ. 3. Opět mějme náhodný výběr X 1,..., X 20 z normálního rozdělení N(µ, σ 2 ) s neznámou střední hodnotou µ a neznámým rozptylem σ 2. Vypočítali jsme výběrový průměr a výběrový rozptyl X = 995, 6, s 2 = 134, 70. Najděte 95%-ní interval spolehlivosti pro střední hodnotu µ. Pak najděte 95%-ní a 99%-ní interval spolehlivosti pro rozptyl σ 2. 6

1. Klasická pravděpodobnost

1. Klasická pravděpodobnost Příklady 1. Klasická pravděpodobnost 1. Házíme dvakrát kostkou. Jaká je pravděpodobnost, že padne alespoň jedna šestka? 2. Základy teorie pravděpodobnosti vznikly v korespondenci mezi dvěma slavnými francouzskými

Více

1. Klasická pravděpodobnost

1. Klasická pravděpodobnost 1. Klasická pravděpodobnost 1. Házíme postupně čtyřikrát korunovou mincí. Jaká je pravděpodobnost, že padne jednou panna a třikrát orel? Jaká se tato pravděpodobnost změní, když mince není symetrická a

Více

Příklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5.

Příklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5. Příklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5. Řešení: Výsledky pokusu jsou uspořádané dvojice. První člen dvojice odpovídá hodu 1. kostkou a

Více

Klasická pravděpodobnost a geometrická pravděpodobnost

Klasická pravděpodobnost a geometrická pravděpodobnost Klasická pravděpodobnost a geometrická pravděpodobnost 1. Házíme čtyřmi šestistěnnými hracími kostkami. Určete, jaká je pravděpodobnost, že (a) součet čísel na kostkách bude sudé číslo a zároveň součin

Více

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3! Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k

Více

Příklad 2 (klasický pravděpodobnostní prostor hod dvěma desetistěnnými kostkami). Uvažujme

Příklad 2 (klasický pravděpodobnostní prostor hod dvěma desetistěnnými kostkami). Uvažujme Cvičení k základům pravděpodobnosti Připomeňte si: klasický pravděpodobnostní prostor, elementární jev, náhodný jev, doplňkový jev, pravděpodobnost, věta o inkluzi a exkluzi, podmíněná pravděpodobnost,

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 4

Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n

Více

Příklady na procvičení z NSTP022

Příklady na procvičení z NSTP022 1 Klasická pravděpodobnost Příklady na procvičení z NSTP022 Naposledy změněno: 24. března 2013 1. Z kartiček s čísly 1, 2, 3, 4, 5 náhodně vybereme tři a položíme je v pořadí, v němž jsme je vybrali. Jaká

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

1 Rozptyl a kovariance

1 Rozptyl a kovariance Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako

Více

S1P Příklady 01. Náhodné jevy

S1P Příklady 01. Náhodné jevy S1P Příklady 01 Náhodné jevy Pravděpodobnost, že jedinec z jisté populace se dožije šedesáti let, je 0,8; pravděpodobnost, že se dožije sedmdesáti let, je 0,5. Jaká je pravděpodobnost, že jedinec zemře

Více

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Příklady na procvičení z NMSA202

Příklady na procvičení z NMSA202 1 Klasická pravděpodobnost Příklady na procvičení z NMSA202 Naposledy změněno: 11. května 2018 1. Z kartiček s čísly 1, 2, 3, 4, 5 náhodně vybereme tři a položíme je v pořadí, v němž jsme je vybrali. Jaká

Více

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

pravděpodobnosti a Bayesova věta

pravděpodobnosti a Bayesova věta NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,

Více

12. cvičení z PST. 20. prosince 2017

12. cvičení z PST. 20. prosince 2017 1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace

Více

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost

Více

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz).

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz). 1 Cvičení z předmětu KMA/PST1 Pro získání zápočtu je nutno mimo docházky (max. 3 absence) uspět minimálně ve dvou ze tří písemek, které budou v průběhu semestru napsány. Součástí třetí písemky bude též

Více

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B. Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná

Více

Poznámky k předmětu Aplikovaná statistika, 5.téma

Poznámky k předmětu Aplikovaná statistika, 5.téma Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 7

Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 3 Pravděpodobnost jevů Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola báňská Technická

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

22. Pravděpodobnost a statistika

22. Pravděpodobnost a statistika 22. Pravděpodobnost a statistika Pravděpodobnost náhodných jevů. Klasická pravděpodobnost. Statistický soubor, statistické jednotky, statistické znaky. Četnosti, jejich rozdělení a grafické znázornění.

