Princip virtuálních posunutí (obecný princip rovnováhy)
|
|
- Otto Neduchal
- před 6 lety
- Počet zobrazení:
Transkript
1 SMA Přednáška 5 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tahtlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) Vít Šmilauer Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Czech Republic Permission is granted to copy, distribute andor modify this document under the terms of the GNU Free Documentation icense, Version. or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Tets, and no Back-Cover Tets. A copy of the license is included in the section entitled "GNU Free Documentation icense" found at
2 Princip virtuálních posunutí (obecný princip rovnováhy) Skutečný stav E,A N N u N N u E,A Virtuální stav Virtuální práce vnějších posunutí We δu N skutečná síla na prutu u skutečný posun konce prutu u virtuální (myšlený) posun, který nezávisí na skutečných posunutích a má libovolnou velikost (nenarušuje lineární systém) N virtuální síla, která plyne ze zvoleného u O EA u W e N u u Hustota energie deformace Virtuální práce vnitřních posunutí Wi E O W i V d V
3 Princip virtuálních posunutí (obecný princip rovnováhy) Pro prut z lineárně elastického materiálu platí δ W i V σ δ ε d V Eu δ u EA A d u δu d δ W e N δ u ( ) ( EA u δw i δw e δ u u d N δ u EA N δu ( N i N ) ) Z rovnosti vnitřních a vnějších virtuálních prací posunutí plyne obecně podmínka rovnováhy. Pozn. Virtuální posun u prozatím uvažujeme na okraji prutu (uzlu), posun po délce prutu uvažujeme lineární s maimální hodnotou u. ze však obecněji uvažovat, že u() je variace funkce posunutí a tím položit základ pro přibližné řešení úlohy (např. metoda konečných prvků).
4 Srovnání silové a deformační metody Silová metoda (SM) Obecná deformační metoda (ODM) Princip virtuálních posunutí Řídící princip Princip virtuálních sil Neznámé Síly, momenty Posuny a natočení ve styčnících (uzlech) Základní předpoklad Rovnováha sil a momentů Spojitost posunutí a natočení Počet neznámých (rovnic) Stupeň statické Stupeň kinematické neurčitosti konstrukce (přetvárné) neurčitosti SNK konstrukce KNK Podmínečné rovnice Podmínky spojitosti posunů a natočení v odebraných vazbách Poznámky Vhodná pro ruční výpočet Snadná algoritmizovatelnost, speciální případ metody konečných prvků Podmínky rovnováhy sil a momentů ve styčnících 4
5 Statická a kinematická neurčitost Stupeň statické neurčitosti určuje počet přetvárných podmínek v SM neznámé X, X... Stupeň kinematické neurčitosti určuje počet podmínek rovnováhy v ODM neznámé u, w,... u u w w SUK, KNK rovnic SM, rovnice ODM SUK, 9 KNK rovnic SM, 9 rovnic ODM SNK, KNK rovnice SM, rovnice ODM SNK, 6 KNK rovnice SM, 6 rovnic ODM u SNK, KNK rovnice SM, rovnice ODM 7 SNK, KNK 7 rovnic SM, rovnice ODM 5
