1.5.7 Prvočísla a složená čísla



Podobné dokumenty
Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly

Binomická věta

7.3.9 Směrnicový tvar rovnice přímky

Největší společný dělitel

7.3.9 Směrnicový tvar rovnice přímky

Kód trezoru 1 je liché číslo.

Prvočísla a čísla složená

Moravské gymnázium Brno s.r.o.

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dělitelnost Rozklad na součin prvočísel. Dušan Astaloš

MATEMATIKA II V PŘÍKLADECH

Dělitelnost přirozených čísel - opakování

3.2.9 Věta o středovém a obvodovém úhlu

Moravské gymnázium Brno s.r.o.

1.3.5 Kružnice, kruh. Předpoklady: Narýsuj bod S. Kružítkem narýsuj kružnici se středem v bodu S a poloměrem 3 cm.

3.2.3 Podobnost trojúhelníků I

3.2.9 Věta o středovém a obvodovém úhlu

Kombinace s opakováním

Dělitelnost přirozených čísel. Násobek a dělitel

Mocnost bodu ke kružnici

Mocnost bodu ke kružnici

Kombinace s opakováním

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Geometrická zobrazení

Úvod do teorie dělitelnosti

Konstrukce trojúhelníků II

4 všechny koeficienty jsou záporné, nedochází k žádné změně. Rovnice tedy záporné reálné kořeny nemá.

{ } Množina všech dělitelů. Předpoklady:

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. znaky dělitelnosti

1.2.3 Racionální čísla I

3.3.4 Thaletova věta. Předpoklady:

Jak funguje asymetrické šifrování?

Části kruhu. Předpoklady:

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra.

PRVOČÍSLA 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Obsah

Digitální učební materiál

P. Rozhodni, zda bod P leží uvnitř, vně nebo na kružnici k. Pokud existují, najdi tečny kružnice procházející bodem P.

Jihomoravske centrum mezina rodnı mobility. T-exkurze. Teorie c ı sel, aneb elektronicky podpis a s ifrova nı

1,2,3,6,9,18, 1,2,3,5,6,10,15,30.

1.5.7 Znaky dělitelnosti

1.2.3 Racionální čísla I

Soustavy více rovnic o více neznámých I

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Historie matematiky a informatiky Cvičení 1

Rozlišujeme dva základní typy šifrování a to symetrické a asymetrické. Symetrické

Diskrétní matematika 1. týden

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

9 Stupně vrcholů, Věta Havla-Hakimiho

3.2.3 Podobnost trojúhelníků I

Délka kružnice (obvod kruhu) II

Základy elementární teorie čísel

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. čísla soudělná a nesoudělná

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky

Prvočíslo a Ulamova spirála

Co víme o přirozených číslech

Základy elementární teorie čísel

Úlohy domácího kola kategorie B

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

1.5.2 Číselné soustavy II

Dělitelnost šesti

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

6.1.2 Operace s komplexními čísly

Řetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve

1 Mnohočleny a algebraické rovnice

Pomocný text. Polynomy

Příprava na závěrečnou písemnou práci

4a) Racionální čísla a početní operace s nimi

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí.

1.8.5 Dělení mnohočlenů

MATEMATIKA 6. ROČNÍK. Sada pracovních listů CZ.1.07/1.1.16/

1 Mnohočleny a algebraické rovnice

Věta o dělení polynomů se zbytkem

N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 1 2 5, R A P O T Í N N á z e v p r o j e k t u : V e s v a z k o v é š k o l

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005

Univerzita Karlova v Praze Pedagogická fakulta

Racionální čísla. teorie řešené úlohy cvičení tipy k maturitě výsledky. Víš, že. Naučíš se

{ 4} Krácení a rozšiřování zlomků. Předpoklady: Zlomky 1 2 ; 2 4 ; 3 6 ; 4 8 ; 5. představují stejné číslo.

Funkce. Definiční obor a obor hodnot

Úlohy krajského kola kategorie A

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára

Úvod do informatiky. Miroslav Kolařík

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků dělitelnosti

0,2 0,20 0, Desetinná čísla II. Předpoklady:

Systé my, procesy a signály I - sbírka příkladů

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

( ) ( ) Lineární rovnice s parametrem II. Předpoklady: 2801

Obsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí

Testování hypotéz. December 10, 2008

Metody výpočtu limit funkcí a posloupností

Asymetrická kryptografie a elektronický podpis. Ing. Dominik Breitenbacher Mgr. Radim Janča

ROZKLAD MNOHOČLENU NA SOUČIN

Měření indukčností cívek

Transkript:

17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí: D( 1) = { 1,,3,,6,1} Př 1: Najdi množiny dělitelů čísel 1, 3,, 6, 7, 9, 1 a 18 Podle počtu dělitelů se přirozená čísla dělí do tří supin Navrhni rozdělení uvedených čísel D( 1) = { 1} D( 3) = { 1,3} D( ) = { 1,, } D( 6) = { 1,,3,6 } D( 7) = { 1,7} D( 9) = { 1,3,9 } D( 1) = { 1,,7,1} D( 18) = { 1,,3,6,9,18 } Dělení do supin: počet dělitelů se liší od 1 do 6 tři supiny nestačí na to, abychom v jedné supině měli čísla se stejným počtem dělitelů Postřehy: Všechna čísla jsou dělitelná jedničou první samozřejmý dělitel Všechna čísla jsou dělitelná sama sebou druhý samozřejmý dělitel Něterá čísla mají další dělitele tři supiny: Čísla s jedním dělitelem (jen jedniča, u teré oba samozřejmí dělitelé splývají v jednoho) Čísla se dvěma děliteli (čísla, terá mají pouze samozřejmé dělitele) Čísla s více než dvěma děliteli (čísla, terá mají i nesamozřejmé dělitele) Přirozená čísla můžeme rozdělit do tří supin: Prvočísla: všechna přirozená čísla, terá mají právě různé dělitele, jedniču a sami sebe (,3,,7,11,13,17,19) Složená čísla: všechna přirozená čísla, terá mají alespoň 3 různé dělitele (6, 9, 1 ) Jedniča: má pouze jednoho dělitele, supina sama o sobě, není ani prvočíslo ani složené číslo 1

Př : Najdi množinu dělitelů čísla 8 a rozhodni, do jaé supiny čísel patří D( 8) = { 1,,3,, 6,8,1,16,, 8} číslo 8 je složené Ja je číslo 8 složené? 8 = 1 8, 8 =, 8 = 3 16, 8 = 1, 8 = 6 8, více možností, ja jej rozložit na dělitele Zusíme poračovat v rozládání složených čísel v rozladech, doud nezísáme pouze prvočísla 8 = = 6 = 3 = 3 8 = 3 16 = 3 = 3 = 3 8 = 1 = 3 = 3 = 3 8 = 6 8 = 3 = 3 = 3 Zísali jsme prvočíselný rozlad Zdá se, že poud prvočísla seřadíme podle veliosti, je jednoznačný (nezáleží ja začneme, výslede je vždy stejný) Př 3: Najdi prvočíselný rozlad čísla 60 60 = 30 = 1 = 3 60 = 1 = 3 60 = 6 10 = 3 = 3 Opět všechny cesty vedou e stejnému výsledu Věta (Záladní věta aritmetiy) Každé přirozené číslo n větší než 1, lze zapsat jediným způsobem ve tvaru 1 n = p r r 1 p p r, de p 1 < p < < p jsou prvočísla a r1, r,, r jsou přirozená čísla Př : Zapiš prvočíselný rozlad čísla 8 ve tvaru udávaném v záladní větě aritmetiy a zapiš hodnoty proměnných, p1, p,, p, r 1, r,, r 1 8 = 3 = ; p = p (rozlad obsahuje dvě prvočísla) p = ; r = ; p = 3 = p ; r = 1 = r 1 1 Př : Zapiš prvočíselný rozlad čísla 60 ve tvaru udáveném z záladní větě aritmetiy a zapiš hodnoty proměnných, p1, p,, p, r 1, r,, r 60 = 3 = 3 (rozlad obsahuje tři prvočísla)

p = ; p = 3; p = = p 1 3 r = ; r = 1; r = 1 = r 1 3 Pedagogicá poznáma: Předchozí dva přílady se možná zdají zbytečné, není to pravda Celý přílad nevyřeší bez rady většinou vůbec nido, asi třetina studentů najde oeficienty p1, p, r1, r Další najdou tyto oeficienty poud na tabuli napíšete pod 1 8 = 3 sebe: 1 n = p r r 1 p p r Význam oeficientu je pro ně zcela neprůhledný Studenti nejsou zvylí na matematicé vyjadřování v učebnicích a sami nemají snahu větě porozumět ta, aby věděli co jednotlivé oeficienty znamenají Navíc nemají ani žádnou tendenci se zeptat (protože je prý ve šole normální, učit se věci, teré jim nic neříají) Tento smutný fat je podle mě jedním ze záladních limitů jaéhooliv vysvětlování ve šole, na teré je nutné brát ohled Př 6: Urči číslo, pro jehož prvočíselný rozlad platí: p1 = 3; p = ; p3 = 7, r = ; r = 1; r = 1 1 3 Napíšeme rozlad podle zadaných hodnot a vynásobíme ho: 3 7 = 31 Chceme najít prvočíselný rozlad důležité znát prvočísla (abychom věděli, de se zastavit s dělením) Př 7: Najdi všechna prvočísla menší než 0,3,,7,11,13,17,19, 3, 9,31,37, 1,3, 7 Pedagogicá poznáma: Je zajímavé, že ačoliv studenti odývají rozdělení čísel na prvočísla, složená čísla a jedniču jao bezproblémové, do seznamu prvočísel přidá polovina z nich i jedniču (a značné množství jich vynechá dvoju) Ačoliv je možné studenty donutit tomu, aby věci chápali (tím, že je musí počítat sami a nic jiného jim nezbývá), nenašel jsem zatím způsob, ja je přesvědčit, aby si něco pamatovali Každopádně je dobré jim připomenout, že poud se setají s něčím, co odporuje jejich zažitým představám (jedniču většinou považují za prvočíslo), je dobré si to zusit zapamatovat Je doázáno, že neexistuje největší prvočíslo V současnosti je největším nalezeným 788161 prvočíslem číslo 1 Vyjádření v desítové soustavě má 17 170 číslic Ja úsporně zjistit, zda je 1 prvočíslo? Nejtupější a nejpomalejší postup: Zoušíme číslo 1 dělit postupně všemi čísly, terá jsou menší (, 3,,, 6,, 0) Poud všechna dělení vyjdou se zbytem, je číslo 1 prvočíslem 3

Př 8: Najdi vylepšení algoritmu pro ověřování prvočíselnosti Možné vylepšení: U čísla 1 nemusíme dělit až do 0, největší dělitel může být maximálně polovinou čísla (pro 1 onrétně maximálně 110) Nemusíme dělit složenými čísly, dělitelnost stačí ověřit na prvočíslech (poud je číslo napřílad dělitelné 6, je určitě dělitelné i 3 a, při rozdělování čísel se dostaneme až prvočíselnému rozladu, terý se sládá pouze z prvočísel) Dělitelé se uazují v párech (viz rozlady čísel 18 a 60 z počátu hodiny) Čím je jedno číslo v páru větší, tím je druhé menší největší dělitel se uáže v páru, de jsou číslo "co nejstejnější", v ideálním případě jsou čísla stejná (jao v rozladu 6 = 8 8 ) a rovnají se druhé odmocnině z čísla ( 6 = 8 ) Zoušíme dělit pouze čísly, terá jsou menší než druhá odmocnina z čísla, teré prověřujeme Při ověřování prvočíselnosti zoušíme dělit: jen prvočísly (v prvočíselném rozladu jsou jen prvočísla), terá jsou menší než odmocnina z prověřovaného čísla Ověřujeme prvočíselnosti čísla 1: 1 < 1 Nemá cenu zoušet prvočísla větší než 13, 3, není dělitelné podle znaů dělitelnosti 1: 7 = 3 1:11 = není dělitelné 7, není dělitelné 11, 11 01 1:13 = 17 91 0 číslo 1 = 13 17 není prvočíslo Dodate: Tři tečy u výpočtů s dělením naznačují, že dělení by mělo poračovat, ale dopočítávat výslede dělení je zbytečné, od chvíle, dy je jasné, že nevyjde beze zbytu Pedagogicá poznáma: Žáům zdůrazňuji, že dopočítávat dělení je zbytečné a ouám v průběhu následujícího příladu, zda tuto radu dodržují Př 9: Rozhodni, zda uvedená čísla patří mezi prvočísla a) 33 b) 397 c) 899 d) 93 a) 33 33 < 00 < 0 Nemá cenu zoušet prvočísla větší než 19, 3, není dělitelné podle znaů dělitelnosti 33: 7 = 33:11 = není dělitelné 7, není dělitelné 11, 3 103 33:17 = 19 33:13 = není dělitelné 13, 13 číslo 33 = 17 19 není prvočíslo 83 0

b) 397 397 < 0 Nemá cenu zoušet prvočísla větší než 19,3,,7,11,13,17,19 - nejde číslo 397 je prvočíslo c) 899 899 < 30 Nemá cenu zoušet prvočísla větší než 9,3,,7,11,13,17,19, 3, - nejde Číslo 899 není prvočíslo, protože 899 = 9 31 d) 93 93 < 31 Nemá cenu zoušet prvočísla větší než 9,3,,7,11,13,17,19, - nejde Číslo 93 není prvočíslo, protože 93 = 3 1 Př 10: Mezi prvočísly se vysytují dvojice prvočíselných dvojčat prvočísel p, p + lišících se o Jaý je společný dělitel čísel p + 1 ležících mezi nimi? Mezi prvočísly do 0 jsou to dvojice:, 7 11, 13 17, 19 9, 31 1, 3 Číslo mezi nimi je dělitelné 6 p, p + 1, p + - trojice čísel jdoucích po sobě rajní jsou lichá p + 1 je sudé, rajní nejsou dělitelná 3 p + 1 je dělitelné třemi, p + 1 je dělitelné šesti Prvočísla mají velý význam pro šifrování, napřílad asymetricá šifra RSA je založena na tom, že: součin prvočísel jde spočítat snadno (šifrování), rozlad součinu na prvočísla je pomalý (rozšifrování) Př 11: Rozhodni s pomocí alulačy, zda je číslo 996697 prvočíslo Řešení v následující hodině Shrnutí: Složená čísla jsou jednoznačně rozložitelná na prvočíselný rozlad Jedniča mezi prvočísla nepatří