Rozklad na součin vytýkáním 1. Rozložte na součin prvočísel číslo: 165 = 210 = 546 = 2. Rozložte na součin mocnin prvočísel číslo: 96 = 432 = B. Rozklad na součin vytýkáním 1. Rozložte na součin vytýkáním: a) b) = c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) 2. Krupka (Prometheus) - Sbírka úloh z matematiky: str. 192/př. 5.21, 5.22, 5.24 Rozložte na součin: a) b) c) = d)
Rozklad na součin postupným vytýkáním 1. Doplňte chybějící členy tak, aby platila rovnost: a) b) c) d) B. Rozklad na součin postupným vytýkáním 1. Rozložte na součin: a) b) c) d) e) f) g) h) ( b)+2y i) j) k) l) m) n) o) p) q) r) s) t) 2. Krupka (Prometheus) - Sbírka úloh z matematiky: str. 193/př. 5.27, 5.29abc Rozložte na součin: a) b) c) d) e) f) g)
Rozklad na součin pomocí 1. Opakování vzorců: a) b) c) d) e) f) g) h) i) j) k) B. Rozklad na součin pomocí vzorce a) b) c) d) e) f) g) h) i) j) k) l) = m) n) o) p) q) r) = s) t)
Rozklad na součin pomocí 1. Opakování vzorců doplňte, aby platila rovnost: B. Rozložte na součin pomocí 1. Příklad a) b) c) d) e) f) g) h) i) j) k) l) m) n) 2. Krupka (Prometheus) - Sbírka úloh z matematiky: str. 191/př. 5.18, 5.19 Rozložte na součin: a) b) c) d) e) f) g)
Rozklad kvadratického trojčlenu Roznásobte: a) b) = c) = d) = e) = f) = B. Rozklad kvadratického trojčlenu (normovaného): a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v)
Rozklad na součin opakování 1 Rozložte na součin (vytýkání, postupné vytýkání, vzorce, kvadratický trojčlen) =
Rozklad na součin opakování 2 Rozložte na součin (vytýkání, postupné vytýkání, vzorce, kvadratický trojčlen)- písemná práce = 16 15 bodů 1 14 12 bodů 2 11 9 bodů 3 8 6 bodů 4 5 0 bodů 5
Doplňovačka Doplňte tak, aby platila rovnost:
Společný násobek, společný dělitel 1. Určete nejmenší společný násobek n(3, 6, 8) = n(8, 12, 13) = n(42, 72, 56) = Nejmenší společný násobek je součin všech prvočísel jednotlivých rozkladů v nejvyšší mocnině. 2. Určete největší společný dělitel D(8, 12, 30) = D(3, 18, 14) = Největší společný dělitel je součin prvočísel obsažených ve všech rozkladech v nejmenší mocnině. B. Společný násobek, společný dělitel výrazů 1. Určete nejmenší společný násobek výrazů a) b) c) d) e) ( f) g) h) i) j) k) l) m) n) o) 2. Určete největší společný dělitel výrazů a) b) c) d) e) f) ( )
Podmínky pro lomený výraz Lomený výraz má smysl, pokud jmenovatel výrazu je různý od nuly. 1. Určete hodnoty proměnné, pro které nemá lomený výraz smysl: 2. Krupka (Prometheus) - Sbírka úloh z matematiky: str. 200/př. 7.2-3, 7.7-8, 7.13, 7.16-19
Krácení lomených výrazů Kraťte: Při krácení dělíme čitatel i jmenovatel zlomku společným dělitelem. B. Krácení lomených výrazů 1. Kraťte lomený výraz 2. Kraťte lomený výraz a určete, kdy mají výrazy smysl 3. Krupka (Prometheus) - Sbírka úloh z matematiky: str. 205/př. 8.2-3, 8.6-7, 8.9, 8.11
Rozšiřování výrazů Při rozšiřování výrazů násobíme čitatel i jmenovatel zlomku daným výrazem. Doplňte tak, aby platila rovnost:
Společný jmenovatel lomených výrazů Společný jmenovatel lomených výrazů je nejmenší společný násobek jmenovatelů daných výrazů. Určete společný jmenovatel výrazů:
Užití rozkladu na součin opakování 1. Určete chybějící člen tak, aby platila rovnost 6 bodů 2. Kraťte 8 bodů 3. Určete podmínky pro výraz 7 bodů 4. Určete 2 body 5. Doplňte na rovnost
33 31 bodů 1 30 25 bodů 2 24 17 bodů 3 16 11 bodů 4 10 0 bodů 5 10 bodů
Sčítání a odčítání lomených výrazů Při sčítání a odčítání lomených výrazů určíme společný jmenovatel a každý výraz rozšíříme na společný jmenovatel. B. Sčítání a odčítání lomených výrazů 1. Sečtěte: 2. Zjednodušte a určete podmínky, pro které mají dané výrazy a provedené úpravy smysl:
3. Krupka (Prometheus) - Sbírka úloh z matematiky: str. 207/př.9.2-4
Násobení lomených výrazů Zlomek násobíme zlomkem, jestliže násobíme čitatel čitatelem a jmenovatel jmenovatelem. Než násobíme, využijeme krácení. B. Násobení lomených výrazů 1. Násobte a stanovte podmínky, za kterých mají výrazy a provedené úpravy smysl: 2. Krupka (Prometheus) - Sbírka úloh z matematiky: str. 209/př.9.6
Dělení lomených výrazů Zlomek dělíme zlomkem, jestliže ho násobíme zlomkem převráceným. B. Dělení lomených výrazů 1. Dělte a stanovte podmínky, za kterých mají výrazy a provedené úpravy smysl: 2. Krupka (Prometheus) - Sbírka úloh z matematiky: str. 209/př.9.8
Složený zlomek Složený zlomek je jiný zápis dělení zlomků. B. Složený zlomek Upravte výrazy a stanovte podmínky, za kterých mají výrazy a provedené úpravy smysl:
Početní výkony s lomenými výrazy 1. Zjednodušte výrazy a stanovte podmínky, za kterých mají výrazy a provedené úpravy smysl: 2. Krupka (Prometheus) - Sbírka úloh z matematiky: str. 210/př.9.10-12