6 Matice tuhosti prutu pro tahtlak Potřebovali bychom odvodit vztah mezi posunem konce prutu u a výslednou normálovou silou na prutu N, abychom se vyhnuli časté integraci po délce prutu. Eu A EA δw i δw e V σ δε d V N δuδ u d N δ u u N ( ) ( ) Tuhost prutu v tahutlaku. Výsledek integrace hustoty virtuální energie posunutí. Výsledek nezávisí na virtuálním posunu v deformační metodě se u přímo nevyskytuje. () ( ) (4) (5) (6) T Přeznačení dle konvence deformační metody r {u() a, w a, φ a, ub, w b, φ b } () z X Styčník a ab ua ub () 4 X ba (4 ) (5 ) (6) T Styčník b ua { } [ () R{X ab, Z ab, M ab, X ba, Z ba, M ba } ub ]{ } X ab EA u a u b X ba { }[ Matice tuhosti prutu pro tahtlak. Singulární, pozitivně semidefinitní symetrická matice, na diagonále čísla vždy >. ]{ } X ab k k u 4 a X ba k 4 k 44 ub Síla v místě a směru síly 4 od jednotkového posunu v místě a směru síly. 6
7 Matice tuhosti prutu pro ohyb () ( ) (4) (5) (6) T r {u() a, w a, φ a, ub, w b, φ b } z T R{X ab, Z ab, M ab, X ba, Z ba, M ba } 6 Styčník a wa M ba M ab φa Z Styčník b wb 5 Z ba ab φb Získání prvků matice tuhosti. Vynucení jednotkového posunu wa. k 6 k w a z () M ab k 5 k { }[ () Z ab (5) Z ba M (6) ba k k k 5 k 6 k k k 5 k 6 k 5 k 5 k 55 k 65 ]{ } () w a k 6 () k 6 φ a ) k 56 w(5 b k 66 φ (6) b Matice tuhosti prutu pro ohyb. Symetrická pozitivně definitní matice. 7
8 Alt. : Pomocí diferenciální rovnice ohybové čáry 6 M ba k 6 ab M k Staticky určitá kce w a ab w a Z ab Z k 5 [ 5 Z ba M Z ab M ab Integrace diferenciální rovnice ohybové čáry. w ' 'Z ab +M ab w 'Z ab + M ab +C wz ab +M ab +C +C 6 C w () C w ' ( ) C M ba a 5 ba Z k 6 M ab... čtyři okrajové podmínky, čtyři neznámé. w ( ) + Tzv. Kubická bázová funkce pro posun wa. ] w ' ( ) Z ab +M ab M ab Z ab [ ] [ ] w ( ) Z ab +M ab + Z ab + Z ab, M ab
9 Alt. : Pomocí silové metody 6 () M ba k 6 M ab k M ab X w a 6 a M ba w a ( ) Z ab k Z ab X 5 Z ba k 5 5 Z ba M δ radknm, δ radkn δ mkn δ rad, δ m [ ]{ } { } { } ]{ } { } [ ]{ } [ } M 6 X + 6 X [ { M 6 X 6 X M ab X Z ab X ]{ } { 6 6 } 9
10 Matice tuhosti prutu pro ohyb (bez vlivu smyku) Stav pro wa 6 M ab k M ba k 6 M 6 Stav pro wb M ab k 5 6 M ba k 65 M 6 w a w b + Z ab k w Z ba k5 Stav pro a M ab k 4 Z ab k5 M ba k 6 M M ab k 6 Z ba k55 + Z ba k5 M ba k 66 M w 6 Z ab k6 6 4 b w 6 + Stav pro b φ a Z ab k w + Z ba k56 6
11 Matice tuhosti prutu pro tahtlak a ohyb { }[ X (ab) EA EA ( ) Z ab 6 6 M (ab) EA EA X (4ba) (5 ) 6 6 Z ba (6 ) M ba ]{ } u() a w() a φ () a ) u(4 b w(5b ) φ (6) b 6 Zkráceně pomocí vektorů a matic: {R}[K ]{r } Vnitřní a vnější energie prutu: Ei T σ εd V E {r } [K ]{r } e V X ab M M ba ab 4 X ba {R} Pro ruční výpočet lze výpočet z uzlových přetvořeních přepsat. Přidejme vliv zadaných koncových momentů a koncových sil na prutu: w wa M ab M ab + φ a+φb+ b ( Z ab Z ab ) w w φ + φ +6 ) ( b a b a Z w wa φ a + φ b + b ) w w + φ + φ + 6 ) ( M ba M ba + Z ba Z ba 5 Z ba ab ( b a a b Pozn. Vliv smykové deformace (Timošenkův, Mindlinův prut) by se v matici tuhosti projevil dalšími členy. Ty jsou standardně obsaženy ve většině programů pro analýzu konstrukcí.