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

Příklady na procvičení z NMFM202

Příklady na procvičení z NMFM202 Příklady na procvičení z NMFM202 Naposledy změněno: 24. října 203 Klasická pravděpodobnost. Z kartiček s čísly, 2, 3, 4, 5 náhodně vybereme tři a položíme je v pořadí, v němž jsme je vybrali. Jaká je pravděpodobnost,

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Motivace. 1. Náhodné jevy. Poznámky k předmětu Aplikovaná statistika, 1. téma

Motivace. 1. Náhodné jevy. Poznámky k předmětu Aplikovaná statistika, 1. téma Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.

Více

Testy. Pavel Provinský. 19. listopadu 2013

Testy. Pavel Provinský. 19. listopadu 2013 Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování

Více

NMAI059 Pravděpodobnost a statistika

NMAI059 Pravděpodobnost a statistika NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )

Více

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením

Více

Jan Hamhalter. 1. Náhodná veličina je dána maximem počtu ok při šesti hodech hrací kostkou. Určete pravděpodobnostní funkci a střední hodnotu. j.

Jan Hamhalter. 1. Náhodná veličina je dána maximem počtu ok při šesti hodech hrací kostkou. Určete pravděpodobnostní funkci a střední hodnotu. j. M6C Některé příklady z přednášky a cvičení 24. února 2006 Jan Hamhalter 1 Náhodné veličiny 1. Náhodná veličina je dána maximem počtu ok při šesti hodech hrací kostkou. Určete pravděpodobnostní funkci a

Více

Diskrétní pravděpodobnost

Diskrétní pravděpodobnost Diskrétní pravděpodobnost Jiří Koula Definice. Konečným pravděpodobnostním prostorem nazveme dvojici(ω, P), kde Ω jekonečnámnožina {ω 1,..., ω n}apfunkcepřiřazujícíkaždépodmnožiněωčíslo zintervalu 0,1,splňujícíP(

Více

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PŘÍKLADY LS 2005/2006

STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PŘÍKLADY LS 2005/2006 STP022 PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA PŘÍKLADY LS 2005/2006 Příklady jsou většinou převzaté ze skript Dupač & Hušková (1999), Zvára & Štěpán (2002) a ze sbírky Potocký et al. (1986). Některé

Více

matematická statistika 1 Klasická pravděpodobnost

matematická statistika 1 Klasická pravděpodobnost Příklady na procvičení z předmětu Pravděpodobnost a matematická statistika Poslední úprava 5. prosince 2017. Většina příkladů je již upravena na základě toho, co jsme propočítali na cvičení a co bylo probráno

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Poznámky k předmětu Aplikovaná statistika, 1. téma

Poznámky k předmětu Aplikovaná statistika, 1. téma Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015)

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015) III Pravděpodobnost Pravděpodobnost Podmíněná p. Úplná p. Odkud se bere pravděpodobnost? 1. Pravděpodobnost, že z balíčku zamíchaných karet vytáhmene dvě esa je přibližně 0:012. Modely a teorie. 2. Pravděpodobnost,

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Pravděpodobnost je Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM, 24. 1. 2017 Čím se zabývá teorie pravděpodobnosti? Pokus děj, který probíhá, resp. nastává opakovaně

Více

Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a

Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1 Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.

Více

se bude objevovat jen v 5% pokusů. Výsledky měření jsou: 0,31; 0,30; 0,29; 0,32.

se bude objevovat jen v 5% pokusů. Výsledky měření jsou: 0,31; 0,30; 0,29; 0,32. Typ úlohy: A - IS pro střední hodnotu 1. Předpokládejme, že výška chlapců ve věku 9,5 až 10 roků má normální rozdělení N(µ; σ 2 )s neznámou střední hodnotou a rozptylem rovným 39,112. Změřili jsme výšku

Více

5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy

5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy Typické příklady pro zápočtové písemky DiM 70-30 (Kovář, Kovářová, Kubesa) (verze: November 5, 08) 5 Pravděpodobnost 5.. Jiří má v šuplíku rozházených osm párů ponožek, dva páry jsou černé, dva páry modré,

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

5. Jev B je částí jebu A. Co můžeme říct o podmíněné pravděpodobnosti? (1b)

5. Jev B je částí jebu A. Co můžeme říct o podmíněné pravděpodobnosti? (1b) TEST 3 1. U pacienta je podozření na jednu ze čtyř, navzájem se vylučujících nemocí. Pravděpodobnost výskytu těchto nemocí je 0,1, 0,2, 0,4 a 0,3. Laboratorní zkouška je v případě první nemoci pozitivní

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných

Více

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není

Více

ÚVOD DO TEORIE ODHADU. Martina Litschmannová

ÚVOD DO TEORIE ODHADU. Martina Litschmannová ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

2 ) 4, Φ 1 (1 0,005)

2 ) 4, Φ 1 (1 0,005) Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje

Více

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů?

