Matematické modely v ekologii a na co jsou dobré
|
|
- Karolína Hájková
- před 8 lety
- Počet zobrazení:
Transkript
1 Maemaické modely v ekologii a na co jsou dobré Indukivní a dedukivní uvažování o Indukce - mám spousu pozorování, a v nich se snažím naléz zákoniosi, zobecnní ad. o Dedukce - mám adu pravd, a hledám jejich dsledky (maemaika jako nejdokonalejší dedukivní sysém). o Hypoeicko-dedukivní písup k vd (K. Popper). Teorie - dedukivní sysém o Explikaivní funkce (má za úkol vysvli). o Predikivní funkce (je schopná predikova, co bude za podmínek, keré jsme ješ nevyzkoušeli). o Maemaika jako dedukivní sysém o Ale - každá eorie nemusí bý nun maemaická Sysémy, keré modeluji, jsou vždy njakou absrakcí, kerou si definuji na reálném objeku. Typy model: * Verbání vs. formalizované (všinou maemaikou) * Saisické vs. dynamické obvykle se pro n používá sysém diferenních nebo diferenciálních rovnic model odpovdi druhu (obr. : Závislos frekvence na vlhkosi) frekvence Vrnos, pesnos, obecnos o Vrnos - jak dobe vysihuje mechanismy o Jak dobe predikuje vývoj v ase o Kolika sysém se ýká vlhkos Všinou jsou rozumn splnny jen dva ze í požadavk Modely eoreické ekologie jsou hlavn obecné, aso i vrné, pesnos není prvoadá. Modely aplikované ekologie u nich je dležiá pesnos, poom i vrnos. Modely deerminisické vs. sochasické Každý reálný objek podléhá sochasickým (j. námi nemeným) vlivm. Pi modelování se rozhodujeme, jak je pro nás sochasicia dležiá
2 ap.: Sleduji, zda vyhyne populace, když má každé individuum 5% pravdpodobnos pežií.. Populace ohroženého druhu, íající individuí (sochasiciu asi musím vzí v úvahu, šance, že vyhyne je,5 =.977, což je sice málo, ale asi bych o neml ignorova). Populace druhu s individui. Šance, že vyhyne, je,5 =,... Modely analyicky ešielné vs. simulaní o Analyicky ešielné - dosávám úplné ešení, ale jsem omezen ve složiosi rovnic. o Simulaní - mohu si vymysle rovnice, jak chci složié, ale dosávám ešení pouze numerické a pro dané poáení podmínky. Modelování: populaní rs Huson nezávislý rs populace neomezený exponenciální funkce Diferenciální rovnice: d = r d Obr. : huson nezávislý exponenciální rs populace
3 Diferenní rovnice - Diskréní forma rovnice: r = ln () Obr. 3: Huson nezávislý diskréní rs Huson závislý rs populace logisický: Obr. 4: Huson závislý logisický rs první na pravé sran rovnice má za následek kladnou zpnou vazbu, druhé na pravé sran rovnice má za následek zápornou zpnou vazbu. 3
4 Obr. 5: z cho vzah mimo jiné vyplývá, kdy nasane nejmaximálnjší pírsek za asovou jednoku, a udíž i nejvhodnjší as ke sklizni i lovu dané populace. Zpoždní zpsobuje flukuace - nedív lumené: d d = r K K D Obr. 6: lumené flukuace 4
5 Obr. 7: ím vší zpoždní, ím menší lumení Obr. 8: Až jsou nakonec oscilace nelumené. 5
6 Obr. 9 a : Diskréní logisická rovnice se zvšující se rychlosí rsu (krok je jednoka asu, akže ím vší rychlos, ím vší zpoždní) Obr. : Deerminisický chaos 6
7 Obr. : Demografická sochasicia - b a d jsou pravdpodobnosi Obr. 3: Pokud je vyšší K 7
8 Obr 4: Pokud je vyšší poáení velikos populace Populace v krajin meapopulace ili populace populací Levinsv model : dp d P * = Pe + P( P) c = e c P... poe obsazených mís v krajin P...poe vhodných neobsazených mís v krajin e...exinkce populace c...kolonizace nového mísa Teno model pedpokládá, že všechna poenciáln vhodná mísa k obsazení jsou sejn kvaliní a sejnou mrou dosažielná pro pípadnou kolonizaci. Srukurované populace - maicové modely - Vková srukura vs. velikosní srukura - Individua nejsou sejná, každý roník (i vývojové sádium) má jinou pravdpodobnos pežií do dalšího roníku (sádia), a aké má jinou plodnos. ím vší zpoždní, ím menší lumení 8
9 Obr. 5 a 6: a) model živoního cyklu, kde jednolivá sádia-roníky mají pesn dané inervaly P je pravdpodobnos pechodu do dalšího sádia-roníku, F je plodnos, b) model, kdy mají jednolivá sádia rzn dlouhé rvání, P je pravdpodobnos pežií do dalšího roku ve sejném sádiu, G je pravdpodobnos pechodu v píším roce do dalšího sádia, F je plodnos. Dole je maemaicky vyjádená maice. Obr. 7: Model živoního cyklu populace šky plané (Dipsacus sylvesris) yúhelníky obsahují produkci semen pi pechodech mezi jednolivými sádii, rojúhelníky obsahují 9 pravdpodobnos pechodu mezi jednolivými sádii (Caswell 989).