12 Pomůcka Vzorce a koncové sílymomenty
13 Příklad Určete průběh M na polorámu pomocí ODM 8 knm φb 8 knm c b 4 m M bc 5 knm M bc Z cb Z bc M ba M cb M ba a 5 m Z ba Podmínka momentové rovnováhy ve styčníku b : M ba Z ab φ b ), M bc ( ( φ b ) M ba +M bc 8, M ab 8 ( φ b )+ ( φ b ) 8 M ba ( φ b ) knm, M ab 5 knm M bc ( φ b )8 knm, M cb4 knm,4,4 8,75 Zpětná substituce: M ba,75,75 φ b ( 5+8)4 φ b8 φ b7,47e-4 rad 4,4 M,75 5 +,4 5 4
14 Program EduBeam Volně šiřitelný software pro D lineární analýzu prutových konstrukcí, ODM Napsán v jazyce Python.7 Běží na většině OS (Win, Mac, Uni), vytvořen ee pro Win Grafické rozhraní pro vstupyvýstupy, pdf manuál 4
15 Řešený rám v EduBeamu Vliv smykového zkosení eliminujeme nastavením >> b, m h, m A,6 m I y 4,5 4 m 4 E GPa Vstup Výstup M Globální neredukovaná matice tuhosti konstrukce dofdof, u, _Y, p, _, p, _z, p, _Y 4, p, _ 5, p, _z 6, p, _Y 7, p, _ 8, p, _z, u, _Y , p, _ , p, _z , p, _Y , p, _ 6-6 5, p, _z , p, _Y , p, _ , p, _z
16 Otázky. Z diferenciální rovnice ohybové čáry odvoďte koncové síly a momenty na prutu s jednotkovým natočením pravého konce.. Jaký je rozdíl mezi statickou a kinematickou neurčitostí? Ukažte na příkladu staticky neurčitého spojitého nosníku. Namalujte konstrukci, která je staticky neurčitá a kinematicky určitá a konstrukci, která je staticky určitá a kinematicky neurčitá.. Jak vypadá průběh momentu na prutu, kde je vynucen posun a bráněno pootočení? Jaký je poměr velikostí momentů na pravé a levé straně? 4. Určete, zda je matice prutu pro tahtlak singulární. Jaká je hodnost matice? Vysvětlete pozadí problému z pohledu mechaniky. 5. Určete, zda je matice prutu pro ohyb 44 singulární. Jaká je hodnost matice? Vysvětlete pozadí problému z pohledu mechaniky a jak prut podepřít, aby matice byla regulární. 6. Z jakých podmínek vypočteme neznámé deformace na konstrukci v obecné deformační metodě? Vytvořeno v OpenOffice., Ubuntu.4, Vít Šmilauer 6
Princip virtuálních posunutí (obecný princip rovnováhy)
SMA2 Přednáška 05 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tah/tlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) 2012 Vít Šmilauer Czech Technical
VícePlatnost Bernoulli Navierovy hypotézy
Přednáška 03 Diferenciální rovnice ohybu prutu Platnost Bernoulli Navierovy hypotézy Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Příklady Copyright (c) 011 Vít Šmilauer
VícePlatnost Bernoulli Navierovy hypotézy
Přednáška 0 Platnost Bernoulli Navierovy hypotézy Diferenciální rovnice ohybu prutu Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Vliv teploty na průhyb a křivost prutu Příklady
VícePřednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu
Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in
VícePrincip virtuálních prací (PVP)
Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu
VíceRedukční věta princip
SA Přednáška 4 Redukční věta Staticky neurčité příhradové konstrukce Spojité nosníky Uzavřené rámy Oecné vlastnosti staticky neurčitých konstrukcí Copyright (c) Vít Šmilauer Czech Technical University
VíceOrganizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)
SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University
VíceOrganizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)
SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University
VíceKinematická metoda výpočtu reakcí staticky určitých soustav
Kinematická metoda výpočtu reakcí staticky určitých soustav 1) Uvolnění jednoho stupně volnosti odpovídající reakci, kterou chceme určit (vytvoření kinematického mechanismu o jednom stupni volnosti). Zavedení
VíceRekapitulace princip virtuálních sil pro tah/tlak
SMA Přednáška Doplňková virtuální práce momentů Metody integrace dvou spojitých funkcí Doplňková virtuální práce posouvajících sil Vliv rovnoměrné a nerovnoměrné teploty Formulace principu virtuálních
VíceJednoosá tahová zkouška betonářské oceli
Přednáška 06 Nepružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram N, M Příklady Copyright
VícePřednáška 08. Obecná trojosá napjatost
Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace
VíceIntegrální definice vnitřních sil na prutu
Přednáška 04 Integrální definice vnitřních sil Ohb prutu v rovinách x, x Šikmý ohb Kombinace normálové síl s ohbem Poloha neutrální os Jádro průřeu Příklad Copright (c) 011 Vít Šmilauer Cech Technical
VíceSMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady
SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,
VíceVícerozměrné úlohy pružnosti
Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical
VícePřednáška 10. Kroucení prutů
Přednáška 10 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem 2) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným 3) Ohybové (vázané) kroucení
VíceSMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady
SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,
VícePřednáška 10. Kroucení prutů
Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení Příklady Copyright
VíceSMA2 Přednáška 09 Desky
SMA Přednáška 09 Desk Měrné moment na deskách Diferenciální rovnice tenké izotropní desk Metod řešení diferenciální rovnice desk Přibližné řešení obdélníkových desek Příklad Copright (c) 01 Vít Šmilauer
VíceVícerozměrné úlohy pružnosti
Přednáška 07 Víceroměrné úlohy Rovinná napjatost a deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro úlohu rovinné napjatosti Příklady Copyright (c) 0 Vít Šmilauer Cech Technical University
VíceJednoosá tahová zkouška betonářské oceli
Přednáška 06 epružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram, M Příklady Copyright (c)
VícePřednáška 10. Kroucení prutů
Přednáška 1 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem ) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným ) Ohybové (vázané) kroucení
VíceVybrané metody řešení soustavy rovnic. Podmínky rovnováhy či ekvivalence vedou často na soustavu rovnic, např.
: 4 2 R 1 1 R 2 0,8 R 3 : 8 0 R 1 1 R 2 0,8 R 3 : 2 1 R 1 2 R 2 0 R 3 [2 1 0,8 ] 0 1 0,8 1 2 0 A Vbrané metod řešení soustav rovnic Podmínk rovnováh či ekvivalence vedou často na soustavu rovnic, např.
VícePřibližné řešení úloh mechaniky
SMA Přednáška 1 Přibližné metody řešení úloh mechaniky Funkcionál energie Metoda konečných prvků Konečněprvkové programy EduBeam Časté problémy při řešení pomocí MKP Příklady Copyright (c) 1 Vít Šmilauer
VícePřednáška 09. Smyk za ohybu
Přednáška 09 Smk a ohbu Vnitřní síl na nosníku ve vtahu k napětí Smkové napětí pro obdélníkový průře Smkové napětí pro obecný průře Smkové ochabnutí Svar, šroub, spřahovací trn Příklad Copright (c) 2011
VíceSložené soustavy v rovině, stupně volnosti
Složené soustavy v rovině, stupně volnosti Složená soustava vznikne spojením hmotných bodů, tuhých desek a tuhých těles Foto: autor Maloměřický most s mezilehlou mostovkou, Brno, tři paralelní trojkloubové
VíceRovnoměrně ohýbaný prut
Přednáška 02 Prostý ohb Hpotéa o achování rovinnosti průřeu Křivost prutu, vtah mei momentem a křivostí Roložení napětí při ohbu Pružný průřeový modul Vliv teplot na křivost Copright (c) 2011 Vít Šmilauer
VícePřednáška 01 PRPE + PPA Organizace výuky
Přednáška 01 PRPE + PPA Organizace výuky Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny Út 8.30 9.45 St 14.00 15.45, B286, PRPE (Stav. Inženýrství) + PPA (Arch. a stavitelství) přednáška
VíceStupně volnosti a vazby hmotných objektů
Stupně volnosti a vazby hmotných objektů Reálnou konstrukci či její části idealizujeme výpočetním modelem, který se obvykle skládá z objektů typu hmotný bod model prvku na který působí svazek sil (často
VícePřednáška 05. Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady
Přednáška 05 Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady Copyright (c) 011 Vít Šmilauer Czech Technical University in Prague,
VícePřednáška 01 Úvod + Jednoosá napjatost
Přednáška 01 Úvod + Jednoosá napjatost Pružnost a pevnost A (PRA) Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St 9.15-11.30 Webové stránky předmětu https://mech.fsv.cvut.cz/student/
VíceStavební mechanika přednáška, 10. dubna 2017
Stavební mechanika 3 7. přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Obecná deformační metoda 8) poznámky k využití symetrie 9) využití výpočetních programů 10) kontrola
VíceSpojitý nosník. Příklady
Spojitý nosník Příklady Příklad, zadání A = konst. =, m I = konst. =,6 m 4 E = konst. = GPa q =kn / m F kn 3 = M = 5kNm F = 5kN 8 F3 = 8kN 4,5 . způsob řešení n p = (nepočítáme pootočení ve styčníku č.3)
VíceZjednodušená deformační metoda (2):
Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem
VícePřednáška 1 Obecná deformační metoda, podstata DM
Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí
VíceNázev materiálu: Hydrostatická tlaková síla a hydrostatický tlak
Reg.č. CZ.1.07/1.4.00/21.1720 Příjemce: Základní škola T. G. Masaryka, Hrádek nad Nisou, Komenského 478, okres Liberec, příspěvková organizace Název projektu: Kvalitní podmínky- kvalitní výuka Název materiálu:
VíceStavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.
Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)
VíceFAKULTA STAVEBNÍ. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
VíceProgram EduBeam. Uživatelský manuál. 13. března Vít Šmilauer, Bořek Patzák, Jan Stránský
Program EduBeam Uživatelský manuál 13. března 2018 Vít Šmilauer, Bořek Patzák, Jan Stránský České vysoké učení technické v Praze Fakulta stavební Katedra mechaniky Thákurova 7 166 29 Praha 6 Obsah 1 Úvod
VíceLokalizace QGIS, GRASS
13. ledna 2009 Copyright 2008 (c) Hořejší, Havĺıčková, Valenta Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation Licence, Version 1.2 or
VíceTENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
VíceMartin NESLÁDEK. 14. listopadu 2017
Martin NESLÁDEK Faculty of mechanical engineering, CTU in Prague 14. listopadu 2017 1 / 22 Poznámky k úlohám řešeným MKP Na přesnost simulace pomocí MKP a prostorové rozlišení výsledků má vliv především:
VícePružnost a plasticita II CD03
Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
VícePostup při výpočtu prutové konstrukce obecnou deformační metodou
Vysoké učení technické v Brně Fakulta stavební Ústav stavební mechaniky Postup při výpočtu prutové konstrukce obecnou deformační metodou Petr Frantík Obsah 1 Vytvoření modelu 2 2 Styčníkové vektory modelu
VíceRastrová reprezentace geoprvků model polí Porovnání rastrové a vektorové reprezentace geoprvků Digitální model terénu GIS 1 153GS01 / 153GIS1
GIS 1 153GS01 / 153GIS1 Martin Landa Katedra geomatiky ČVUT v Praze, Fakulta stavební 14.11.2013 Copyright c 2013 Martin Landa Permission is granted to copy, distribute and/or modify this document under
Více1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání...
. Řešená konstrukce.... Statické řešení.... Výpočet průhybové čáry... 5. Dynamika.... Vlastní netlumené kmitání..... Jacobiho metoda rovinné rotace... 4.. Popis algoritmu... 4. Vynucené kmitání... 5 4.
VícePružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
VíceNelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy
VíceTéma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
VíceObecná a zjednodušená deformační metoda
SMA Přednášk 06 Oená zjednodušená deformční metod Pruty typu VV, KV, VK Sttiká kondenze Konové síly n prutu od ztížení Konové síly n prutu od teploty Příkldy Copyright ) 01 Vít Šmiluer Czeh Tehnil University
VícePružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
VíceStavební mechanika 1 - K132SM1 Structural mechanics
Stavební mechanika 1 - K132SM1 Structural mechanics Přednášející Vít Šmilauer, Ing., Ph.D. katedra Mechaniky vit.smilauer@fsv.cvut.cz místnost D2034, konzultační hodiny Út 10:00 11:30 Literatura Kufner,
VíceNosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)
Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek
VícePříklad 7 Průhyb nosníku - složitější případ
Příklad 7 Průhyb nosníku - složitější případ Zadání Nosník s proměnným průřezem je na obrázku. Průřezy a jsou obdélníkové, výška prvního průřezu je, násobkem výšky druhého průřezu. a) Pomocí metody integrace
VíceZáklady matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice
Přednáška 1 Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice Rozšířený Hookův zákon Geometrické rovnice Ondřej Jiroušek Ústav mechaniky a materiálů Fakulta
VícePostGIS Topology. Topologická správa vektorových dat v geodatabázi PostGIS. Martin Landa
Přednáška 5 Topologická správa vektorových dat v geodatabázi PostGIS 155UZPD Úvod do zpracování prostorových dat, zimní semestr 2018-2019 Martin Landa martin.landa@fsv.cvut.cz Fakulta stavební ČVUT v Praze
VíceOTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
VíceZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání
iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení
VícePRUŽNOST A PEVNOST II
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1
VíceStatika soustavy těles.
Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho
VíceBetonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Více1 Ohyb desek - mindlinovské řešení
1 OHYB DESEK - MINDLINOVSKÉ ŘEŠENÍ 1 1 Ohyb desek - mindlinovské řešení Kinematika přemístění Posun w se po tloušťce desky mění málo (vzhledem k hodnotě průhybu) w(x, y, z) = w(x, y) Normály ke střednicové
VíceTéma 3 Úvod ke staticky neurčitým prutovým konstrukcím
Stavební mechanika, 2.ročník bakalářského studia AST Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava Osnova přednášky
Více3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2
3. kapitola Stavební mechanika Janek Faltýnek SI J (43) Průběhy vnitřních sil na lomeném nosníku Teoretická část: Naším úkolem je v tomto příkladu vyšetřit průběh vnitřních sil na lomeném rovinném nosníku
VíceSTATIKA STAVEBNÍCH KONSTRUKCÍ I
VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Ivan Kološ, Martin Krejsa, Stanislav Pospíšil, Oldřich Sucharda STATIKA STAVEBNÍCH KONSTRUKCÍ I Vzdělávací pomůcka
VíceObr. 0.1: Nosník se spojitým zatížením.
Každý test obsahuje jeden příklad podobný níže uvedeným tpovým příkladům a několik otázek vbraných z níže uvedených testových otázek. Za příklad je možno získat maimálně bodů, celkový počet bodů z testu
Více1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012
Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní
VíceOkruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
VíceFAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
VíceRovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
VícePružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
VíceÚlohy rovnováhy staticky určitých konstrukcí
Úohy rovnováhy staticky určitých konstrukcí Úoha: Posoudit statickou určitost či navrhnout podepření konstrukce Určit síy v reakcích a ve vnitřních vazbách Předpokady: Konstrukce je ideaizována soustavou
VíceAnalýza stavebních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 2009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková Ing.
VícePostGIS Raster. Správa rastrových dat v geodatabázi PostGIS. Martin Landa. 155UZPD Úvod do zpracování prostorových dat, zimní semestr
Přednáška 6 Správa rastrových v geoabázi PostGIS 155UZPD do zpracování prostorových, zimní semestr 2016-2017 Martin Landa martin.landa@fsv.cvut.cz Fakulta stavební ČVUT v Praze Katedra geomatiky http://geo.fsv.cvut.cz/gwiki/155uzpd
VíceMetoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.
VíceDefinujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.
00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní
VíceRozdíly mezi MKP a MHP, oblasti jejich využití.
Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí
VíceTéma 8 Příčně zatížený rám a rošt
Statika stavebních konstrukcí I.,.ročník bakalářského studia Téma 8 Příčně zatížený rám a rošt Základní vlastnosti příčně zatíženého rámu Jednoduchý příčně zatížený otevřený rám Základní vlastnosti roštu
VíceDvě varianty rovinného problému: rovinná napjatost. rovinná deformace
Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace
VíceGIS 1 155GIS1. Martin Landa Lena Halounová. Katedra geomatiky ČVUT v Praze, Fakulta stavební
GIS 1 155GIS1 Martin Landa Lena Halounová Katedra geomatiky ČVUT v Praze, Fakulta stavební #2 1/21 Copyright c 2013-2018 Martin Landa and Lena Halounová Permission is granted to copy, distribute and/or
VíceKatedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
VíceZde je uveden abecední seznam důležitých pojmů interaktivního učebního textu
index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.
VíceANALÝZA KONSTRUKCÍ. 5. přednáška
ANALÝZA KONSTRUKCÍ 5. přednáška Nosné stěny rovinná napjatost Způsoby výpočtu napjatosti: Deformační metodou Primární neznámé: posuny u(,y), v(,y) Výchozí rovnice: statické Silovou metodou Primární neznámá:
VíceAnalýza stavebních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková, Ph.D.
VíceFAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
VícePředpjatý beton Přednáška 4
Předpjatý beton Přednáška 4 Obsah Účinky předpětí na betonové prvky a konstrukce Staticky neurčité účinky předpětí Konkordantní kabel Lineární transformace kabelu Návrh předpětí metodou vyrovnání zatížení
VícePRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
VíceProjevy dotvarování na konstrukcích (na úrovni průřezových modelů)
PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky
VícePřetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.
OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která
VíceSTAVEBNÍ MECHANIKA 3 - SM 3
STAVEBNÍ MECHANIKA 3 - SM 3 Základní předměty vyučované na katedrě mechaniky a jejich vzájemná vazba SM1, SM2 - výpočet reakcí na staticky určitých konstrukcích, výpočet průběhů vnitřních sil na staticky
VíceKontraktantní/dilatantní
Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku
VíceAnalýza stavebních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková Ing. Radoslav
VícePetr Kabele
4. Statika tuhých objektů 4.1 Idealizovaný model konstrukce předpoklad: konstrukci (jako celek nebo jejíčásti) idealizujme jako body, tuhá tělesa nebo tuhé desky (viz 1. a 2. přednáška) foto:godden Structural
Vícetrojkloubový nosník bez táhla a s
Kapitola 10 Rovinné nosníkové soustavy: trojkloubový nosník bez táhla a s táhlem 10.1 Trojkloubový rám Trojkloubový rám se skládá ze dvou rovinně lomených nosníků v rovinné úloze s kloubovým spojením a
VíceKˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty
Obsah Dimenzování křivého tenkého prutu zde Deformace v daném místě prutu zde Castiglianova věta zde Dimenzování křivého tenkého prutu Mějme obecný křivý prut z homogeního izotropního materiálu. Obrázek:
VíceÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které
VíceNapěťový vektor 3d. Díky Wikipedia za obrázek. n n n
Míry napětí Napěťový vektor 3d n n2 2 n,. n n n Zatížené těleso rozdělíme myšleným řezem na dvě části. Na malou plošku v okolí materiálového bodu P působí napěťový vektor (n) (n, x, t), který je spojitou
Více4.6 Složené soustavy
4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu
VícePružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
VíceNumerické metody. Numerické modelování v aplikované geologii. David Mašín. Ústav hydrogeologie, inženýrské geologie a užité geofyziky
Numerické modelování v aplikované geologii David Mašín Ústav hydrogeologie, inženýrské geologie a užité geofyziky Přírodovědecká fakulta Karlova Univerzita v Praze Přednášky pro obor Geotechnologie David
Více