VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Náplň předmětu 1. opakování potřebných vztahů (statika, pružnost) 2. energetické principy, variační metody 3. variační metody 4. základní principy metody konečných prvků (MKP) 5. aplikace MKP na prutové, plošné a prostorové konstrukce 6. izoparametrické konečné prvky 7. okrajové podmínky, zásady tvorby výpočetních modelů 2
Doporučená literatura Teplý, B. Šmiřák, S.: Pružnost a plasticita 2., VUT v Brně, Brno, 1992 (skriptum) Kolář, V., Kratochvíl, J., Leitner, F., Ženíšek, A. Výpočet plošných a prostorových konstrukcí metodou konečných prvků, SNTL, Praha, 1979 Kolář V., Němec I., Kanický V. FEM Principy a praxe metody konečných prvků, Computer Press, Praha, 1997 3
http://mi21.vsb.cz/modul/metoda-konecnych-prvku-ve-stavebnimechanice http://mi21.vsb.cz/modul/zaklady-matematicke-teorie-pruznosti
Doplňková literatura Šmiřák, S.: Energetické principy a variační metody v teorii pružnosti, VUT v Brně, Brno, 1998 (skriptum) Dický, J., Mistríková, Z., Sumec, J.: Pružnost a plasticita v stavebníctve 2, STU, Bratislava, 2005 Ravinger, J., Koleková, Y.: Pružnost II., STU, Bratislava, 2002 Servít a kol.: Teorie pružnosti a plasticity II., SNTL, Praha, 1984 (celostátní učebnice) Cook, R. D., Malkus, D. S., Plesha, M. E., Witt, R. J.: Concepts and Applications of Finite Element Analysis, John Wiley and Sons, 1995 4
Idealizace geometrie konstrukce tělesa plošné konstrukce stěny (rovinný problém) desky skořepiny pruty 5
Opakování: základní předpoklady v lineární mechanice látka studovaného tělesa je spojitá látka je homogenní (ve všech místech stejné vlastnosti) látka je isotropní (ve všech směrech stejné vlastnosti) látka se chová lineárně pružně (tzv. Hookeův zákon) těleso je vystaveno jen malým deformacím Pak lze použít: princip superpozice princip úměrnosti 6
Isotropní a anisotropní materiál isotropní: ve všech směrech stejné vlastnosti anisotropní: v různých směrech různé vlastnosti ortotropní: různé vlastnosti ve vzájemně kolmých směrech 7
Opakování: výpočet deformací staticky určitých konstrukcí lineární mechanika (viz předchozí předpoklady): malé deformace (mnohem menší než rozměry konstrukce) platí principy superpozice a úměrnosti podmínky rovnováhy stanovujeme na nedeformované konstrukci (teorie 1. řádu) Kladný směr deformačních veličin: ve směru příslušné kladné souřadnicové poloosy, u pootočení proti směru hodinových ručiček (při pohledu proti kladné poloose). 8
Princip virtuálních prací (1) Virtuální veličina: myšlená, avšak možná (síla, deformace). Práce: součin síly a dráhy, na které působí. Práce vnějších sil: L e = F w, [N m] = [J] (Joule) L e = b a q(x)w(x) dx F w Virtuální práce: práce virtuálních sil na skutečných deformacích (silová virtuální práce) nebo práce skutečných sil na virtuálních deformacích (deformační virtuální práce). 9
Princip virtuálních prací (2) Virtuální práce vnitřních sil: L i = { l Ndu + l M ydϕ y + l M zdϕ z + l T dϕ x + l V ydv + l V zdw } Vnitřní síly brání deformacím, jsou proto do vztahu zavedeny jako záporné (znaménko mínus před složenou závorkou). 10
Princip virtuálních prací (3) Princip virtuálních prací (J. L. Lagrange): Celková virtuální práce na vyšetřované konstrukcí je rovna nule. L e + L i = 0 tedy: L e = L i 11
Princip virtuálních prací (4) Deformace elementárních vrstviček materiálu: du = N EA dx,..., dϕ y = M y EI y dx,..., dv = V z GA z dx dϕ N M dx du dx 12
Princip virtuálních prací (5) Deformace elementárních vrstviček materiálu: du = N EA dx,..., dϕ y = M y EI y dx,..., dv = V z GA z dx Z L e = L i a z: L i = { l Ndu + l M y dϕ y + l M z dϕ z + l T dϕ x + l V y dv + l V z dw} plyne: L e = l 0 NN EA + M ym y EI y + M zm z EI z + T T EI t + V yv y GA y + V zv z GA z dx Veličiny označené pruhem jsou virtuální. 13
Metoda jednotkových sil (1) Hledáme neznámou deformaci (přetvoření) δ od skutečného zatížení. Aplikujeme na konstrukci virtuální sílu F = 1. Virtuální práce síly F na deformaci δ: L e = 1 δ = δ δ =? F = 1 Tedy zřejmě: δ = l 0 NN EA + M ym y EI y + M zm z EI z + T T EI t + V yv y GA y + V zv z GA z dx 14
Metoda jednotkových sil (2) 1. stanovíme průběhy M, N, V od skutečného zatížení 2. zavedeme jednotkovou (a bezrozměrnou) virtuální sílu v místě hledaného posunutí (v případě pootočení zavedeme moment) 3. určíme průběhy M, N, V od virtuální veličiny 4. vypočítáme hledanou veličinu pomocí vzorce (v rovině): δ = l 0 NN EA dx + l 0 MM EI dx + l 0 V V GA dx U nosníkových úloh obvykle zanedbáváme člen l 0 V V GA dx. Úlohy kde nelze zanedbat práci posouvajících sil viz Pružnost a plasticita. 15
Příklad 1 (1) Stanovte průhyb na volném konci konzoly, E = 20GP a. M = 9 knm l = 6 m w=? 0,2 m 0,4 m Tedy: I = 1 12 b h3 = 1 12 0,2 0,43 = 0.00106667 m 4 EI = E I = 20 10 9 0.00106667 = 21333333,333 N m 2 16
Příklad 1 (2) M = 9 knm F = 1 2 4 M = 9 T 9 6 A T M 2 4 M l 0 MMdx = A M M T = 1 2 6 ( 6) 9 = 162 w = 1 EI l 0 MMdx = 162 103 21333333,333 = 0,007594 m ( ) 17
Opakování: Silová metoda řešení staticky neurčitých konstrukcí využívá principu virtuálních prací využívá také: podmínky rovnováhy, princip superpozice, princip úměrnosti 18
Silová metoda princip F1 F2 b c a F2 F1 u0 u1 1*X Výsledný deformační stav (červený + modrý) musí být ve shodě s původní konstrukcí, a proto musí platit (v místě c): u 0 + u 1 X = 0 19
Silová metoda postup 1. určení stupně statické neurčitosti s 2. odebrání s vazeb: vznikne základní staticky určitá soustava (pozor na výjimkové případy!) 3. vložení síly neznámé síly X i v místě každé odebrané vazby 4. určení deformací δ i,j (místo X i zavedeme jednotkovou sílu princip superpozice) 5. sestavení s deformačních podmínek pro posunutí ve směrech všech s odebraných vazeb: δ 0,1 + δ 1,1 X 1 + δ 1,2 X 1 +... = 0 δ 0,2 + δ 2,1 X 2 + δ 2,2 X 2 +... = 0 20
Příklad 2 (1) 10 kn 10 kn 2 m 0 M0 4 m 20 X 1 1 2 M1 21
Příklad 2 (2) δ 1,1 = M 1 M 1 EI = 1 2 2 2 2 3 2 = 2,667 EI M0 2 m δ 1,0 = M o M 1 EI = 1 2 20 2 2 3 2 = 26,667 EI 20 M1 δ 1,0 + δ 1,1 X 1 = 0... X 1 = δ 1,0 δ1, 1 2 22
Příklad 2 (3) X 1 = δ 1,0 δ1, 1 = 26,667 2,667 = 10 kn 10 kn 10 kn V N 10 kn M 23
Opakování: Deformační metoda řešení staticky neurčitých konstrukcí využívá statických podmínek rovnováhy využívá také: základní vztahy teorie pružnosti, princip superpozice, princip úměrnosti 24
Deformační metoda: princip (1) X ba X bc a c L 1 X ba X bc L 2 b Sestavení podmínek rovnováhy ve styčníku (např.): Fix = X ba X bc F = 0 F Určení sil v prutech z principů pružnosti: L = X ba L 1 E 1 A 1 Dosazením deformačních vztahů do podmínek rovnováhy získáme známou soustavu rovnic K u = F. 25
Deformační metoda: princip (2) X ba X bc a c L 1 X ba X bc L 2 b F Fix = X ba X bc F = 0 Dosazením deformačních vztahů do podmínek rovnováhy získáme známou soustavu rovnic K u = F. E 1 A 1 E 2 A 2 u bx = F L 1 L 2 Pozn.: vztahy platí pro osovou úlohu bez momentů a posouvajících sil. 26
Deformační metoda: k zopakování Matice tuhosti, vektor zatížení, vektor posunutí. Lokalizace matic tuhostí prutů do globální matice tuhosti. Transformace mezi systémy souřadnic. Řešení systémů K u = F. 27
Opakování: Základní úloha teorie pružnosti základní veličiny geometrické vztahy diferenciální podmínky rovnováhy fyzikální rovnice (konstitutivní vztahy) 28
Základní veličiny (1) y w v u x Vektor posunutí u = u v w (1) z 29
Základní veličiny (2) y ε y ε z γ zy γ γ yz zx γ yx γ xz γ xy ε x x Vektor deformací ε = ε x ε y ε z γ yz γ zx γ xy (2) z 30
Základní veličiny (3) y σ z τ zy τ σ τ y yz zx τ yx τ xz τ xy σ x x Vektor napětí σ = σ x σ y σ z τ yz τ zx τ xy (3) z 31
Geometrické vztahy (1) Vyjadřují vztahy mezi posunutími a deformacemi. 0 y, v x, u A B D C β α A D u v dx u x dx dy x v B dx x y v u dy dy C 32
Geometrické vztahy (2) 0 y, v x, u A B D C β α A D u v dx u x dx dy x v B dx x y v u dy dy C εx = A B AB AB = (x + dx + u + u x dx) (x + u) dx dx = u x 33
Geometrické vztahy (3) Normálové deformace ε x = u x ε y = v y ε z = w z, (4) smykové deformace γ yz γ zx γ xy = γ zy = v z + w y (5) = γ xz = w x + u (6) z = γ yx = u y + v x. (7) 34
Diferenciální podmínky rovnováhy (1) σ y σ x dy τyx τzx τ yz σz τzy dx τ zy τ xy τyz σz τ τ xz xz τxy σy τyx τzx dz σ x σ x = σ x + σ x x dx, τ xy = τ xy + τ xy dy,... (8) x 35
Diferenc. podmínky rovnováhy (2) σ x = σ x + σ x x dx, τ xy = τ xy + τ xy dy,... y Fi,y = (σ x σ x) dy dz+(τ xy τ xy) dx dz+(τ xz τ xz ) dx dy = 0 (σ x σ x σ x x dx) dy dz+(τ xy τ xy τ xy y dy) dx dz+(τ xz τ xz τ xz z dz) dx dy = 0 A po úpravě: σ x x + τ xy y + τ xz z = 0 (9) 36
Diferenc. podmínky rovnováhy (3) σ x x + τ xy y τ xy + τ xz z + X = 0 x + σ y y + τ yz z + Y = 0 (10) τ zx x + τ zy y + σ z z + Z = 0 kde X,Y, Z jsou objemové síly. 37
Vzájemnost smykových napětí Uvedené vztahy obecně neplatí: τ yz = τ zy, τ zx = τ xz, τ xy = τ yx. Předpoklad o vzájemnosti smykových napětí se odvozuje z přibližného splnění momentových podmínek rovnováhy na elementu tělesa. Na smykové deformace se pohlíží obdobně. 38
Fyzikální rovnice (1) Vyjadřují vztahy mezi napětími a deformacemi. Hookeův zákon v 1D (tah/tlak): ε x = σ x E x Α F ε x = L L = L x L L σ x = F A = E ε x 39
Fyzikální rovnice (2) Hookeův zákon v prostoru: ε x = 1 E [σ x ν (σ y + σ z )], γ yz = τ yz G ε y = 1 E [σ y ν (σ x + σ z )], γ xz = τ xz G ε z = 1 E [σ z ν (σ x + σ y )], γ xy = τ xy G (11) 40
Shrnutí 15 neznámých veličin: 3 složky posunutí u 6 složek deformací ε 6 složek napětí σ 15 rovnic: 6 geometrických rovnic 6 fyzikálních rovnic 3 podmínky rovnováhy 41