Reziduovaná zobrazení
|
|
- Radka Musilová
- před 10 lety
- Počet zobrazení:
Transkript
1 Reziduovaná zobrazení Irina Perfilieva 1. března 2015
2 Outline 1 Reziduované zobrazení 2
3 Izotónní/Antitónní zobrazení Definice Necht A, B jsou uspořádané množiny. Zobrazení f : A B se nazývá izotónní, jestliže x, y A x y f (x) f (y). Zobrazení f : A B se nazývá antitónní, jestliže x, y A x y f (x) f (y). Příklad E, A E. Zobrazení f : P(E) P(E) takové, že f (X ) = X A je izotónní. Zobrazení g : P(E) P(E) takové, že g(x ) = X A, kde X = E \ X je antitónní.
4 Izotónní/Antitónní zobrazení Definice Necht A, B jsou uspořádané množiny. Zobrazení f : A B se nazývá izotónní, jestliže x, y A x y f (x) f (y). Zobrazení f : A B se nazývá antitónní, jestliže x, y A x y f (x) f (y). Příklad E, A E. Zobrazení f : P(E) P(E) takové, že f (X ) = X A je izotónní. Zobrazení g : P(E) P(E) takové, že g(x ) = X A, kde X = E \ X je antitónní.
5 Obrazy množin Necht A, B, C, D jsou množiny, B A, D C, f : A C je zobrazení. Obraz f (B) množiny B: f (B) = {y ( b)(b B & y = f (b))}. Inverzní obraz f (D) množiny D: f (D) = {x ( d)(d D & d = f (x))}.
6 Outline 1 Reziduované zobrazení 2
7 Dolní množiny Necht (A, ) je uspořádaná množina, B A. Definice dolní množiny B je dolní množina, jestliže platí: Dle domluvy, je dolní množina. Dolní množina ve tvaru se nazývá hlavní. x B & y x y B. x = {y A y x}
8 Příklad Dolní Množiny Dolní nehlavní množina Necht Q + je množina kladných racionálních čísel. Pak {q Q + q 2 2} je dolní množina, která není hlavní.
9 Horní množiny Necht (A, ) je uspořádaná množina, B A. Definice horní množiny B je horní množina, jestliže platí: Dle domluvy, je horní množina. Horní množina ve tvaru se nazývá hlavní. x B & y x y B. x = {y A y x}
10 Věta o izotónním zobrazení Věta Necht (A, ), (B, ) jsou uspořádané množiny, f : A B. Pak následující tvrzení jsou ekvivalentní: 1 f je izotónní, 2 Inverzní obraz každé hlavní dolní množiny v B je dolní množina v A, 3 Inverzní obraz každé hlavní horní množiny v B je horní množina v A,
11 Důkaz Věty o izotónním zobrazení 1 2 Necht f je izotónní, y B a f (y ) = D, D. Necht z D, tj. f (z) y. Pak pro každé t z platí: t z f (t) f (z) y, odkud f (t) y, tj. t D a tím pádem, D je dolní množina v A.
12 Důkaz Věty o izotónním zobrazení 2 1 Pro každé x A platí: x f (f (x) ). Dle předpokladu, f (f (x) ) je dolní množina v A. Odsud pro t x platí: t f (f (x) ), tj. f (t) f (x). To znamená, že f je izotónní. 1 3 Důkaz vyplývá z předchozího a principu duality.
13 Důkaz Věty o izotónním zobrazení 2 1 Pro každé x A platí: x f (f (x) ). Dle předpokladu, f (f (x) ) je dolní množina v A. Odsud pro t x platí: t f (f (x) ), tj. f (t) f (x). To znamená, že f je izotónní. 1 3 Důkaz vyplývá z předchozího a principu duality.
14 Věta o reziduovaném zobrazení Věta Necht (A, ), (B, ) jsou uspořádané množiny, f : A B. Pak následující tvrzení jsou ekvivalentní: Inverzní obraz každé hlavní dolní množiny v B je hlavní dolní množina v A, tj. ( y B)(( x A)(f (y ) = x ) f je izotónní a existuje izotónní zobrazení g : B A, že g f id A, f g id B.
15 Důkaz Věty o Reziduovaném zobrazení 1 2 Podle Věty o izotónním zobrazení f je izotónní. Tvrzení 1 formálně: ( y B)( x A)(f (y ) = x ), přičemž x je definovan jednoznačně. Odsud lze definovat g : B A tak, že g(y) = x. Protože f je izotónní, pak g je izotónní taktež. Pro y B, g(y) g(y) = x = f (y ) f (g(y)) y f g id B. Pro x A, x f (f (x) ) = g(f (x)) x g(f (x)) id A g f.