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů? 0. Kombinatorika, pravděpodobnost, statistika Kombinatorika ) V restauraci mají na jídelním lístku 3 druhy polévek, 7 možností výběru hlavního jídla, druhy moučníku. K pití si lze objednat kávu, limonádu

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

VYBRANÁ ROZDĚLENÍ. DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová

VYBRANÁ ROZDĚLENÍ. DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová VYBRANÁ ROZDĚLENÍ DISKRÉTNÍ NÁH. VELIČINY Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodná veličina (dále NV)? Číselné vyjádření výsledku náhodného pokusu. Jaké

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

náhodný jev je podmnožinou

náhodný jev je podmnožinou Pravděpodobnost Dovednosti a cíle - Chápat jev A jako podmnožinu množiny, která značí množinu všech výsledků náhodného děje. - Umět zapsat jevy pomocí množinových operací a obráceně umět z množinového

Více

Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013

Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013 Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko

Více

11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.

11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0. 11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15

Více

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická

Více

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A AKM - 1-2 CVIČENÍ Opakování maticové algebry Mějme matice A, B regulární, potom : ( AB) = B A 1 1 ( A ) = ( A ) ( A ) = A ( A + B) = A + B 1 1 1 ( AB) = B A, kde A je řádu mxn a B nxk Čtvercová matice

Více

Pravděpodobnostní rozdělení

Pravděpodobnostní rozdělení Náhodná proměnná Pravděpodobnostní rozdělení Základy logiky a matematiky, ISS FSV UK Martin Štrobl Tento pomocný materiál neobsahuje všechnu látku k danému tématu, pouze se zaměřuje na pochopení důležitých

Více

NMAI059 Pravděpodobnost a statistika. 22. listopadu Zadání cvičení na jednotlivé týdny není myšleno tak, že se během hodiny proberou všechny

NMAI059 Pravděpodobnost a statistika. 22. listopadu Zadání cvičení na jednotlivé týdny není myšleno tak, že se během hodiny proberou všechny NMAI059 Pravděpodobnost a statistika Zadání cvičení a doplňkových příkladů. 22. listopadu 2017 Jak používat tuto příručku. Jde o postupně vznikající text, který bude obsahovat klíčové příklady k procvičení

Více

Radiologická fyzika pravděpodobnost měření a zpracování dat

Radiologická fyzika pravděpodobnost měření a zpracování dat Radiologická fyzika pravděpodobnost měření a zpracování dat podzim 2008, šestá přednáška Měření tlaku nejjednodušší úkon u lékaře aneb jak zacházet s měřenými hodnotami? Běžná situace u lékaře: Paní Nováková,

Více

Řešené příklady z pravděpodobnosti:

Řešené příklady z pravděpodobnosti: Řešené příklady z pravděpodobnosti: 1. Honza se ze šedesáti maturitních otázek 10 nenaučil. Při zkoušce si losuje dvě otázky. a. Určete pravděpodobnost jevu A, že si vylosuje pouze otázky, které se naučil.

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

TEST 1 (40 bodů) (9 4)! 2. Nejméně kolikrát musíme hodit kostkou, abychom měli alespoň 80% pravděpodobnost, že padne alespoň jedna šestka?

TEST 1 (40 bodů) (9 4)! 2. Nejméně kolikrát musíme hodit kostkou, abychom měli alespoň 80% pravděpodobnost, že padne alespoň jedna šestka? TEST (40 bodů) Jméno:. Pin karty se skládá ze čtyř náhodně vybraných číslic až 9, z nichž se žádné neopakuje. Jaká je pravděpodobnost, že všechny čtyři číslice budou liché? podíl všech možností,jak vybrat

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 2

Pravděpodobnost a statistika (BI-PST) Cvičení č. 2 Pravděpodobnost a statistika (BI-PST) Cvičení č. 2 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost

Více

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost

Více

Pravděpodobnost a statistika I KMA/K413

Pravděpodobnost a statistika I KMA/K413 Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,

Více

Zápočtová písemka z Matematiky III (BA04) skupina A

Zápočtová písemka z Matematiky III (BA04) skupina A skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost

Více

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka; I Elementární pravděpodonost 1 Házíme hrací kostkou Určete pravděpodoností těchto jevů: a) A při jednom hodu padne šestka; Řešení: P A) = 1 = 01; Je celkem šest možností {1,,, 4,, } a jedna {} je příznivá

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

1. A c B c, 2. (A C) B, 3. A B C.

1. A c B c, 2. (A C) B, 3. A B C. Příklad 1: V urně jsou kuličky tří barev. Nechť jevy A, B, C, postupně znamenají, že náhodně vybraná kulička je černá, červená, bílá. Určete význam následujících jevů: 1. A c B c, 2. (A C) B, 3. A B C.

Více