15. Nulové body a póly. Věta. Je-li funkce f : G holomorfní v oblasti G a f(z 0 ) 0 pro z 0 G, pak
|
|
- Zdenka Ladislava Lišková
- před 8 lety
- Počet zobrazení:
Transkript
1 5. Nulové body a póly Věta. Je-li funkce f holomorfní v oblasti G C, a f(z 0 ) 0 pro bod z 0 G, pak existuje okolí U(z 0 ) bodu z 0 takové, že f(z) 0 pro z U(z 0 ). Definice: Je-li funkce f holomorfní v oblasti G C, pak říkáme, že má v bodě z 0 G nulový bod (kořen), jestliže je f(z 0 ) = 0. Definice: Je-li funkce f holomorfní v oblasti G C a má v bodě z 0 G nulový bod, t.j. f(z 0 ) = 0, pak nastanou dvě možnosti: () 0 pro z G; (2) existuje okolí U(z 0 ) bodu z 0 takové, že f(z) 0 pro z U(z 0 ), z z 0. Pak existuje jednoznačně určené číslo n N takové, že (z z 0 ) n g(z), g(z) 0, z U(z 0 ). Definice: Číslo n z předchozí věty se nazývá řád nulového bodu (kořene) funkce f. Věta. Funkce f : G C, která je holomorfní v oblasti G má v bodě z 0 G nulový bod řádu n pravě když platí: Existuje okolí U(z 0 ) bodu z 0 takové, že pro z U(z 0 ) jsou splněny tyto ekvivalentní podmínky: (a) (z z 0 ) k, a n 0; k=n (b) (z z 0 ) n g(z), kde funkce g je holomorfní a různá od nuly; (c) f(z 0 ) = f (z 0 ) =... = f (n ) (z 0 ) = 0 a f (n) (z 0 ) 0. Věta. Je-li funkce f : G holomorfní v oblasti G a f(z 0 ) 0 pro z 0 G, pak existuje okolí U(z 0 ) bodu z 0 takové, že je funkce holomorfní a nenulová v okolí U(z f(z) 0). Věta. Je-li funkce f : G holomorfní v oblasti G a má v bodě z 0 G nulový bod řádu n, pak existuje okolí U(z 0 ) bodu z 0 takové, že pro z U(z 0 ), z z 0 platí: Je pak h(z), h(z) 0. (z z 0 ) n lim z z 0. Věta. Nechť je funkce f : G C holomorfní v oblasti G {z 0 } a lim z z0, pak existuje okolí U(z 0 ) bodu z 0 a číslo n N takové,že pro z U(z 0 ), z z 0 je g(z) (z z 0 ) n, kde funkce g(z) je holomorfní v U(z 0 ). Definice: Bod z 0, z předchozí věty se nazývá pólem řádu n funkce f. Definice: Izolované singularity Jestliže je funkce f : G C holomorfní v oblasti G {z 0 }, pak bod z 0 je izolovaným singulárním bodem funkce f v oblasti G. Klasifikace izolovaných singulárních bodů. Je-li bod z 0 G izolovaným singulárním bodem funkce f : G C, která je holomorfní v oblasti G {z 0 }, pak nastane právě jedna z možností: I. Odstranitelná singularita a) lim z z0 w 0 C; 52
2 b) (z z 0 ) k, 0 < z z 0 < r a a 0 = w 0 ; c) funkce f (z) = f(z), z z 0, f (z 0 ) = w 0 je holomorfní v bodě z 0. II. Pól n-tého řádu a) z z0 lim ; b) existuje funkce g(z) holomorfní v bodě z 0 taková, že g(z) (z z 0 a g(z ) n 0 ) 0; c) z z0 lim f(z)(z z 0 ) n = w 0 C, w 0 0; d) funkce má v bodě z f(z) 0 nulový bod (kořen) řádu n. III. Neodstranitelná (podstatná) singularita a) lim z z0 f(z) neexistuje; b) lim z z0 f(z)(z z 0 ) m neexistuje pro všechna m Z. Obdobně klasifikujeme izolované singularity v bodě pro funkci f(z), která je holomorfní na nějakém okolí U( ) bodu : I. Odstranitelná singularita lim w 0 C. z Nulový bod: Je-li w 0 = 0, pak má funkce f(z) v bodě nulový bod (kořen). Jeho řád je roven řádu nulového bodu funkce g(z) = f ( z ) v bodě z0 = 0. Tedy funkce f(z) má v bodě nulový bod řádu n právě když je lim z z n w 0, w C. II. Pól n-tého řádu f(z) Funkce f(z) má v bodě pól n tého řádu, jestliže je lim = w z z n 0, w 0 C, w 0 0. III. Neodstranitelná (podstatná) singularita Pokud nemá funkce f(z) v bodě odstranitelnou singularitu nebo pól, pak říkáme, že má v bodě neodstranitelnou singularitu. Potom lim z f(z) neexistuje. 6. Laurentovy řady Definice: Řada tvaru ( ) (z z 0 ) k se nazývá Laurentova řada se středem v bodě z 0. Mocninná řada ( ) (z z 0 ) k se nazývá regulární část řady ( ) a řada ( ) (z z 0 ) k = m= a m (z z 0 ) m se nazývá hlavní část řady ( ). Poznámka: Hlavní část Laurentovy řada je mocninná řada v proměnné z z 0. Jejím oborem konvergence je pak množina z z < r z z 0 > 0 r, 0 r. 53
3 Definice: Řada tvaru ( ) se nazývá Laurentova řada se středem v bodě. Mocninná řada z k ( ) z k se nazývá regulární část řady ( ) a řada ( ) z = m z m m= se nazývá hlavní část řady ( ). Věta. Obor konvergence Pro Laurentovu řadu ( ) nastane jedna z možností: a) regulární část ( ) řady konverguje pro z z 0 < r, hlavní část ( ) konverguje pro z z 0 > r 2 a r 2 < r. Řada ( ) pak konvegruje absolutně v mezikruží r 2 < z z 0 < r. b) regulární část ( ) řady konverguje pro z z 0 < r, hlavní část ( ) konverguje pro z z 0 > r 2 a r 2 > r. Řada ( ) pak nekonverguje nikde. c) regulární část ( ) řady konverguje pro z z 0 r, a hlavní část ( ) konverguje pro z z 0 r. Řada ( ) pak konverguje pouze v bodech kružnice z z 0 = r. Značení: Označujeme symbolem P (z 0 ; r, R) mezikruží {z; r < z z 0 < R}, kde 0 r R. Věta. Cauchyův vzorec pro mezikruží Nechť je funkce f : G C holomorfní v oblasti G, která obsahuje mezikruží P (z 0 ; r, R). Jsou-li (C ) a (C 2 ) kladně orientované kružnice C = {z; z z 0 = r }, C 2 = {z; z z 0 = r 2 }, kde r < r < r 2 < R, pak pro všechny body z P (z 0 ; r, R) je 2πj (C 2 ) w z dw 2πj (C ) w z dw. Věta. Laurentova řada holomorfní funkce Je-li funkce f : G C holomorfní v oblasti G, která obsahuje mezikruží P (z 0 ; r, R), pak přičemž (z z 0 ) k, r < z z 0 < R, = 2πj (C ) dw, (w z 0 ) k+ kde (C ) je kladně orientovaná kružnice K = {z; z z 0 = r, r < r < R. 7. Klasifikace singulárních bodů, reziduum funkce Věta. Je-li funkce f(z) holomorfní v prstencovém okolí bodu z 0 a je-li (z z 0 ) k, z 0 C, 54
4 resp. z k, z 0 = je její rozvoj v Laurentovu řadu, pak platí: a) Funkce f(z) má v bodě z 0 odstranitelnou singularitu, právě když je hlavní část Laurentovy řady nulová, t.j. = 0, k. b) Funkce f(z) má v bodě z 0 pól řádu n, právě když má hlavní část Laurentovy řady koeficienty = 0 pro k < n a a n 0. c) Funkce f(z) má v bodě z 0 neodstranitelnou singularitu, právě když má hlavní část Laurentovy řady nekonečně mnoho nenulových koeficientů. Definice: Reziduum funkce Jestliže má funkce f(z), která je holomorfní v prstencovém okolí bodu z 0 rozvoj v Laurentovu řadu resp. (z z 0 ) k, z 0 C, z k, z 0 =, pak číslo a, resp. a nazýváme reziduem funkce f(z) v bodě z 0 a označujeme jej symbolem ( ) res z0 a, resp. ( ) res a. Poznámka: Význam residua Je-li (z z 0 ) k, 0 < z z 0 < r, rozvoj funkce f(z) v Laurentovu řadu v okolí bodu z 0, pak pro každou kladně orientovanou kružnici (K ρ ), K ρ = {z; z z 0 = ρ, 0 < ρ < r} je (K ρ) Obdobně pro z 0 = platí: Je-li f(z) dz = 2πja = 2πj res z0 f(z)., z > r, zk rozvoj funkce f(z) v Laurentovu řadu v okolí bodu, pak pro každou záporně orientovanou kružnici (K ρ ), K ρ = {z; z z 0 = ρ, 0 < r < ρ} je (K ρ) f(z) dz = 2πja = 2πj res f(z). Věta. Reziduová věta Nechť je funkce f(z) holomorfní v oblasti G C s výjímkou nejvýše konečného počtu bodů z, z 2,..., z n a nechť (C ) je kladně orientovaná uzavřená cesta, která spolu se svým vnitřkem IntC leží v oblasti G. Jestliže body z, z 2,..., z n leží ve vnitřku IntC cesty, pak je ( ) (C ) n f(z) dz = 2πj res zk f(z). 55 k=
5 Poznámka: Výpočet residuí V bodě z 0 : A) pól. řádu: Nechť funkce h(z) a g(z) jsou holomorfní v bodě z 0 a h(z 0 ) 0, g(z 0 ) = 0, g (z 0 ) 0. Potom má funkce h(z) g(z) v bodě z 0 pól. řádu a ( ) res z0 h(z 0) g (z 0 ). B) pól n-tého řádu: Nechť má funkcef(z) v bodě z 0 pól řádu n, pak V bodě : ( ) res z0 (n )! lim z z 0 [(z z 0 ) n f(z)] (n ). A) odstranitelná singularita: Nechť má funkce f(z) v bodě odstranitelnou singularitu, pak: ( ) res z lim z(f( ) f(z)) = z lim z 2 f (z); B) pól n-tého řádu: Nechť má funkcef(z) v bodě pól řádu n, pak ( ) res ( )n (n + )! lim [ z z n+2 f (n+) (z) ]. C) neodstranitelná singularita: Reziduum v tomto případě můžeme získat z Laurentovy řady. Častěji využíváme této skutečnosti. Je-li funkce f(z) holomorfní v C s vyjímkou nejvýše konečného počtu bodů z, z 2,..., z m, pak ( ) m k= res zk f(z) + res 0. 56
Kapitola 9. Rezidua. Matematická analýza 4. KMA/MA o12. Definice 9.1. ( izolovaná singularita )
Kapitola 9. Rezidua Definice 9.. ( izolovaná singularita ) Bod z 0 2 C nazveme izolovanou singularitou (izolovaný singulární bod) funkce f, jestliže i) f není holomorfní v bodě z 0, ii) existuje prstencové
Komplexní analýza. Reziduová věta a její aplikace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Reziduová věta a její aplikace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Reziduová věta a její aplikace / Motivace Mějme
ŘADY KOMPLEXNÍCH FUNKCÍ
ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných řadách. Definice říká, že n=0 z n = z, jestliže z je limita částečných součtů řady z
MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.
MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% POJMY, JEJICHŽ ZNALOST SE OČEKÁVÁ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% POJMY, JEJICHŽ ZNALOST SE OČEKÁVÁ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% množina komplexních čísel algebraický zápis komplexního
SINGULARITY A REZIDUA IZOLOVANÉ SINGULARITY
SINGULARITY A REZIDUA Zatím to vypadalo, že jsme si definovali šílený komplexní integrál a nakonec jsme se jej naučili počítat. Ukážeme, že pomocí křivkového integrálu velmi elegantně spočítáme některé
Jednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je
74 Příloha A Funkce Γ(z) Úvod Jednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je nesporně funkce Γ(z). Její důležitost se vyrovná exponenciální funkci i funkcím goniometrickým.
Matematika 3. Úloha 1. Úloha 2. Úloha 3
Matematika 3 Úloha 1 Co lze říci o funkci imaginární část komplexního čísla která každému komplexnímu číslu q přiřazuje číslo Im(q)? a. Je to funkce mnohoznačná. b. Je to reálná funkce komplexní proměnné.
Reprezentace holomorfní funkce Laurentovou řadou
98 Kapitola 5 Reprezentace holomorfní funkce Laurentovou řadou Úvod V předchozí kapitole jsme viděli, že každou holomorfní funkci je možné lokálně rozvést v mocninnou řadu. Tento rozvoj umožňuje efektivní
ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI
ŘADY KOMPLEXNÍH FUNKÍ V kapitole si ukážeme, že holomorfní funkce a mocninné řady skoro jedno jsou. Někomu... OBENÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných
je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.
10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány
Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky
Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.
1 Nulové body holomorfní funkce
Nulové body holomorfní funkce Bod naýváme nulový bod funkce f), jestliže f ) =. Je-li funkce f) holomorfní v bodě, pak le funkci f) v jistém okolí bodu rovinout v Taylorovu řadu: f) = n= a n ) n, a n =
13. přednáška 13. ledna k B(z k) = lim. A(z) = M(z) m 1. z m.
13. přednáška 13. ledna 2010 Důkaz. M = n=0 a nz n a N = n=0 b nz n tedy buďte dvě mocninné řady, které se jako funkce shodují svými hodnotami na nějaké prosté posloupnosti bodů z k C konvergující k nule.
Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze
Komplexní analýza Holomorfní funkce Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Holomorfní funkce 1 / 8 Derivace Definice Necht f je komplexní
Limita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
M4140 Vybrané partie z matematické analýzy Přírodovědecká fakulta MU
M4140 Vybrané partie z matematické analýzy Přírodovědecká fakulta MU jaro 2010 Rozsah 4/2/0. 6 kr. Ukončení: zk. 1) Obyčejné diferenciální rovnice: 1.1. Úvod základní pojmy, přímé metody řešení některých
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
11. Číselné a mocninné řady
11. Číselné a mocninné řady Aplikovaná matematika III, NMAF072 M. Rokyta, KMA MFF UK ZS 2017/18 11.1 Základní pojmy Definice Necht {a n } C je posloupnost komplexních čísel. Pro m N položme s m = a 1 +
1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3
VII. Číselné řady Obsah 1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady...... 2 1.2 Základnívlastnostiřad..... 3 2 Řady s nezápornými členy 3 2.1 Kritériakonvergenceadivergence...... 3 3 Řady absolutně
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
1 Posloupnosti a řady.
1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže
LEKCE10-RAD Otázky
Řady -ekv ne ŘADY ČÍSEL 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání bodů). Z hlavních struktur reálných čísel zbývá
Kapitola 4: Extrémy funkcí dvou proměnných 1/5
Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje
3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A =
3 Grafy a matice Definice 32 Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice, anebo lze-li
Zobecněný Riemannův integrál
Zobecněný Riemannův integrál Definice (Zobecněný Riemannův integrál). Buď,,. Nechť pro všechna existuje určitý Riemannův integrál. Pokud existuje konečná limita, říkáme, že zobecněný Riemannův integrál
Z transformace. Definice. Z transformací komplexní posloupnosti f = { } f n z n, (1)
Z transformace Definice Z transformací komplexní posloupnosti f = { roumíme funkci F ( definovanou vtahem F ( = n, ( pokud řada vpravo konverguje aspoň v jednom bodě 0 C Náev Z transformace budeme také
Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2
Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel
Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně
7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
Matematika pro Kybernetiku Lecture Notes
Komplexní čísla Základní pojmy analýzy v C Holomorfní funkce Integrální reprezentace holomorfní funkce Reprezentace holomorfní funkce mocninnou řadou Reprezentace holomorfní funkce Laurentovou řadou Reziduová
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
Spojitost a limita funkce
Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové
Posloupnosti a jejich konvergence POSLOUPNOSTI
Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Matematika I (KMI/5MAT1)
Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny
Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
8. Elementární funkce. I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k k!.
8. Elementární funkce I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem ( ) e z z k = k!. Vlastnosti exponenciální funkce: a) řada ( ) konverguje absolutně
Matematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak,
Podobnost matic Definice 84 Dány matice A, B M n (C) Jestliže existuje regulární matice P M n (C) tak, že B = P 1 AP, pak říkáme, že matice B je podobná matici A a píšeme A B Takto zavedená binární relace
Základy matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
DERIVACE FUNKCE KOMPLEXNÍ PROMĚNNÉ
DERIVACE FUNKCE KOMPLEXNÍ PROMĚNNÉ vlastnosti holomorfní DERIVACE U reálných funkcí více reálných proměnných nebylo možné definovat derivaci analogicky definici reálné jedné reálné proměnné (nešlo dělit...)
To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.
STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Doc. RNDr. Ondřej Kalenda, PhD., DSc.
Úvod do komplexní analýzy Doc. RNDr. Ondřej Kalenda, PhD., DSc. Texty k přednáškám doplněny důkazy Obsah Úvod 3. Množina komplexních čísel.......................................... 3.2 Komplexní funkce
1/15. Kapitola 2: Reálné funkce více proměnných
1/15 Kapitola 2: Reálné funkce více proměnných Vlastnosti bodových množin 2/15 Definice: ε-ové okolí... O ε (X) = {Y R n ρ(x, Y ) < ε} prstencové ε-ové okolí... P ε (X) = {Y R n 0 < ρ(x, Y ) < ε} Definice:
ž ů Ž ž ž Ž Ž š ř Ž ž ď ř ó š ž š Ž ž ď ž š ď Ž ů ř ž ž ř Š ž ř ř š ň ůž ž ř ý ř š ď š ů ž ý ž š Ž ř ř ř ř ž š š ř ž ř ř š ó ř ž š ž ž ž ý ú ú ž ž ó ó ď ť ž š ž š ý ž ý ď ž ř ž ž ž ý ř ž Ť ž ž ž ž ý ř
Nekonečné číselné řady. January 21, 2015
Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =
Posloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek
1. Matematická analýza definice (MP leden 2010)
1. Matematická analýza definice (MP leden 2010) Základní pojmy a definice 1. Definujte metrický prostor, otevřené a uzavřené množiny, hraniční bod množiny. Metrickýprostor jedvojice(m, d),kde M jemnožinabodů
Reziduovaná zobrazení
Reziduovaná zobrazení Irina Perfilieva Irina.Perfilieva@osu.cz 1. března 2015 Outline 1 Reziduované zobrazení 2 Izotónní/Antitónní zobrazení Definice Necht A, B jsou uspořádané množiny. Zobrazení f : A
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Soustavy lineárních rovnic-numerické řešení
Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22
Obsah. 1. Komplexní čísla
KOMPLEXNÍ ANALÝZA - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Komplexní čísla 1 2. Holomorfní funkce 3 3. Elementární funkce komplexní proměnné 4 4. Křivkový integrál 7 5. Index bodu vzhledem ke křivce 9 6.
MATEMATIKA 2. Sbírka úloh. RNDr. Edita Kolářová ÚSTAV MATEMATIKY
MATEMATIKA Sbírka úloh RNDr. Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika. Tato sbírka je doplněním textu Matematika. Navazuje
a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.
Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační
INTEGRACE KOMPLEXNÍ FUNKCE
INTEGRAE KOMPLEXNÍ FUNKE LEKE34-KIN auchyova obecná auchyova auchyův vzorec vičení KŘIVKOVÝ INTEGRÁL Na konci kapitoly o derivaci je uvedena souvislost existence derivace s potenciálním polem. Existuje
15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital
V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí
Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.
Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné
Metody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
Úvod základy teorie zobrazení
Úvod základy teorie zobrazení V přednášce se budeme zabývat diferenciálním a integrálním počtem funkcí více proměnných. Přednáška navazuje na přednášku atematická analýza 1 z prvního semestru. Proto se
Otázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
Soustavy lineárních rovnic-numerické řešení. October 2, 2008
Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a
[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}
Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
1. Posloupnosti čísel
1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina
Posloupnosti a jejich konvergence
a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace, integrály.
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
OBECNOSTI KONVERGENCE V R N
FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce
Kapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.
Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,
Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx =
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Věta 1 (Abelovo-Dirichletovo kritérium konveregnce Newtonova integrálu). Necht a R, b R a necht a < b. Necht f : [a, b) R je
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Matematika pro telekomunikace a radiotechniku
Matematika pro telekomunikace a radiotechniku Prof. RNDr. Jan Hamhalter, CSc. katedra matematiky FEL ČVUT e-mail: hamhalte@math.feld.cvut.cz tel: 224353587 web: http://math.feld.cvut.cz//hamhalte 9. listopadu
i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.
Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k
Vlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Vzorové řešení zkouškové písemky
Vzorové řešení zkouškové písemk Funkce komplexní proměnné a integrální transformace doc. RNDr. Marek Lampart, Ph.D. 4. prosince 7 Obecná pravidla čas: 9 minut počet zadaných příkladů: 6 hodnocení: každý
Číselné posloupnosti
Číselné posloupnosti Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 43 Pojem posloupnosti Každé zobrazení N do R nazýváme číselná posloupnost. 1 a 1, 2 a 2, 3 a
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
9. Vícerozměrná integrace
9. Vícerozměrná integrace Tomáš Salač Ú UK, FF UK LS 2017/18 Tomáš Salač ( Ú UK, FF UK ) 9. Vícerozměrná integrace LS 2017/18 1 / 29 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných
2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s