10 Když je charakerisický vekor maice A, pak mže bý maice nahrazena svým charakerisickým íslem. odpovídá sabilní vkové srukue, je ekvivalenní v diskréním modelu exponenciálního rsu. Klasické maicové modely ignorují závislos na huso. Projekce vs. predikce. Loka-Volerra kompeiní model: Sabilní equilibrium nasane, když: a 4, 3,,, 4, 3,,, = = = A P P P F F F ρ ρ λ K K r d d K K r d d β α = = K / K < α K / K < β Obr. 8:
11 Obr. 9: Analýza senziiviy Analýza sensiiviy Obr. : Jak se mní prbh funkce v závislosi na zmnách okamžiých rsových rychlosí.
12 Modely založené na jedincích - Každé individuum je popsáno savovou promnnou (nebo více promnnými). - V každém kroku, rs individua závisí na jeho velikosi, a na kompeici. - Podobn, pravdpodobnos pežií je závislá na velikosi individua a kompeiním laku. Mone Carlo simulace rozhodne, zda pežije. Spaially explici models Obr. : konkurence je závislá pouze na nejbližších sousedech.
13 Obr. : áhodné rozmísní semenák smrku posupn dochází k akzvanému samozeování a kompeinímu vylouení slabších jedinc. Obr. 3: Pravidelné rozmísní semenák smrku aké posupn dochází k samozeování a kompeinímu vylouení slabších jedinc, akže výsledný charaker vzroslého porosu je podobný jako v pedchozím pípad. Velké ekosysémové modely velmi jednoduchý pípad: obr. 4: T Z Zdroj a propad Foosynéza CO v amosfée 3
14 Mikrobní rozklad [gc] Foosynéza = P.f (T,Z) Dýchání herbivor=k. H Bilanní rovnice: P/ = foosynéza - dýchání - co je sežráno - co odumelo z P H/ = co je sežráno - co je prodýcháno - co odumelo z H D/ = co odumelo z P + co odumelo z H M/ = co mikroorganismy sežraly z deriu - co prodýchaly Akivia mikrob jako pomocná promnná vsupuje do nkolika proces (není nuná, ale ulehuje výpoy) Další modely - mohou bý prosorov expliciní (nap. pohyb vody krajinou) Pi souasném vybavení poía mohou bý znan složié Oázka je, zda je o vždy výhoda (není), resp. kdy je o výhoda. a co modely používáme? Model jako dedukivní násroj o srukura modelovaného sysému o hodnoy paramer o zmny hodno v ase Pomocí dvou mžeme odhadnou (esova) eí Máme-li srukuru modelovaného sysému a hodnoy paramer, mžeme predikova zmny hodno v ase (nejbžnjší užií v prakické ekologii - mžeme si i vyzkouše managemen). Dobrý simulaní model s grafickým výsupem je vlasn poíaová hra. Máme-li srukuru modelovaného sysému a zmny hodno v ase, mžeme odhadova hodnoy paramer. 4
15 Máme-li všechny i, mžeme esova shodu predikcí modelu s reálným chováním - nejasji esujeme vrohodnos srukury modelu (má rzná úskalí). Další užií - Sumarizace znalosí Hraní si... 5
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,
IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie
VíceLABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická
Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní
VíceBiologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8
Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická
VícePasivní tvarovací obvody RC
Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :
VíceEKONOMETRIE 6. přednáška Modely národního důchodu
EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,
VíceNA POMOC FO. Pád vodivého rámečku v magnetickém poli
NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním
Více! " # $ % # & ' ( ) * + ), -
! " # $ % # & ' ( ) * + ), - INDIVIDUÁLNÍ VÝUKA FYZIKA METODIKA Mechanické kmiání a vlnní RNDr. Ludmila Ciglerová duben 010 Obížnos éo kapioly fyziky je dána ím, že se pi výkladu i ešení úloh využívají
VíceMatematika v automatizaci - pro řešení regulačních obvodů:
. Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.
VíceUNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR. Bc. David Mucha
UNIVERZITA PARDUBICE Fakula elekroechniky a informaiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR Bc. David Mucha Diplomová práce 2017 Prohlášení Prohlašuji: Tuo práci jsem vypracoval samosaně. Veškeré
VíceParciální funkce a parciální derivace
Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci
VíceVyužijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.
Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy
Více5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav
5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických
VíceFyzikální praktikum II - úloha č. 4
Fyzikální prakikum II - úloha č. 4 1 4. Přechodové jevy v obvodech s kapaciory Úkoly 1) 2) 3) 4) Sesave obvod pro demonsraci jevu nabíjení a vybíjení kondenzáoru. Naměře průběhy napěí a proudů na vybraných
VíceAnalýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p
Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací
Více4. Lineární diferenciální rovnice rovnice 1. ádu
4. Lineární diferenciální rovnice rovnice. ádu y + p( ) y = (4.) L[ y] = y + p( ) y p q jsou spojité na I = (ab) a < b. Z obecné teorie vyplývá že množina všech ešení rovnice (4.) na intervalu I (tzv.
Více2. ZÁKLADY TEORIE SPOLEHLIVOSTI
2. ZÁKLADY TEORIE SPOLEHLIVOSTI Po úspěšném a akivním absolvování éo KAPITOLY Budee umě: orienova se v základním maemaickém aparáu pro eorii spolehlivosi, j. v poču pravděpodobnosi a maemaické saisice,
Více4. Střední radiační teplota; poměr osálání,
Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění
VíceT t. S t krátkodobé náhodná složka. sezónní. Trend + periodická složka = deterministická složka
Analýza časových řad Klasický přísup k analýze ČŘ dekompozice časové řady - rozklad ČŘ na složky charakerizující různé druhy pohybů v ČŘ, keré umíme popsa a kvanifikova rend periodické kolísání cyklické
VíceVolba vhodného modelu trendu
8. Splinové funkce Trend mění v čase svůj charaker Nelze jej v sledovaném období popsa jedinou maemaickou křivkou aplikace echniky zv. splinových funkcí: o Řadu rozdělíme na několik úseků o V každém úseku
VíceLaplaceova transformace Modelování systémů a procesů (11MSP)
aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála
VíceStochastické modelování úrokových sazeb
Sochasické modelování úrokových sazeb Michal Papež odbor řízení rizik 1 Sochasické modelování úrokových sazeb OBSAH PŘEDNÁŠKY Úvod do problemaiky sochasických procesů Brownův pohyb, Wienerův proces Ioovo
VícePRVKY KOVOVÝCH KONSTRUKCÍ MODUL BO02-M05
VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ PROF. ING. JINDICH MELCHER,DR.SC. ING. MARCELA KARMAZÍNOVÁ, CSC. ING. MIROSLAV BAJER,CSC. ING. KAREL SÝKORA PRVKY KOVOVÝCH KONSTRUKCÍ MODUL BO0-M05 PRUTY NAMÁHANÉ
VíceVybrané metody statistické regulace procesu pro autokorelovaná data
XXVIII. ASR '2003 Seminar, Insrumens and Conrol, Osrava, May 6, 2003 239 Vybrané meody saisické regulace procesu pro auokorelovaná daa NOSKIEVIČOVÁ, Darja Doc., Ing., CSc. Kaedra konroly a řízení jakosi,
VíceUniverzita Karlova v Praze Fakulta sociálních vd. Institut ekonomických studií. Diplomová práce. 2004 Jan Houska
- 0 - Univerzia Karlova v Praze Fakula sociálních vd Insiu ekonomických sudií Diplomová práce 2004 Jan Houska - 1 - Univerzia Karlova v Praze Fakula sociálních vd Insiu ekonomických sudií DIPLOMOVÁ PRÁCE
Více1. Demografický rozbor populací
. Demografický rozbor populací.. Cíl Demografický rozbor populací se sousřeďuje na rozbor poču jedinců a na procesy, keré vedou k jejich změnám. Uvažujme nejprve o změnách poču jedinců mezi dvěma libovolně
VíceRadek Hendrych. Stochastické modelování v ekonomii a financích. 18. října 2010
Sochasické modelování v ekonomii a financích 18. října 21 Program 1 2 3 4 Úroková míra R, T ) Uvažujme bezrizikový bezkuponový dluhopis s mauriou T a nominální hodnoou 1 $, jeho cenu v čase budeme nadále
VíceZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK
ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné
VíceDynamika hmotného bodu. Petr Šidlof
Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení
Více1. Exponenciální rst. 1.1. Spojitý pípad. Rstový zákon je vyjáden diferenciální rovnicí
V tomto lánku na dvou modelech rstu - exponenciálním a logistickém - ukážeme nkteré rozdíly mezi chováním spojitých a diskrétních systém. Exponenciální model lze považovat za základní rstový model v neomezeném
Více5 GRAFIKON VLAKOVÉ DOPRAVY
5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos
VíceÚloha II.E... je mi to šumák
Úloha II.E... je mi o šumák 8 bodů; (chybí saisiky) Kupe si v lékárně šumivý celaskon nebo cokoliv, co se podává v ableách určených k rozpušění ve vodě. Změře, jak dlouho rvá rozpušění jedné abley v závislosi
VíceSIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07
Měřicí a řídicí echnika přednášky LS 26/7 SIMULACE numerické řešení diferenciálních rovnic simulační program idenifikace modelu Numerické řešení obyčejných diferenciálních rovnic krokové meody pro řešení
VíceSchéma modelu důchodového systému
Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,
VíceSimulace důchodových dávek z navrhovaného příspěvkově definovaného penzijního systému v ČR
3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 006 Simulace důchodových dávek z navrhovaného příspěvkově definovaného
VíceTeorie obnovy. Obnova
Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi
VíceDemografické projekce počtu žáků mateřských a základních škol pro malé územní celky
Demografické projekce poču žáků maeřských a základních škol pro malé územní celky Tomáš Fiala, Jika Langhamrová Kaedra demografie Fakula informaiky a saisiky Vysoká škola ekonomická v Praze Pořebná daa
Více9 Viskoelastické modely
9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály
VíceKatedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 4. přednáška: Vekorové prosory Dalibor Lukáš Kaedra aplikované maemaiky FEI VŠB Technická univerzia Osrava email: dalibor.lukas@vsb.cz hp://www.am.vsb.cz/lukas/la Tex byl vyvořen v rámci
VíceÚVOD DO DYNAMIKY HMOTNÉHO BODU
ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí
VíceUniverzita Tomáše Bati ve Zlíně
Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí
VíceDerivace funkce více proměnných
Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme
VíceX 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS =
11. Výpoče poměrů při zkraeh ve vlasní spořebě elekrárny Zkra má v obvodeh shémau smysl pouze v čáseh provozovanýh s účinně uzemněným sředem zdroje, čili mimo alernáor, vyvedení výkonu a přilehlá vinuí
Vícetransformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.
finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární
VíceFAKULTA APLIKOVANÝCH VĚD
FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro
Více5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvaniaivní meod I Přednáška 3 Zuzana Dlouhá Předmě a srukura kurzu. Úvod: srukura empirických výzkumů. vorba ekonomických modelů: eorie 3. Daa: zdroje a p da, význam popisných charakerisik
Více10 Lineární elasticita
1 Lineární elasicia Polymerní láky se deformují lineárně elasicky pouze v oblasi malých deformací a velmi pomalých deformací. Hranice mezi lineárním a nelineárním průběhem deformace (mez lineariy) závisí
VíceModely veličin spojitých v čase funkce spojité v čase
Modely veličin spojiých v čase funkce spojié v čase Základní pojmy Základní informace Tao kapiola, je první, kerá se zabývá konkréními poznaky, ýkajícími se popisem a rozborem vlasnosí spojiých funkcí,
VíceSimulační schemata, stavový popis. Petr Hušek
Simulační schemaa, savový popis Per Hušek Simulační schemaa, savový popis Per Hušek husek@fel.cvu.cz kaedra řídicí echniky Fakula elekroechnická ČVUT v Praze MAS 007/08 ČVUT v Praze 6,7 - Simulační schemaa,
VíceReologické modely měkkých tkání
Reologické modely měkkých kání Tomas Mares 1. Úvod Výchozím principem mechaniky měkkých kání (j. kůže, cév, pojivových kání, kání vniřních orgánů, šlach, vazů, chrupavek, sinoviální ekuiny) je reologie.
