Matice lineárních zobrazení
|
|
- Jozef Bezucha
- před 8 lety
- Počet zobrazení:
Transkript
1 Matice lineárních zobrazení Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí n a m nad tělesem T, +,, nechť posloupnosti vektorů g 1, g 2,..., g n V a h 1, h 2,..., h m W tvoří báze těchto vektorových prostorů a nechť f : V W je lineární zobrazení mezi těmito prostory. Nechť pro každé j {1, 2,..., n} jsou prvky a 1j, a 2j,..., a mj T souřadnice vektoru fg j v bázi h 1, h 2,..., h m, takže platí fg j = a 1j h 1 +a 2j h 2 + +a mj h m. Pak matice A = a ij i=1,...,m, j=1,...,n typu m/n nad T, +, se nazývá matice lineárního zobrazení f v bázích g 1, g 2,..., g n a h 1, h 2,..., h m. Zavedeme-li podobně jako dříve též označení g = g 1 g 2... g n a h = h1 h 2..., h m pro zmíněné báze prostorů V, +, a W, +, a k tomu ještě označení fg = fg 1 fg 2... fg n pro posloupnost obrazů vektorů báze g při lineárním zobrazení f, pak právě uvedená definice matice A = a ij lineárního zobrazení f v bázích g a h znamená, že platí rovnost fg = h A, vzpomeneme-li si znovu na násobení matic nad vektorovým prostorem W, +, maticemi nad tělesem T, +,. Nechť V, +, je nenulový vektorový prostor konečné dimenze n nad tělesem T, +,, nechť dále posloupnost vektorů g 1, g 2,..., g n V tvoří bázi tohoto vektorového prostoru a nechť f : V V je lineární transformace tohoto vektorového prostoru. Nechť nyní pro každé j {1, 2,..., n} jsou prvky a 1j, a 2j,..., a nj T souřadnice vektoru fg j v bázi g 1, g 2,..., g n, takže platí fg j = a 1j g 1 + a 2j g a nj g n. Pak čtvercová matice A = a ij i=1,...,n, j=1,...,n řádu n nad T, +, se nazývá matice lineární transformace f v bázi g 1, g 2,..., g n. Zavedeme-li obdobně jako výše označení g = g 1 g 2... g n a fg = fg 1 fg 2... fg n, pak právě uvedená definice 1
2 matice A = a ij lineární transformace f v bázi g podobně jako výše znamená, že tentokrát platí rovnost fg = g A, opět s využitím násobení matic nyní nad vektorovým prostorem V, +, maticemi nad tělesem T, +,. Věta. Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí nad tělesem T, +, a nechť posloupnosti g 1, g 2,..., g n a h 1, h 2,..., h m tvoří báze těchto vektorových prostorů. Pak přiřazení, v němž každému lineárnímu zobrazení f : V W odpovídá jeho matice A v bázích g 1, g 2,..., g n a h 1, h 2,..., h m, je vzájemně jednoznačnou korespondencí mezi všemi lineárními zobrazeními f : V W a všemi maticemi A = a ij typu m/n nad T, +,. Důkaz. Mají-li dvě lineární zobrazení f, g : V W stejnou matici v uvedených bázích, pak to znamená, že fg 1 = gg 1, fg 2 = gg 2,..., fg n = gg n. Podle poslední věty z minulé kapitoly pak ale f a g jsou jedno a to stejné lineární zobrazení. Je tedy zmíněné přiřazení prosté. Vezměme dále libovolnou matici A = a ij typu m/n nad T, +,, a uvažme vektory z j = a 1j h 1 + a 2j h a mj h m pro všechna j {1, 2,..., n}. Pak podle poslední věty z minulé kapitoly existuje lineární zobrazení f : V W takové, že fg 1 = z 1, fg 2 = z 2,..., fg n = z n. Maticí tohoto lineárního zobrazení ve zmíněných bázích je ovšem matice A. Je tedy popsaná korespondence opravdu vzájemně jednoznačná. Tvrzení. Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí n a m nad tělesem T, +,. Nechť f : V W je lineární zobrazení mezi těmito prostory a nechť A = a ij je matice tohoto lineárního zobrazení v bázích g 1, g 2,..., g n a h 1, h 2,..., h m zmíněných vektorových prostorů. 2
3 Nechť u je libovolný vektor z V, nechť x 1, x 2,..., x n jsou souřadnice vektoru u v bázi g 1, g 2,..., g n a nechť y 1, y 2,..., y m jsou souřadnice vektoru fu v bázi h 1, h 2,..., h m. Pak platí y 1 y 2. y m x 1 x 2 = A.. Důkaz. Označme jako na začátku g = g 1 g 2... g n, h = h 1 h 2..., h m a fg = fg1 fg 2... fg n. Dále označme x = x 1 x 2... x n, y = y1 y 2... y m. Pak zase můžeme psát u = g x a fu = h y. Poněvadž f je lineární zobrazení, z první z těchto dvou rovností plyne, že fu = fg x. Současně, jak bylo řečeno výše, podle definice matice A = a ij lineárního zobrazení f v bázích g a h máme rovnost fg = h A. Dosazením do předchozí rovnosti opět s využitím asociativity příslušného násobení matic dostáváme, že x n fu = h A x. To znamená, že A x jsou souřadnice vektoru fu v bázi h. Ovšem také y jsou souřadnice vektoru fu v téže bázi h. Vzhledem k jednoznačnosti souřadnic vektoru v dané bázi odtud vyplývá rovnost y = A x, kterou jsme měli ověřit. Tvrzení. Nechť U, +,, V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí nad tělesem T, +, a nechť f 1, f 2,..., f n, g 1, g 2,..., g m a h 1, h 2,..., h k jsou báze těchto vektorových prostorů. Nechť f : U V a g : V W jsou lineární zobrazení vektorových prostorů, nechť A = a ij je matice zobrazení f v bázích f 1, f 2,..., f n a g 1, g 2,..., g m a nechť B = b hi je matice zobrazení g v bázích g 1, g 2,..., g m a h 1, h 2,..., h k. Potom matice B A je maticí složeného zobrazení g f : U W v bázích f 1, f 2,..., f n a h 1, h 2,..., h k. Důkaz. Užijme opět zavedeného značení f = f 1 f 2... f n, 3
4 g = g 1 g 2... g m, h = h1 h 2..., h k a také ff = ff1 ff 2... ff n, gg = gg 1 gg 2... gg m. K tomu položme gff = g ff, kde g ff má analogický význam jako ff, takže pak obdobně předchozímu značení můžeme psát též gff = gff 1 gff 2... gff n. Nyní zase podle definic matic A = a ij a B = b hi lineárních zobrazení f a g v příslušných bázích máme rovnosti ff = g A a gg = h B. Poněvadž g je lineární zobrazení, jeho aplikací na jednotlivé vektory v posloupnosti ff pak z první z uvedených rovností obdržíme, že gff = gg A. Dosazením druhé z předchozích dvou rovností do této poslední rovnosti s opětovným využitím asociativity příslušného násobení matic takto dostáváme, že gff = h B A. To ale právě znamená, že matice B A je maticí složeného lineárního zobrazení g f v bázích f a h, což bylo třeba ověřit. Důsledek. Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí nad tělesem T, +,, nechť g 1, g 2,..., g n a h 1, h 2,..., h m jsou báze těchto prostorů, nechť f : V W je izomorfismus těchto prostorů a nechť A je matice izomorfismu f v bázích g 1, g 2,..., g n a h 1, h 2,..., h m. Pak platí n = m, A je čtvercová regulární matice řádu n = m a matice A 1 k ní inverzní je maticí inverzního izomorfismu f 1 : W V v bázích h 1, h 2,..., h m a g 1, g 2,..., g n. Důkaz. Izomorfní vektorové prostory musí mít stejnou dimenzi, takže n = m a matice A je čtvercová. Nechť dále B je matice inverzního izomorfismu f 1 v bázích h 1, h 2,..., h m a g 1, g 2,..., g n. Pak podle předchozího tvrzení je matice A B maticí složeného zobrazení f f 1, jímž je ale identické zobrazení id W. Maticí této identické transformace prostoru W, +, v bázi h 1, h 2,..., h m je ovšem jednotková matice E m. Odtud plyne, že A B = E m, takže A je regulární matice a B = A 1. 4
5 Nechť V, +, je nenulový vektorový prostor konečné dimenze nad tělesem T, +, a nechť f 1, f 2,..., f n a g 1, g 2,..., g n jsou dvě báze tohoto prostoru. Již dříve jsme definovali, co znamená, že čtvercová matice A řádu n nad T, +, je maticí přechodu od báze f 1, f 2,..., f n k bázi g 1, g 2,..., g n. Připomeňme, že to nastává, pokud pro každé j {1, 2,..., n} platí, že v j-tém sloupci matice A jsou uloženy souřadnice vektoru g j v bázi f 1, f 2,..., f n. Nyní je na místě si všimnout, že A je takovou maticí přechodu právě tehdy, když A je maticí identického zobrazení id V prostoru V, +, do něj samotného vzhledem k bázím g 1, g 2,..., g n a f 1, f 2,..., f n v tomto pořadí. Tehdy totiž také pro každé j {1, 2,..., n} platí, že v j-tém sloupci matice A jsou obsaženy souřadnice vektoru g j v bázi f 1, f 2,..., f n. Věnujme se nyní otázce, jak se změní matice daného lineárního zobrazení mezi dvěma vektorovými prostory konečných dimenzí, přejdeme-li k jiným bázím těchto vektorových prostorů. Kvůli přehlednosti budeme ve formulacích následujících poznatků používat už jen stručná značení bází příslušných vektorových prostorů konečných dimenzí. Bude-li tedy V, +, nenulový vektorový prostor konečné dimenze n a bude-li posloupnost vektorů f 1, f 2,..., f n některou bází tohoto prostoru, kterou jsme už také zapisovali ve tvaru f = f 1 f 2... f n, budeme nadále pro tuto bázi prostoru V, +, užívat už jen krátké označení f. Důsledek. Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí nad tělesem T, +,. Nechť f a g jsou dvě báze prostoru V, +, a nechť h a k jsou dvě báze prostoru W, +,. Nechť P je matice přechodu od báze f k bázi g a nechť Q je matice přechodu od báze h k bázi k. Nechť f : V W je lineární zobrazení mezi uvedenými prostory, nechť A je matice zobrazení f v bázích f a h a nechť B je matice zobrazení f v bázích g a k. Pak platí B = Q 1 A P. 5
6 Důkaz. Poněvadž f id V = id W f je totéž zobrazení f a poněvadž podle výše uvedeného tvrzení o matici složeného lineárního zobrazení a podle komentáře předcházejícího tomuto důsledku je A P maticí zobrazení f id V a Q B je maticí zobrazení id W f, obojí v bázích g a h, plyne odtud, že A P = Q B, takže B = Q 1 A P. Jiný důkaz. Podle definic matic přechodů P a Q mezi zmíněnými bázemi daných vektorových prostorů máme rovnosti g = f P a k = h Q. Ze druhé z těchto rovností vynásobením maticí Q 1 zprava plyne též rovnost h = k Q 1. Podle definic matic A a B lineárního zobrazení f v uvedených bázích daných prostorů máme dále rovnosti ff = h A a fg = k B. Poněvadž f je lineární zobrazení, z předchozích rovností pak ale vyplývá rovněž, že fg = ff P = ff P = h A P = k Q 1 A P. To ovšem znamená, že matice Q 1 A P je maticí zobrazení f v bázích g a k. Z jednoznačnosti takové matice potom plyne, že B = Q 1 A P. Půjde-li dále jen o lineární transformaci jednoho vektorového prostoru konečné dimenze a o její matice ve dvou bázích tohoto prostoru, pak se formulace posledního důsledku zjednoduší: Důsledek. Nechť V, +, je nenulový vektorový prostor konečné dimenze nad tělesem T, +,, nechť f a g jsou dvě báze tohoto prostoru a nechť P je matice přechodu od báze f k bázi g. Nechť f : V V je lineární transformace prostoru V, +,, nechť A je matice transformace f v bázi f a nechť B je matice transformace f v bázi g. Pak platí B = P 1 A P. 6
Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.
Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice
Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů
Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ) Připomeňme, že konečná posloupnost u 1, u 2,, u n vektorů z V je
Lineární zobrazení. V prvním z následujících tvrzení navíc uvidíme, že odtud plynou a jsou tedy pak rovněž splněny podmínky:
Lineární zobrazení Nechť (V, +, ) a (W, +, ) jsou dva vektorové prostory nad týmž tělesem (T, +, ). Nechť f : V W je zobrazení splňující následující podmínky: ( u, v V)(f(u + v) = f(u) + f(v)), ( s T )(
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Matice. a m1 a m2... a mn
Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.
Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 000/00 Michal Marvan 3. Matice lineárního zobrazení V této přednášce budeme používat indexy dvoího druhu:
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Lineární algebra : Báze a dimenze
Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,
Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,
Obsah Lineární rovnice Definice 77 Uvažujme číselné těleso T a prvky a 1,, a n, b T Úloha určit všechny n-tice (x 1,, x n ) T n, pro něž platí n a i x i = a 1 x 1 + + a n x n = b, i=1 se nazývá lineární
Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).
Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1
15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.
Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]
[1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
Algebraické struktury s jednou binární operací
16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte
ALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
Soustava m lineárních rovnic o n neznámých je systém
1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...
10. DETERMINANTY " # $!
10. DETERMINANTY $ V této kapitole zavedeme determinanty čtvercových matic libovolného rozměru nad pevným tělesem, řekneme si jejich základní vlastnosti a naučíme se je vypočítat včetně příkladů jejich
3 Lineární kombinace vektorů. Lineární závislost a nezávislost
3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?
Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A
Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)
4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT
Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT 2 0 1 7 Obsah 1 Vektorové prostory 2 1 Vektorový prostor, podprostory........................ 2 2 Generování podprostor u............................
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
18. První rozklad lineární transformace
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 18. První rozklad lineární transformace Úmluva. Vtéto přednášce V je vektorový prostor
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT
Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT 2 0 1 8 Obsah 1 Vektorové prostory 1 1 Vektorový prostor, podprostory........................ 1 2 Generování podprostor u............................
Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.
Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak
Lineární algebra : Lineární zobrazení
Lineární algebra : Lineární zobrazení (6. přednáška František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 20. května 2014, 22:40 1 2 6.1 Lineární zobrazení Definice 1. Buďte P a Q dva lineární prostory
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální
GEOMETRICKÁ ZOBRAZENÍ. Josef Janyška
GEOMETRICKÁ ZOBRAZENÍ Josef Janyška 21. února 2019 Obsah 1 LINEÁRNÍ ZOBRAZENÍ NA VEKTOROVÝCH PROSTORECH 1 1.1 Lineární zobrazení vektorových prostorů.............. 1 1.2 Invariantní podprostory.......................
Cvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
Symetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
6 Lineární geometrie. 6.1 Lineární variety
6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení
Lineární algebra : Změna báze
Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}
Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
Vlastní čísla a vlastní vektory
Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Matematika 2 pro PEF PaE
Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina
3. ANTAGONISTICKÉ HRY
3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
Drsná matematika I 5. přednáška Vektory a matice
Drsná matematika I 5. přednáška Vektory a matice Jan Slovák Masarykova univerzita Fakulta informatiky 20. 3. 2007 Obsah přednášky 1 Literatura 2 Vektory 3 Matice nad skaláry 4 Ekvivalentní úpravy matic
Matice přechodu. Pozorování 2. Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např.
Matice přechodu Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např. u příkladu 7 (v ) dostaneme: Nyní bychom mohli postupovat jako u matice homomorfismu
6. přednáška 5. listopadu 2007
6. přednáška 5. listopadu 2007 Souvislost diferenciálu a parciálních derivací. Diferenciál implikuje parciální derivace a spojité parciální derivace implikují diferenciál. Tvrzení 2.3. Když je funkce f
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).
Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem
1/10. Kapitola 12: Soustavy lineárních algebraických rovnic
1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11
Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy
Vysoké učení technické v Brně Fakulta informačních technologií Regulární pologrupy Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Tomáš Masopust Brno, 2006 Obsah Úvod 1 1 Základní definice
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
FREDHOLMOVA ALTERNATIVA
FREDHOLMOVA ALTERNATIVA Pavel Jirásek 1 Abstrakt. V tomto článku se snažíme shrnout dosavadní výsledky týkající se Fredholmovy alternativy (FA). Postupně zmíníme FA na prostorech konečné dimenze, FA pro
Soustavy lineárních rovnic
Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Vlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
4. Trojúhelníkový rozklad p. 1/20
4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad
Co je to univerzální algebra?
Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé