Obecný Hookeův zákon a rovinná napjatost

Podobné dokumenty
Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

16. Matematický popis napjatosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

7 Lineární elasticita

Pružnost a pevnost I

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:

Cvičení 7 (Matematická teorie pružnosti)

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Nelineární problémy a MKP

4. Napjatost v bodě tělesa

1.1 Shrnutí základních poznatků

7. Základní formulace lineární PP

6.1 Shrnutí základních poznatků

Autor: Vladimír Švehla

EXPERIMENTÁLNÍ MECHANIKA 2. Jan Krystek

Reologické modely technických materiálů při prostém tahu a tlaku

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

Analýza napjatosti PLASTICITA

2. Kinematika bodu a tělesa

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

Střední škola automobilní Ústí nad Orlicí

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

Pružnost a pevnost R. Halama/L. Adámková/F. Fojtík/K. Frydrýšek/M. Šofer/J. Rojíček/M. Fusek

Pružnost a pevnost R. Halama, L. Adámková, F. Fojtík, K. Frydrýšek, M. Šofer, J. Rojíček, M. Fusek

Extrémy funkce dvou proměnných

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

4. Statika základní pojmy a základy rovnováhy sil

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

Z hlediska pružnosti a pevnosti si lze stav napjatosti

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

12. Prostý krut Definice

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku

PRUŽNOST A PLASTICITA I

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).

Kap. 3 Makromechanika kompozitních materiálů

ÚVOD DO MODELOVÁNÍ V MECHANICE

PRŮŘEZOVÉ CHARAKTERISTIKY

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Geometricky válcová momentová skořepina

Rovinná a prostorová napjatost

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

14. přednáška. Přímka

Kritéria porušení laminy

TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59

Momenty setrvačnosti a deviační momenty

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Cyklografie. Cyklický průmět bodu

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Parametrická rovnice přímky v rovině

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )

Těleso racionálních funkcí

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

1 Rozdělení mechaniky a její náplň

Rozdíly mezi MKP a MHP, oblasti jejich využití.

Vícerozměrné úlohy pružnosti

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Přednáška 08. Obecná trojosá napjatost

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů

vztažný systém obecné napětí předchozí OBSAH další

1. Úvod do pružnosti a pevnosti

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

Matematická analýza III.

Betonové konstrukce (S) Přednáška 3

FAKULTA STAVEBNÍ. Telefon: WWW:

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Cvičné texty ke státní maturitě z matematiky

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

13. Prostý ohyb Definice

Nejpoužívanější podmínky plasticity

150 KAPITOLA 7. STĚNA ROVINNÁ NAPJATOST

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

Základy teorie plasticity

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Porušení hornin. J. Pruška MH 7. přednáška 1

Statika soustavy těles.

POŽADAVKY KE ZKOUŠCE Z PP I

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

Dynamika soustav hmotných bodů

ÚVOD DO MODELOVÁNÍ V MECHANICE

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)

Definice (Racionální mocnina). Buď,. Nechť, kde a a čísla jsou nesoudělná. Pak: 1. je-li a sudé, (nebo) 2. je-li liché, klademe

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Transkript:

Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou podélnou deformaci ε = σ E Poissonovův zákon [poměr poměrného příčného zúžení a poměrného podélného prodloužení konstantní a záporně vzatý podíl obou veličin pak nazýváme Poissonovo číslo μ = ε př [-] (pro ocel v elastické oblasti μ 0.3)] ε př = μ ε odkud lze vyjádřit také poměrné příčné zúžení pomocí axiálního napětí ε př = μ σ E ε U většiny konstrukčních materiálů dochází při namáhání tahem k zužování průřezu vzorku a tehdy nabývá poměrné příčné zúžení záporné hodnoty a Poissonovo číslo hodnoty kladné. V praxi často potřebujeme popsat chování materiálu i při víceosé napjatosti v pružné oblasti, tehdy musíme použít rozšířenou verzi Hookeova zákona tzv. obecný Hookeův zákon. Pro jeho získání je možné využít tzv. princip superpozice: Princip superpozice umožňuje složitou úlohu rozdělit na jednodušší části, tyto vyřešit a znovu sečíst do výsledku. Výsledek získaný součtem rozdělených úloh je shodný s výsledkem řešení celé úlohy. Obecný Hookeův zákon zahrnuje vztahy mezi složkami tenzoru napjatosti a složkami tenzoru deformace. K sestavení rovnic pro normálové složky tenzoru deformace využijeme Hookeův zákon a Poissonův zákon. Uvažujme nejprve platnost principu superpozice napětí (obr.1). Trojosé namáhání normálovými složkami tenzoru napjatosti v elementární krychli rozložíme na tři samostatné případy s tahovým zatížením A, B, C (jednou v ose x, jednou v ose y a jednou v ose z). Obr.1 Princip superpozice napětí

Vysvětleme si řešení pro složku ε x. U jednotlivých zátěžných stavů vyjádříme podélnou poměrnou deformaci ve směru x, přičemž aplikujeme Hookeův či Poissonův zákon dle toho, zda se jedná o podélnou respektive příčnou deformaci, tedy Nyní využijeme principu superpozice deformace. Poměrnou deformaci ε x vyjádříme součtem deformací pro jednotlivé zátěžné stavy a po úpravě Analogicky lze postupovat i ve zbývajících dvou směrech y, z. Vztahy lze získat také záměnou indexů Kompletní obecný Hookeův zákon pro elastický izotropní materiál získáme doplněním o tři rovnice Hookeova zákona pro smyk, tedy Vzhledem k tomu, že platí Vliv teploty Změna teploty se projeví u normálových složek tenzoru deformace, proto můžeme obecný Hookeův zákon pro (elastický izotropní materiál) přepsat do tvaru

Hlavní roviny a hlavní napětí Matematicky lze dokázat, že v každém bodě tělesa lze nalézt takovou polohu elementární krychličky, kdy jsou smyková napětí nulová. Označíme-li osy pravoúhlého souřadnicového systému ztotožněné s třemi hranami elementární krychle 1, 2, 3, bude platit τ 12 = τ 13 = τ 23 = 0. Na stěnách této elementární krychličky působí tedy pouze normálová napětí σ 1,σ 2,σ 3. Roviny, na nichž je smykové napětí rovno nule, se nazývají hlavní roviny. V každém bodě tělesa existují tři hlavní roviny. Normálová napětí v hlavních rovinách (σ 1,σ 2,σ 3) se nazývají hlavní napětí. Tenzor napjatosti, který, jak bylo uvedeno dříve, vyjadřuje stav napjatosti v bodě tělesa, lze potom psát ve tvaru σ 1 0 0 T σ = [ 0 σ 2 0 ] 0 0 σ 3 Dle velikosti hlavních napětí rozlišujeme tři základní typy napjatosti: Jednoosá (přímková) napjatost (obr.2a), kdy jsou dvě z hlavních napětí nulová, tedy σ 1 0; σ 2 = 0; σ 3 = 0. K jednoosé napjatosti dochází ve zkušební části vzorku u tahové zkoušky (při ideálním upnutí vzorku) až do vzniku lokálního zúžení (krčku). Dvojosá (rovinná) napjatost (obr.2b), která je definována podmínkou, že jedno z hlavních napětí je nulové, tedy σ 1 0; σ 2 0; σ 3 = 0. Příkladem rovinné napjatosti je těleso rovinného tvaru, u kterého jsou dva rozměry větší než třetí, nebo tenkostěnná tlaková nádoba. Trojosá (prostorová) napjatost (obr.2c), kdy žádné z hlavních napětí není rovno nule. Obr. 2 Základní typy napjatosti Je zvykem po stanovení velikosti hlavních napětí tato seřadit tak, že platí σ 1<σ 2<σ 3.

Dvojoosá napjatost Případ rovinné napjatosti je charakteristický tím, že všechny nenulové složky tenzoru napjatosti působí v jedné rovině. Element tělesa lze tedy znázornit opět jako čtverec (obr.1). Uvažujme šikmý řez vedený pod úhlem ρ, přičemž je tento úhel vynesen ve stejném smyslu jako v předchozí sekci. Obr.1 Rovinná napjatost Předpokládejme, že jsou známy složky napětí σ x,σ y, xy. Pro normálová a smyková napětí je zavedena znaménková dohoda v souladu se smyslem zavedení smykového napětí u jednoosé napjatosti (obr.2). Normálová napětí jsou kladná, jestliže jsou tahová, a záporná, jestliže působí tlakově. Smyková napětí jsou kladná tehdy, jestliže tvoří dvojici ve směru pohybu hodinových ručiček, záporná pro směr opačný. Obr. 2 Znaménková dohoda pro normálové a smykové napětí u dvojosé napjatosti Úlohou je určit složky napětí na obecně skloněné rovině. Aplikujeme tedy metodu řezu. Element (obr. 3) rozdělíme řezem vedeným pod úhlem α na dvě části a dále se zabýváme pouze částí vlevo od řezu. Účinek odstraněné části nahradíme hledanými složkami napětí σ α a τ α v rovině (obr.7). Obr. 3 Aplikace metody řezu

Složky napětí určíme z podmínek rovnováhy psanými pro normálový směr a tečný směr k rovině, tedy F n = 0 a po dosazení σ α ds (σ x cos α τ xy sin α)ds cos α (σ y cos α τ yx sin α)ds sin α = 0. Uvážením, že τ xy = τ yx a po vydělení ds dostaneme σ α = σ x cos 2 α + σ y sin 2 α 2τ xy sin α cos α. Z podmínky rovnováhy pro směr tečný po dosazení F t = 0 a úpravě τ α ds (σ x sin α +τ xy cos α)ds cos α + (σ y cos α + τ yx sin α)ds sin α = 0 τ = (σ x σ y ) sin α cos α + τ xy (cos 2 α sin 2 α). Zavedením dvojnásobného argumentu 2α vztahy cos 2 α = 1 (1 + cos 2α), 2 sin 2 α = 1 (1 cos 2α), 2 dostaneme po úpravě 2 sin α cos α = sin 2α a σ α = 1 2 (σ x + σ y ) + 1 2 (σ x σ y ) cos 2α τ xy sin 2α τ α = 1 2 (σ x σ y ) sin 2α + τ xy cos 2α. Při požadavku numerického určení polohy hlavních rovin a velikosti hlavních napětí si musíme uvědomit jejich definici. Potřebujeme tedy určit úhel α= 0, při kterém normálová napětí nabývají extrémní hodnoty. Přesněji chceme znát polohu hlavních rovin. Z podmínky pro extrém obdržíme dσ α dα = 0 tg2α =. σ x σ y Z tvaru rovnic je zřejmé, že se jedná opět o parametrické rovnice kružnice. Zvolíme kartézský souřadnicový systém. Na osu úseček budeme opět vynášet normálové napětí σ a na svislou osu smykové napětí. 2τ xy