VíceXI-1 Nestacionární elektromagnetické pole...2 XI-1 Rovinná harmonická elektromagnetická vlna...3 XI-2 Vlastnosti rovinné elektromagnetické vlny...
XI- Nesacionární elekromagneické pole... XI- Rovinná harmonická elekromagneická vlna...3 XI- Vlasnosi rovinné elekromagneické vlny...5 XI-3 obrazení rovinné elekromagneické vlny v prosoru...7 XI-4 Fázová
VíceModelování rizika úmrtnosti
5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 200 Modelování rizika úmrnosi Ingrid Perová Absrak V příspěvku je řešena
VícePřednáška kurzu MPOV. Klasifikátory, strojové učení, automatické třídění 1
Přednáška kurzu MPOV Klasifikáory, srojové učení, auomaické řídění 1 P. Peyovský (email: peyovsky@feec.vubr.cz), kancelář E530, Inegrovaný objek - 1/25 - Přednáška kurzu MPOV... 1 Pojmy... 3 Klasifikáor...
VíceLineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()
VíceÚloha V.E... Vypař se!
Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee
VíceAnalýza rizikových faktorů při hodnocení investičních projektů dle kritéria NPV na bázi EVA
4 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 11-12 září 2008 Analýza rizikových fakorů při hodnocení invesičních projeků dle kriéria
Více5. Modifikovaný exponenciální trend
5. Modifikovaný exponenciální rend Tvar rendu Paraer: α, β, Tr = + α β, =,..., n ( β > 0) Hodí se k odelování rendu s konsanní podíle sousedních diferencí Aspoick oezen (viz obr., α < 0,0 < β 0) α
VícePLL. Filtr smyčky (analogový) Dělič kmitočtu 1:N
PLL Fázový deekor Filr smyčky (analogový) Napěím řízený osciláor F g Dělič kmioču 1:N Číače s velkým modulem V současné době k návrhu samoného číače přisupujeme jen ve výjimečných případech. Daleko časěni
VíceMECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTRSKÉHO PROGRAMU STAVBNÍ INŽNÝRSTVÍ -GOTCHNIKA A PODZMNÍ STAVITLSTVÍ MCHANIKA PODZMNÍCH KONSTRUKCÍ Základní vzahy z reologie a reologického
VíceSTATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ
STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují
Více4EK211 Základy ekonometrie
4EK Základy ekonomerie Modely simulánních rovnic Problém idenifikace srukurních simulánních rovnic Cvičení Zuzana Dlouhá Modely simulánních rovnic (MSR) eisence vzájemných vazeb mezi proměnnými v modelu,
VíceAnalogový komparátor
Analogový komparáor 1. Zadání: A. Na předloženém inverujícím komparáoru s hyserezí změře: a) převodní saickou charakerisiku = f ( ) s diodovým omezovačem při zvyšování i snižování vsupního napěí b) zaěžovací
VíceZáklady fyziky + opakovaná výuka Fyziky I
Úsav fyziky a měřicí echniky Pohodlně se usaďe Přednáška co nevidě začne! Základy fyziky + opakovaná výuka Fyziky I Web úsavu: ufm.vsch.cz : @ufm444 Zimní semesr opakovaná výuka + Základy fyziky 2 hodiny
VíceVliv funkce příslušnosti na průběh fuzzy regulace
XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,
VíceVŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenkostěnné tlakové nádoby
VŠB- Technická univerzia Osrava Fakula srojní Kaedra pružnosi a pevnosi Úvod do MKP Auor: Michal Šofer Verze 0 Osrava 2011 Zadání: Proveďe napěťovou analýzu lakové nádoby v ísě D (v polovině válcové čási),
VíceFYZIKA I. Pohyb těles po podložce
VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová
VíceÚloha VI.3... pracovní pohovor
Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro
Více3B Přechodné děje v obvodech RC a RLC
3B Přechodné děje v obvodech a íl úlohy Prohloubi eoreické znalosi o přechodných dějích na a obvodu. Ukáza možnos měření paramerů přechodných dějů v ěcho obvodech. U obvodu 2. řádu () demonsrova vliv lumicího
VíceInverzní kinematická a statická úloha manipulátoru AGEBOT
Technická zpráva Kaedra kyberneiky, Fakula aplikovaných věd Západočeská univerzia v Plzni Inverzní kinemaická a saická úloha manipuláoru AGEBOT 1. 1. 212 Marin Švejda msvejda@kky.zcu.cz Obsah 1 Úvod 3
VíceČíslicový lineární filtr prvého řádu se statisticky optimálně nastavovanými parametry
Číslicový lineární filr prvého řádu se saisicky opimálně nasavovanými paramery Ing. Jiří Tůma, CSc. Tara, o. p., Kopřivnice 59.2 Článek se zabývá odvozením rekurenních vzorců pro časovou posloupnos hodno
VíceKlíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru
Asabilní obvod s reálnými operačními zesilovači Josef PUNČOCHÁŘ Kaedra eoreické elekroechniky Fakula elekroechnicky a informaiky Vysoká škola báňská - Technická universia Osrava ř. 17 lisopadu 15, 708
VíceZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS
ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu
VíceANALÝZA ČASOVÝCH ŘAD IVAN KŘIVÝ OSTRAVA URČENO PRO VZDĚLÁVÁNÍ V AKREDI TOVANÝCH STUDIJ NÍCH PROGRAMECH
ANALÝZA ČASOVÝCH ŘAD URČENO PRO VZDĚLÁVÁNÍ V AKREDI TOVANÝCH STUDIJ NÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:
Více4.1 Zptnovazební oscilátory sinusového prbhu naptí
4 Osciláory Nezpracovávají žádný vsupní signál, ale jsou sami zdrojem sídavých signál. Ze sejnosmrného napájecího napí vyváejí napí sídavá. Druh osciláor je mnoho. Podle principu innosi se rozdlují na
VíceMECHANIKA PRÁCE A ENERGIE
Projek Efekivní Učení Reformou oblasí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a sáním rozpočem České republiky. MECHANIKA PRÁCE A ENERGIE Implemenace ŠVP Učivo - Mechanická
VíceTlumené kmity. Obr
1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující
VíceKatedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY
Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných
VíceNové metody a přístupy k analýze a prognóze ekonomických časových řad
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Provozně ekonomická fakula Diserační práce Nové meody a přísupy k analýze a prognóze ekonomických časových řad Auor: Ing. Aleš Krišof Školiel: Doc.RNDr. Bohumil Kába,
Více7.4.1 Parametrické vyjádření přímky I
741 Paramerické vyjádření přímky I Předpoklady: 7303 Jak jsme vyjadřovali přímky v rovině? X = + D Ke všem bodů z roviny se z bod dosaneme posním C o vekor Pokd je bod na přímce, posováme se o vekor, E
VícePopis regulátoru pro řízení směšovacích ventilů a TUV
Popis reguláoru pro řízení směšovacích venilů a TUV Reguláor je určen pro ekviermní řízení opení jak v rodinných domcích, ak i pro věší koelny. Umožňuje regulaci jednoho směšovacího okruhu, přípravu TUV
Více4EK211 Základy ekonometrie
4EK Základy ekonomerie Heeroskedasicia Cvičení 7 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady. E(u) = 0 náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
VíceFyzikální korespondenční seminář MFF UK
Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace
VíceKmitání tělesa s danou budicí frekvencí
EVROPSKÝ SOCIÁLNÍ FOND Kmiání ělesa s danou budicí frekvencí PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení echnické v Praze, Fakula savební, Kaedra maemaiky Posílení vazby eoreických předměů
VícePřednáška 1. Elektrické zařízení vs Elektrický obvod. Obvodové veličiny. Časové průběhy obvodových veličin
Prof. Ing. Ivan Zemánek, CSc Přenáška 1 Elekrické zařízení vs Elekrický obvo Obvoové veličiny Časové průběhy obvoových veličin Charakerisické honoy perioických veličin 1 Prof. Ing. Ivan Zemánek, CSc Elekrické
VíceOceňování finančních investic
Oceňování finančních invesic A. Dluhopisy (bondy, obligace). Klasifikace obligací a) podle kupónu - konvenční obligace (sraigh, plain vanilla, bulle bond) vyplácí pravidelný (roční, pololení) kupón po
VícePrůtok. (vznik, klasifikace, měření)
Průok (vznik, klasifikace, měření) Průok objemový - V m 3 s (neslačielné kapaliny) hmonosní - m (slačielné ekuiny, poluany, ) m kg s Při proudění směsí (např. hydrodoprava) důležiý průok jednolivých složek
VíceNÁPOVĚDA K SOFTWAROVÉMU PRODUKTU OPTIMALIZACE NÁKLADŮ
NÁPOVĚDA K SOFTWAROVÉMU PRODUKTU OPTIMALIZACE NÁKLADŮ ÚVOD Teno ex doplňující sowarový produk ukazuje aplikaci uvedených přísupů na příkladu exisujícího mosu se zbykovou dobou živonosi 5 le, průměrnými
VíceJakost, spolehlivost a teorie obnovy
Jakos, spolehlivos a eorie obnovy opimální inerval obnovy, seskupování obnov, zráy z nedodržení normaivu Jakos, spolehlivos a obnova srojů Jakos vyjadřuje supeň splnění požadavků souborem inherenních znaků.
VícePOPIS OBVODŮ U2402B, U2405B
Novodvorská 994, 142 21 Praha 4 Tel. 239 043 478, Fax: 241 492 691, E-mail: info@asicenrum.cz ========== ========= ======== ======= ====== ===== ==== === == = POPIS OBVODŮ U2402B, U2405B Oba dva obvody
VíceSeznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.
4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci
VíceAnalýza citlivosti NPV projektu na bázi ukazatele EVA
3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 2006 Analýza cilivosi NPV projeku na bázi ukazaele EVA Dagmar Richarová
Více( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.
21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC
Vícelistopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly.
6. cvičení z PSI 7. -. lisopadu 6 6. kvanil, sřední hodnoa, rozpyl - pokračování příkladu z minula) Náhodná veličina X má disribuční funkci e, < F X ),, ) + 3,,), a je směsí diskréní náhodné veličiny U
VíceREGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ
REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ Úvod Záporná zpěná vazba Úloha reguláoru Druhy reguláorů Seřízení reguláoru Snímaní informací o echnologickém procesu ELES11-1 Úvod Ovládání je řízení, při kerém
VícePřibližná linearizace modelu kyvadla
Přibližná linearizace model kyvadla 4..08 9:47 - verze 4.0 08 Obsah Oakování kalkl - Taylorův rozvoj fnkce... Nelineární savový model a jeho řibližná linearizace... 4 Nelineární model vs-výs a jeho řibližná
VíceSpecifikace minimálních požadavků železnice na ukazatele kvality signálu GNSS/GALILEO pro nebezpečnostní železniční telematické aplikace
Věra Nováková 1 Specifikace minimálních požadavků železnice na ukazaele kvaliy signálu GNSS/GLILEO pro nebezpečnosní železniční elemaické aplikace Klíčová slova: Galileo, GNSS, elemaické aplikace 1. Úvod
VíceJméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B
Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:
VíceAPLIKACE VYBRANÝCH MATEMATICKO-STATISTICKÝCH METOD PŘI ROZHODOVACÍCH PROCESECH V PŮSOBNOSTI JOINT CBRN DEFENCE CENTRE OF EXCELLENCE
Břeislav ŠTĚPÁNEK, Pavel OTŘÍSAL APLIKACE VYBRANÝCH MATEMATICKO-STATISTICKÝCH METOD PŘI ROZHODOVACÍCH PROCESECH V PŮSOBNOSTI JOINT CBRN DEFENCE CENTRE OF EXCELLENCE Absrac: Mahemaical-saisic mehods provide
VíceVýpočty teplotní bilance a chlazení na výkonových spínacích prvcích
Výpočy eploní bilance a chlazení na výkonových spínacích prvcích Úvod Při provozu polovodičového měniče vzniká na výkonových řídicích prvcích zráový výkon. volňuje se ve ormě epla, keré se musí odvés z
VíceREAKČNÍ KINETIKA 1. ZÁKLADNÍ POJMY. α, ß jsou dílčí reakční řády, α je dílčí reakční řád vzhledem ke složce A, ß vzhledem ke složce
REKČNÍ KINETIK - zabývá se ryhlosí hemikýh reakí ZÁKLDNÍ POJMY Definie reakční ryhlosi v - pro reake probíhajíí za konsanního objemu v dξ di v V d ν d i [] moldm 3 s Ryhlosní rovnie obeně vyjadřuje vzah
VíceSkupinová obnova. Postup při skupinové obnově
Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi
Více