16 Důkaz Věty o Reziduovaném zobrazení 2 1 Na jedné straně, f (x) y g(f (x)) g(y) x g(f (x)) g(y). Na druhé straně, x g(y) f (x) f (g(y)) f (x) f (g(y)) y. Odsud, f (x) y tehdy a jen tehdy, kdy x g(y), což znamená, že x f (y ) x (g(y) ), tj. f (y ) = g(y).
17 Reziduované zobrazení Definice Zobrazení f : A B, které splňuje jednu ze dvou ekvivalentních vlastností uvedených ve Větě o Reziduovaném zobrazení se nazývá reziduované. Poznámka (Cvičení) Je-li f : A B reziduované, pak izotónní zobrazení g : B A (z definice výše) je jednoznačně určeno. Označení. g = f + a se nazývá reziduum f.
18 Reziduované zobrazení Definice Zobrazení f : A B, které splňuje jednu ze dvou ekvivalentních vlastností uvedených ve Větě o Reziduovaném zobrazení se nazývá reziduované. Poznámka (Cvičení) Je-li f : A B reziduované, pak izotónní zobrazení g : B A (z definice výše) je jednoznačně určeno. Označení. g = f + a se nazývá reziduum f.
19 Charakterizace rezidua. Příklady Vyjádření rezidua f : A B je reziduované, právě když pro každé y B platí: f + (y) = max f (y ) = max{x A f (x) y}. Příklady (Cvičení) Je-li f : N 2N, přičemž f (n) = 2n, pak f je reziduované s reziduem f + (2m) = max{n N 2n 2m} = m. Je-li A množina a E A, pak λ E : P(A) P(A) kde λ E (X ) = X E je reziduované s reziduem λ + E (Y ) = max{x A λ E (X ) = X E Y } = Y E.
20 Charakterizace rezidua. Příklady Vyjádření rezidua f : A B je reziduované, právě když pro každé y B platí: f + (y) = max f (y ) = max{x A f (x) y}. Příklady (Cvičení) Je-li f : N 2N, přičemž f (n) = 2n, pak f je reziduované s reziduem f + (2m) = max{n N 2n 2m} = m. Je-li A množina a E A, pak λ E : P(A) P(A) kde λ E (X ) = X E je reziduované s reziduem λ + E (Y ) = max{x A λ E (X ) = X E Y } = Y E.
21 Charakterizace rezidua. Příklady Vyjádření rezidua f : A B je reziduované, právě když pro každé y B platí: f + (y) = max f (y ) = max{x A f (x) y}. Příklady (Cvičení) Je-li f : N 2N, přičemž f (n) = 2n, pak f je reziduované s reziduem f + (2m) = max{n N 2n 2m} = m. Je-li A množina a E A, pak λ E : P(A) P(A) kde λ E (X ) = X E je reziduované s reziduem λ + E (Y ) = max{x A λ E (X ) = X E Y } = Y E.
22 Věty o kompozicích 1.Věta o kompozicích Je-li f : A B reziduované, pak f f + f = f, f + f f + = f +. Důkaz. f je izotónní a f + f id A, jedné straně, f f + id B. Pak na Na druhé straně f f + f = f (f + f ) f id A = f. f f + f = (f f + ) f id B f = f.
23 Věty o kompozicích 1.Věta o kompozicích Je-li f : A B reziduované, pak f f + f = f, f + f f + = f +. Důkaz. f je izotónní a f + f id A, jedné straně, f f + id B. Pak na Na druhé straně f f + f = f (f + f ) f id A = f. f f + f = (f f + ) f id B f = f.
24 Věty o kompozicích 2.Věta o kompozicích Jsou-li f : A B a g : B C reziduovaná, pak (g f ) : A C je reziduované a (g f ) + = f + g +. Důkaz. g f a f + g + jsou izotónní. Pak na jedné straně, (f + g + ) (g f ) f + id A f = f + f id A. Na druhé straně (g f ) (f + g + ) g id B g + = g g + id B.
25 Věty o kompozicích 2.Věta o kompozicích Jsou-li f : A B a g : B C reziduovaná, pak (g f ) : A C je reziduované a (g f ) + = f + g +. Důkaz. g f a f + g + jsou izotónní. Pak na jedné straně, (f + g + ) (g f ) f + id A f = f + f id A. Na druhé straně (g f ) (f + g + ) g id B g + = g g + id B.
26 Pologrupa reziduovaných zobrazení Množina Res A reziduovaných zobrazení f : A A tvoří pologrupu, stejně jako množina Res + A reziduovaných zobrazení f + : A A.
27 Outline 1 Reziduované zobrazení 2
28 Uzávěr a duální uzávěr Definice Izotónní zobrazení f : A A je uzávěrem na A, jestliže f = f 2 id A, duálním uzávěrem na A, jestliže f = f 2 id A, Příklady Je-li A množina a E A, pak λ E : P(A) P(A) kde λ E (X ) = X E je uzávěr na P(A). µ E : P(A) P(A) kde µ E (X ) = X E je duální uzávěr na P(A).
29 Uzávěr a duální uzávěr Definice Izotónní zobrazení f : A A je uzávěrem na A, jestliže f = f 2 id A, duálním uzávěrem na A, jestliže f = f 2 id A, Příklady Je-li A množina a E A, pak λ E : P(A) P(A) kde λ E (X ) = X E je uzávěr na P(A). µ E : P(A) P(A) kde µ E (X ) = X E je duální uzávěr na P(A).
30 Uzávěr a duální uzávěr Definice Izotónní zobrazení f : A A je uzávěrem na A, jestliže f = f 2 id A, duálním uzávěrem na A, jestliže f = f 2 id A, Příklady Je-li A množina a E A, pak λ E : P(A) P(A) kde λ E (X ) = X E je uzávěr na P(A). µ E : P(A) P(A) kde µ E (X ) = X E je duální uzávěr na P(A).
31 Uzávěr a duální uzávěr Definice Izotónní zobrazení f : A A je uzávěrem na A, jestliže f = f 2 id A, duálním uzávěrem na A, jestliže f = f 2 id A, Příklady Je-li A množina a E A, pak λ E : P(A) P(A) kde λ E (X ) = X E je uzávěr na P(A). µ E : P(A) P(A) kde µ E (X ) = X E je duální uzávěr na P(A).
32 Reprezentace uzávěru Věta o reprezentaci Je-li A je uspořádaná množina, pak f : A A je uzávěr, právě když existuje uspořádaná množina B a reziduované zobrazení g : A B takové, že f = g + g. Cvičení. Dokázat postačující podmínku. Pevné body Je-li f : A A je uzávěr a x Im f, pak x = f (y) pro nějaké y A. Dále, f (x) = f 2 (y) = f (y) = x. Odsud, každé x Im f je pevným bodem f. Příklad. Je-li A množina a E A, pak λ E (X ) = X E je uzávěr na P(A). Každá množina X P(A) taková, že E X, je pevným bodem λ E.
33 Reprezentace uzávěru Věta o reprezentaci Je-li A je uspořádaná množina, pak f : A A je uzávěr, právě když existuje uspořádaná množina B a reziduované zobrazení g : A B takové, že f = g + g. Cvičení. Dokázat postačující podmínku. Pevné body Je-li f : A A je uzávěr a x Im f, pak x = f (y) pro nějaké y A. Dále, f (x) = f 2 (y) = f (y) = x. Odsud, každé x Im f je pevným bodem f. Příklad. Je-li A množina a E A, pak λ E (X ) = X E je uzávěr na P(A). Každá množina X P(A) taková, že E X, je pevným bodem λ E.
34 Reprezentace uzávěru Věta o reprezentaci Je-li A je uspořádaná množina, pak f : A A je uzávěr, právě když existuje uspořádaná množina B a reziduované zobrazení g : A B takové, že f = g + g. Cvičení. Dokázat postačující podmínku. Pevné body Je-li f : A A je uzávěr a x Im f, pak x = f (y) pro nějaké y A. Dále, f (x) = f 2 (y) = f (y) = x. Odsud, každé x Im f je pevným bodem f. Příklad. Je-li A množina a E A, pak λ E (X ) = X E je uzávěr na P(A). Každá množina X P(A) taková, že E X, je pevným bodem λ E.
Booleovy algebry. Irina Perfilieva. logo
Booleovy algebry Irina Perfilieva Irina.Perfilieva@osu.cz 25. března 2010 Outline 1 Komplementární svazy 2 Booleovy algebry 3 Věty o Booleových algebrách Outline 1 Komplementární svazy 2 Booleovy algebry
Komplexní analýza. Reziduová věta a její aplikace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Reziduová věta a její aplikace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Reziduová věta a její aplikace / Motivace Mějme
Kapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
Algebraické struktury s jednou binární operací
16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte
M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y.
Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 8. Uspořádání asvazy Uspořádání je další užitečná abstraktní struktura na množině. Modeluje
Kapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Funkce, elementární funkce.
Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.
Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Holomorfní funkce Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Holomorfní funkce 1 / 8 Derivace Definice Necht f je komplexní
Matice lineárních zobrazení
Matice lineárních zobrazení Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí n a m nad tělesem T, +,, nechť posloupnosti vektorů g 1, g 2,..., g n V a h 1, h 2,..., h m W tvoří báze
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
15. Nulové body a póly. Věta. Je-li funkce f : G holomorfní v oblasti G a f(z 0 ) 0 pro z 0 G, pak
5. Nulové body a póly Věta. Je-li funkce f holomorfní v oblasti G C, a f(z 0 ) 0 pro bod z 0 G, pak existuje okolí U(z 0 ) bodu z 0 takové, že f(z) 0 pro z U(z 0 ). Definice: Je-li funkce f holomorfní
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost
Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.
2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny
teorie logických spojek chápaných jako pravdivostní funkce
Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových
Kategorie. Od množin ke kategorii. Pepa Svoboda
Kategorie Pepa Svoboda Abstrakt. Přednáška je úvodem do teorie kategorií abstraktní matematické teorie, která hraje klíčovou roli v moderní matematice. Od množin ke kategorii Základními matematickými objekty
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
DERIVACE FUNKCE KOMPLEXNÍ PROMĚNNÉ
DERIVACE FUNKCE KOMPLEXNÍ PROMĚNNÉ vlastnosti holomorfní DERIVACE U reálných funkcí více reálných proměnných nebylo možné definovat derivaci analogicky definici reálné jedné reálné proměnné (nešlo dělit...)
OBECNOSTI KONVERGENCE V R N
FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce
Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část
Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova
FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský
Základy teorie množin
1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a
Dodatek 2: Funkce dvou proměnných 1/9
Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou
Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy
Vysoké učení technické v Brně Fakulta informačních technologií Regulární pologrupy Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Tomáš Masopust Brno, 2006 Obsah Úvod 1 1 Základní definice
Posloupnosti a jejich konvergence POSLOUPNOSTI
Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,
To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.
STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To
transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]
[1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do
Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe
Úvodní opakování. Mocnina a logaritmus Definice ( -tá mocnina). Pro každé klademe a dále pro každé, definujeme indukcí Dále pro všechna klademe a pro Později budeme dokazovat následující větu: Věta (O
4. Topologické vlastnosti množiny reálných
Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině
Afinní transformace Stručnější verze
[1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)
Spojitost a limita funkce
Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové
Kapitola 1: Reálné funkce 1/20
Kapitola 1: Reálné funkce 1/20 Funkce jedné proměnné 2/20 Definice: Necht M R. Jestliže každému x M je přiřazeno jistým předpisem f právě jedno y R, říkáme, že y je funkcí x. x... nezávisle proměnná (neboli
Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace
RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,
Kapitola 9. Rezidua. Matematická analýza 4. KMA/MA o12. Definice 9.1. ( izolovaná singularita )
Kapitola 9. Rezidua Definice 9.. ( izolovaná singularita ) Bod z 0 2 C nazveme izolovanou singularitou (izolovaný singulární bod) funkce f, jestliže i) f není holomorfní v bodě z 0, ii) existuje prstencové
Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně
7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností
Svazy. Jan Paseka. Masarykova univerzita Brno. Svazy p.1/37
Svazy Jan Paseka Masarykova univerzita Brno Svazy p.1/37 Abstrakt Zmíníme se krátce o úplných a distributivních svazech, resp. jaké vlastnosti má řetězec reálných čísel. Svazy p.2/37 Abstrakt V této kapitole
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
9. Bilineární formy. 9. Bilineární formy p. 1/14
9. Bilineární formy 9. Bilineární formy p. 1/14 9. Bilineární formy p. 2/14 Bilineární formy 1. Definice a příklady 2. Klasifikace bilineárních forem 3. Matice bilineární formy 4. Změna báze 5. Kongruentní
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez
Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
VII. Limita a spojitost funkce
VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná
Matematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
Historie matematiky a informatiky Cvičení 2
Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic
označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
METRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
Úvod základy teorie zobrazení
Úvod základy teorie zobrazení V přednášce se budeme zabývat diferenciálním a integrálním počtem funkcí více proměnných. Přednáška navazuje na přednášku atematická analýza 1 z prvního semestru. Proto se
6. Lineární nezávislost a báze p. 1/18
6. Lineární nezávislost a báze 6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze p. 2/18 Lineární nezávislost a báze 1. Závislé a nezávislé vektory 2. Lineární kombinace a závislost
Lineární programování
Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad
2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
Rovnice se separovanými proměnnými
Rovnice se separovanými proměnnými V této kapitole se budeme zabývat následující diferenciální rovnicí: y = g(y)f(x), (1) kde f a g jsou reálné funkce reálné proměnné. Tato rovnice se nazývá rovnice se
15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.
Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
LIMITA A SPOJITOST FUNKCE
PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:
ň ť Č Á ť ň ň Ú Ú Á Ň ď Ú Ů Ý É Ů Ď Č ň ď ň ň ň ň Č ň ň Ď Č ň Š ň Š Š Č ň Ú Š Š Š Ě Ú ť ď ď Á Ď ť É Č ť Ó ň ť Ď Ď Ď Ý Ď Ž Ď Ď Ý Ď Ú ň ň Ď Ď Ý Ď Ď Ď ň ť Ť Ů Ú ň ď ň Ř Ů ň Á Š ť Č ň Š Š ň ň ň ť ť ť ť ť ť
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
Lineární zobrazení. V prvním z následujících tvrzení navíc uvidíme, že odtud plynou a jsou tedy pak rovněž splněny podmínky:
Lineární zobrazení Nechť (V, +, ) a (W, +, ) jsou dva vektorové prostory nad týmž tělesem (T, +, ). Nechť f : V W je zobrazení splňující následující podmínky: ( u, v V)(f(u + v) = f(u) + f(v)), ( s T )(
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
1. Množiny, zobrazení, relace
Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách
Derivace funkce Otázky
funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu
Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.
Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,
Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali
NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro
Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace
Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako
Matematická analýza 1b. 9. Primitivní funkce
Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška
Posloupnosti a jejich konvergence
a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace, integrály.
2 Důkazové techniky, Indukce
Důkazové techniky, Indukce Náš hlubší úvod do matematických formalismů pro informatiku začneme základním přehledem technik matematických důkazů. Z nich pro nás asi nejdůležitější je technika důkazů matematickou
Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno
Teorie množin pro fajnšmekry - TeMno Lenka Macálková BR Solutions 2010 - Orličky 23.2. 27.2.2010 Lenka (Brkos 2010) TeMno 23.2. 27.2.2010 1 / 42 Bylo nebylo... Starověké Řecko - nekonečnost nepochopená
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně
8 Kořeny cyklických kódů, BCH-kódy
24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF
Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální
0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací
)(x 2 + 3x + 4),
3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem
Zobrazení. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010
Zobrazení prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy 2.
Vlastní čísla a vlastní vektory
Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální
Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz
Y36BEZ Bezpečnost přenosu a zpracování dat Róbert Lórencz 1. přednáška Úvod http://service.felk.cvut.cz/courses/y36bez lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2007) Y36BEZ Bezpečnost přenosu a zpracování
MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik
MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,
Matematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 1. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 14. února 2011 Jan Tomeček, tomecek@inf.upol.cz
FREDHOLMOVA ALTERNATIVA
FREDHOLMOVA ALTERNATIVA Pavel Jirásek 1 Abstrakt. V tomto článku se snažíme shrnout dosavadní výsledky týkající se Fredholmovy alternativy (FA). Postupně zmíníme FA na prostorech konečné dimenze, FA pro
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané
1. Obyčejné diferenciální rovnice
& 8..8 8: Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá
p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
Doporučené příklady k Teorii množin, LS 2018/2019
Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x
1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35
1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
Texty k přednáškám z MMAN3: 3. Metrické prostory
Texty k přednáškám z MMAN3: 3. Metrické prostory 3. července 2012 1 Metrika na množině, metrický prostor Pojem vzdálenosti dvou reálných (komplexních) čísel, nebo bodů v rovině či prostoru je známý ze
VEKTOROVÁ POLE VEKTOROVÁ POLE
Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s
Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina
Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
Matematická analýza pro informatiky I. Limita funkce
Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz