Ing. Jan BRANDA PRUŽNOST A PEVNOST



Podobné dokumenty
Ing. Jan BRANDA PRUŽNOST A PEVNOST

Namáhání na tah, tlak

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

Dovolené napětí, bezpečnost Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

SOU plynárenské Pardubice Mechanika - Statika - příhradové konstrukce

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Napětí v ohybu: Výpočet rozměrů nosníků zatížených spojitým zatížením.

OVMT Mechanické zkoušky

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

Sada 2 Dřevěné a ocelové konstrukce

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

CZ.1.07/1.5.00/

Deformace nosníků při ohybu.

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

POŽADAVKY KE ZKOUŠCE Z PP I

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Steinerova věta a průřezové moduly. Znění a použití Steinerovy věty. Určeno pro druhý ročník strojírenství M/01. Vytvořeno červen 2013

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

VY_32_INOVACE_C 07 03

Identifikátor materiálu: ICT 1 7

Teorie prostého smyku se v technické praxi používá k výpočtu styků, jako jsou nýty, šrouby, svorníky, hřeby, svary apod.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

BAKALÁŘSKÁ PRÁCE. Návrh rozměru čelních ozubených kol je proveden podle ČSN ČÁST 4 PEVNOSTNÍ VÝPOČET ČELNÍCH A OZUBENÝCH KOL.

TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59

trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem.

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

4. Statika základní pojmy a základy rovnováhy sil

Zkoušky vlastností technických materiálů

Šroubovaný přípoj konzoly na sloup

Organizace a osnova konzultace III-IV

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa

10.1. Spoje pomocí pera, klínu. hranolového tvaru (u klínů se skosením na jedné z ploch) kombinaci s jinými druhy spojů a uložení tak, aby

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu

Cvičení 7 (Matematická teorie pružnosti)

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

PRUŽNOST A PLASTICITA I

Téma 12, modely podloží

Pevnost kompozitů obecné zatížení

7 Lineární elasticita

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování:

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB A) NOSNÍKY NA DVOU PODPORÁCH ZATÍŽENÉ SOUSTAVOU ROVNOBĚŽNÝCH SIL

VY_32_INOVACE_C 07 13

Navrhování konstrukcí z korozivzdorných ocelí

Moment síly výpočet

Části a mechanismy strojů 1 KKS/CMS1

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

Průřezové charakteristiky základních profilů.

VY_32_INOVACE_G 19 09

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012

OVMT Mechanické zkoušky

Pružnost a pevnost I

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Namáhání v tahu a ohybu Příklad č. 2

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

Datum: Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Pružnost a pevnost. zimní semestr 2013/14

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I.

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

Statika soustavy těles.

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

3. Způsoby namáhání stavebních konstrukcí

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

kolík je v jedné nebo více spojovaných součástech usazen s předpětím způsobeným buď přesahem naráženého kolíku vůči díře, nebo kuželovitostí

Kolíky a čepy Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Hynek Palát

Obecný Hookeův zákon a rovinná napjatost

OVMT Mechanické zkoušky

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních děl

4. Napjatost v bodě tělesa

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK

Výpočtová dokumentace pro montážní přípravek oběžného kola Peltonovy turbíny

Střední škola automobilní Ústí nad Orlicí

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Transkript:

Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013

Použitá literatura: Technická mechanika I pro SOU, Ing. K. Mičkal, Informatorium, 008, čtvrté vydání Sbírka úloh z technické mechaniky pro SOU, Ing. K. Mičkal, Informatorium, 1998, páté vydání Studijní materiál: Mechanika I (Statika, Pružnost a Pevnost), M.H. 003, SPŠ Uherské Hradiště. Průběhy vnitřních sil na nosnících, přednáška a 5, Doc. Ing. Michal Micka, CSc., Ústav mechaniky a materiálů Fakulty dopravní ČVUT v Praze. 013 Strojnické tabulky, Jan Leinveber, Jaroslav Řasa, Pavel Vávra, Scientia spol s.r.o. pedagogické nakladatelství, 1999, třetí vydání Dílo smí být dále šířeno pod licencí CC BY-SA (www.creativecommons.cz). Výukový text je určen pro bezplatné používání pro potřeby výuky a vzdělávání na všech typech škol a školských zařízení. Jakékoliv další využití podléhá autorskému zákonu. Všechna neocitovaná autorská díla jsou dílem autora. OBSAH: Pružnost a Pevnost se zabývá deformací a napětím (tlakem) v zatížených konstrukcích...3 Při výpočtech rozlišujeme 3 základní úlohy:...3 Způsoby zatížení:...3 Druhy namáhání:... Druhy napětí:... Popis základních druhů namáhání:...5 o Tah...5 o Tlak...5 o Smyk Střih...6 o Krut...7 o Ohyb...8 Tahový diagram (pracovní diagram, diagram napětí)...10 Mechanické vlastnosti materiálu:...11 o Příklady výpočtu:...11 Dovolené namáhání:...1 Pevnostní podmínka:...13 Deformační podmínka:...13 Kontrola:...13 o Příklady výpočtu:...15 o Výpočet namáhání v Tahu - Tlaku...16 o Výpočet namáhání na Střih (smyk)...16 o Výpočet namáhání na Krut...17 o Výpočet namáhání na Ohyb...17

PRUŽNOST A PEVNOST Pružnost a Pevnost se zabývá deformací a napětím (tlakem) v zatížených konstrukcích. Při výpočtech rozlišujeme 3 základní úlohy: 1. zjištění rozměrů a tvaru dimenzování. zjištění napětí (tlaku) a deformace 3. zjištění velikosti max. (dovoleného) zatížení součásti (konstrukce) Způsoby zatížení: A) podle zatížení druh síly osaměle působící síla spojité zatížení B) podle charakteru časového průběhu zatížení statické zatížení σ dov 1 3

dynamické zatížení proměnlivá síla Střídavé zatížení σ dov 0,85 Druhy namáhání: Tah Tlak σ t Smyk (střih) τ s Krut Ohyb τ k σ o Rázové zatížení - buchar /3 σ dov 0,65 σ dov 0,65 Účinek vnějších sil, musí být vždy v rovnováze s účinkem sil vnitřních. Druhy napětí: Normálové napětí směr jeho účinku je kolmý na průřez. Označujeme ho písmenem σ (sigma). Tečné napětí směr jeho účinku je rovnoběžný s průřezem. Označujeme ho písmenem τ (tau).

Popis základních druhů namáhání: o Tah Definice: Součást je namáhána tahem, působí-li na ni dvě síly stejně velké, opačně orientované a směřují ven z průřezu. Síly jsou kolmé na průřez a leží na společné nositelce. Deformace materiálu: prodloužení a zúžení průřezu Pevnostní rovnice: Druh napětí: σ t - normálové napětí Deformační rovnice: o Tlak 5

Definice: Součást je namáhána tlakem, působí-li na ni dvě síly stejně velké, opačně orientované a směřují dovnitř průřezu. Síly jsou kolmé na průřez a leží na společné nositelce. Deformace materiálu: zkrácení a rozšíření průřezu Pevnostní rovnice: Druh napětí: σ d - normálové napětí Deformační rovnice: E modul pružnosti v tahu [MPa] (konstanta, která vyjadřuje pružnost materiálu,u materiálu zůstává trvalá deformace 0,005% původní délky) o Smyk Střih Definice: Součást je namáhána smykem, působí-li na ni dvě síly stejně velké, opačně orientované a rovnoběžné s průřezem. Deformace materiálu: posunutí součásti proti sobě (střih) Pevnostní rovnice: Druh napětí: τ s - tečné napětí 6

Deformační rovnice: G modul pružnosti ve smyku [MPa] o Krut Definice: Součást je namáhána krutem, působí-li na ni dvojice sil a rovnoběžná s průřezem. Deformace materiálu: zkroucení Pevnostní rovnice: Druh napětí: τ k - tečné napětí 7

U Krutu záleží na poloze, tvaru, nebo rozložení průřezu podle průřezové osy. Charakteristickou průřezovou veličinou je MODUL PRŮŘEZU v krutu W k [mm 3 ]. Hodnoty pro různé průřezy nalezneme ve strojnických tabulkách. Deformační rovnice: τ k l 180 ϕ = ( rad); ϕ = ϕ G r π o Ohyb Definice: Součást je namáhána ohybem, působí-li na ni dvojice sil jejíž rovina je kolmá k rovině průřezu. Deformace materiálu: průhyb Pevnostní rovnice: 8

Druh napětí: σ o - normálové napětí U ohybu záleží na poloze, tvaru, nebo rozložení průřezu podle průřezové osy. Charakteristickou průřezovou veličinou je MODUL PRŮŘEZU v ohybu W o [mm 3 ]. Hodnoty pro různé průřezy nalezneme ve strojnických tabulkách. Ohybový moment určíme jako součet momentů od všech silových účinků po jedné straně řezu vůči řezu (metoda řezu). Pokud v řezu působí pouze ohybový moment, hovoříme o čistém ohybu. Ohybový moment bývá zpravidla doprovázen posouvající (smykovou) silou, tj. silou ležící v rovině řezu (u běžných nosníků tyto síly zanedbáváme). Výpočet max. ohybového momentu: 1. pomocí podmínky rovnováhy ΣF ix = 0; ΣF iy = 0; ΣM i = 0, vypočítáme reakce v podporách A, B.. Zakreslíme průběh vnitřních sil. 3. z levé strany počítáme průběh ohybových momentů. (ohybový moment v nosníku je reakcí na akci momentu vnějších silových účinků) 9

Tahový diagram (pracovní diagram, diagram napětí) Z důvodu bezpečnosti je nutné, aby skutečné napětí vznikající v zatížených součástech, nepřekročila přímkovou oblast oblast pružné deformace. Tgα = σ/ε = E [MPa] Hookův zákon 10

Mechanické vlastnosti materiálu: Charakterizují houževnatost materiálu Tažnost Kontrakce (poměrné zúžení) o Příklady výpočtu: Výpočet napětí Dimenzování rozměrů Výpočet velikosti deformace Sbírka úloh z technické mechaniky pro SOU, Ing. K. Mičkal 1. Vypočítej jaké napětí vzniká při zatížení strojní součásti silou F v jednotlivých průřezech a. obr. V-1 d 1 = 10 [mm]; l 1 = 60 [mm]; E =,1 10 5 [MPa] d = 60 [mm]; l = 0 [mm]; F = 1, 10 5 [N]. Vypočítej rozměry tyče čtvercového průřezu namáhané tahem viz. obr. V- obr. V- σ dov = 150 [MPa]; l = 00 [mm]; F = 1,5 10 5 [N] 11

3. Vypočítej jaké je absolutní a relativní prodloužení strojní součásti viz. obr. V-1 z příkladu 1.. Vypočítej jaké je absolutní a relativní prodloužení strojní součásti viz. obr. V-3. d 1 = 80 [mm]; l 1 = 500 [mm]; E = 0,7 10 5 [MPa] d = 60 [mm]; l = 700 [mm]; F = 1, 10 5 [N] Dovolené namáhání: A) U houževnatých materiálů je zřetelná mez kluzu σ dov = σ kt / k = 0,6 σ pt / k 1

σ kt mez kluzu v tahu σ pt mez pevnosti v tahu k míra bezpečnosti, volí se hodnota 1, až ( se volí, pokud není přesně určené namáhání, nebo jde-li o lidi) uhlíková ocel σ kt = 0,5 až 0,6 σ pt slitinová ocel σ kt = 0,75 až 0,8 σ pt B) U křehkých materiálů se počítá s mezí pevnosti σ dov = σ pt / k k míra bezpečnosti, volí se hodnota,5 až Pevnostní podmínka: Deformační podmínka: Kontrola: + Nebezpečný průřez místo s nejmenším průřezem, tedy s největším napětím. 13

1

o Příklady výpočtu: Sbírka úloh z technické mechaniky pro SOU, Ing. K. Mičkal 1. Výpočtem zkontrolujte navrženou součást, zatíženou proměnlivou silou. obr. V-1 d = 0 [mm]; D = 0 [mm]; l = 60 [mm]; F = 1 10 [N] materiál ocel 11370 σ pt = 370 [MPa]; míra bezpečnosti k = 1,8.. Určete největší dovolené zatížení F dřevěného sloupku, jehož průřez má plochu S. S = 160 x 160 [mm]; materiál dřevo σ Dov = 10 [MPa] 3. Určete největší dovolené zatížení F ocelového svorníku. b = 300 [mm]; h = 15 [mm]; d = 5 [mm]; σ Dov = 90 [MPa] 15

o Výpočet namáhání v Tahu - Tlaku Příklad: 1.1. Vypočítej jaké napětí vzniká při zatížení strojní součásti silou F v jednotlivých průřezech a. d 1 = 100 [mm]; l 1 = 50 [mm]; E =,1 10 5 [MPa] d = 600 [mm]; l = 30 [mm]; F = 10 5 [N] Řešení: π d1 π 100 S 1 = = = 785[ mm ] π d π 600 S = = = 873[ mm F 10 5 F 10 5 σ t 1 = = = 1,7[ MPa] σ t = = = 0,35[ MPa] S 785 S 873 1 Napětí v průřezu d 1 = 100 [mm]. Napětí v průřezu d 1 = 600 [mm]. ] 1.. Vypočítej jaké je absolutní a relativní prodloužení strojní součásti. F l01 σ t1 l01 = [ mm S E E 1 absolutní prodloužení 1 ] F l01 F l0 1,73 50 3 5 3 l = l1 + l1 = + = = 3,03 10 + 5,057 10 = 3,0805 10 [ mm ] 5 S E S E,1 10 relativní prodloužení l ε = l 0 = 0 5,003085 50+ 30 = 3,85 10 [%] o Výpočet namáhání na Střih (smyk) Příklad: Vypočítej jaká bude střižní síla průstřižníku? Materiál, který se bude stříhat - ocel 11500 uhlíková ocel - koeficient (0,6) d = 0 [mm]; tl = [mm]; Řešení: τ s = c σ P, t = 0,6 500= 300[ MPa] F F F τ s = = = S obvod tloušťka π d ; tloušťka F π d π 0 = S τ s = tl τ s = 300= 37699[ N] 16

Střižná síla musí být větší než 37 699 [N]. o Výpočet namáhání na Krut Příklad: Navrhni d a urči velikost úhlu zkroucení ϕ kruhového hřídele, který je namáhán kroutícím momentem M k. M k = 10 [Nmm]; l = 3 [m]; materiál - ocel 11500; G = 8 10 [MPa] τ k l 180 ϕ = ( rad); ϕ = ϕ G r π Řešení: τd,k viz strojnické tabulky pro materiál ocel 11500, statická síla (τd,k= 100 [MPa]) 10 M k M k τ 100[ 3 D, k = Wk = = = mm ] W τ 100 k D, k Navržení d pro kruhový průřez: W π d = 16 Wk 16 π 100 16 π 3 3 k d = = 3 = Velikost úhlu zkoucení: J p π d τ k l M k l M k l = ; ϕ= = = 3 G r Wk G r G J p 7,986[ mm] o Výpočet namáhání na Ohyb 10 3000 = π 7,986 8 10 3 = 0,939[ rad] Příklad: Navrhněte rozměry nápravy železničního vagónu, jde-li a) o kruhový průřez d, b) mezikrohový průřez d 1, d. G = 8 10 [N]; a = 180 [mm]; l = 800 [mm]; materiál - ocel 11500 σ Do = 80 [MPa]; d 1 : d =. Řešení: 1. Nakreslíme výpočtové schéma podle obrázku a), výsledkem je obrázek b).. Určíme vazbové síly. Vzhledem k souměrnosti konstrukce i zatížení platí: R A = R B = F = G/ = 10 [N] Poznámka: Pro výpočet vazbových sil použijeme podmínky rovnováhy: ΣFix= 0; ΣFiy= 0; ΣMi= 0. ΣMi A = 0 = F 1 a+ F (a+l)+ R B (a+l)= - 10 180-10 980+ R B 1160 17

R B = ( 10 180-10 980) / 1160 = 10 [N] ΣFiy = 0 = R A + F 1 + F 1 + R B = R A - 10-10 + 10 R A = 10 [N] 3. Narýsujeme průběh posouvajících sil a ohybových momentů a určíme M O max. M Ox1 = R A a = 10 180 = 7, 10 6 [N mm] M Ox = R A (a+l) + F 1 l = 10 (180+800) + (- 10 800) = 7, 10 6 [N mm] M Ox1 = M Ox = M O max = 7, 10 6 [N mm]. Rozměry nápravy určíme z pevnostní rovníce: 6 M Omax M Omax 7,.10 3 σ Do Wo = = = 9.10 [ mm ] Z modulu průřezu vypočítáme požadované rozměry. Ve Wo σ Do 80 strojnických tabulkách vyčteme požadované výpočtové vztahy k jednotlivým průřezům. π 3 3 W a) Pro kruhový průřez: 3 o Wo = d d = = 97,1[ mm] 3 π b) Pro mezikruhový průřez: d 1: d = d = d1 po dosazení a úpravě rovnice W π d d 3 W 16 1 3 o = d = = 99,6[ mm]; d1 9,63[ ] 3 d π 15 mm o = 1 18

19