Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách



Podobné dokumenty
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

Mgr. Ladislav Zemánek Maturitní okruhy Matematika Obor reálných čísel

Maturitní témata z matematiky

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

CZ 1.07/1.1.32/

Netradiční výklad tradičních témat

Maturitní témata profilová část

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

DEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19

Maturitní otázky z předmětu MATEMATIKA

Matematika I. dvouletý volitelný předmět

MATURITNÍ TÉMATA Z MATEMATIKY

Požadavky znalostí ke státní bakalářské zkoušce

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

INOVACE MATEMATIKY PRO EKONOMY NA VŠE. Anketavroce2008

Tématické okruhy k magisterské státní závěrečné zkoušce z matematiky s didaktikou pro 2. stupeň ZŠ

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

Maturitní témata od 2013

Maturitní okruhy z matematiky - školní rok 2007/2008

Požadavky ke zkoušce. Ukázková písemka

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie

Zkouškové předměty a okruhy otázek ke státním závěrečným zkouškám na katedře matematiky. Obsah. 1 Studijní obory akreditované od roku 2013

Matematika 2 (2016/2017)

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

Gymnázium Jiřího Ortena, Kutná Hora

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2

Učitelství 2. stupně ZŠ tématické plány předmětů matematika

Numerická matematika Písemky

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

MATEMATIKA I. Marcela Rabasová

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě

ZS: 2017/2018 NMAF061 F/2 J. MÁLEK. Matematika pro fyziky I. Posluchárna: T2 T1 Konzultační hodiny: pátek 9:40-10:30, posluchárna T5

Maturitní témata z matematiky

Okruhy k bakalářské státní závěrečné zkoušce (2015) Matematická analýza

MATEMATIKA A Metodický list č. 1

Význam a výpočet derivace funkce a její užití

Otázky k ústní zkoušce, přehled témat A. Číselné řady

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18

MATEMATIKA B 2. Integrální počet 1

Matematika PRŮŘEZOVÁ TÉMATA

Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a

Požadavky ke zkoušce

ALG2: Lineární Algebra (Skripta Horák, jako doplněk i skripta Kovár v IS)

Základy aritmetiky a algebry II

předmětu MATEMATIKA B 1

Témata ke státní závěrečné zkoušce z matematiky ARITMETIKA

TEMATICKÉ OKRUHY K SSZ

Cvičení z matematiky jednoletý volitelný předmět

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

Program SMP pro kombinované studium

ALGEBRA. Téma 4: Grupy, okruhy a pole

Záznam o ústní zkoušce z předmětu 01MAB4 (akademický školní rok 2017/2018) Příjmení a jméno studenta Finální hodnocení Datum ústní zkoušky

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a

Rejstřík. Číslice1a2předčíslystránekodlišujíodkazynaInteligentníkalkulus1a2. 1SM SM 1.135

A0B01LAA Lineární algebra a aplikace (příklady na cvičení- řešení)

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

DEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY 1a

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017

M4140 Vybrané partie z matematické analýzy Přírodovědecká fakulta MU

Přednášky z předmětu Aplikovaná matematika, rok 2012

Rovnice matematické fyziky cvičení pro akademický školní rok

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

Matematika vzorce. Ing. Petr Šídlo. verze

Matematická analýza I Martin Klazar (Diferenciální počet funkcí jedné reálné proměnné)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k )

Matematika II. dvouletý volitelný předmět

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k )

Matematika drsně a svižně -- nekonvenční projekt výuky a učebnice

VIDEOSBÍRKA DERIVACE

aneb jiný úhel pohledu na prvák

Organic Search Traffic

Matematika B101MA1, B101MA2

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)

Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky

Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci

ŘADY KOMPLEXNÍCH FUNKCÍ

Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15

Okruhy otázek z anglického jazyka, matematiky a fyziky pro přijímací řízení do doktorských studijních programů na Fakultě strojního inženýrství

Věta o dělení polynomů se zbytkem

Bakalářský studijní program Informatika

Transkript:

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky je prověření teoretických znalostí z oboru, orientace v něm a vzájemných souvislostí. Zkouška bude v případě zaměření Matematika v přírodních vědách soustředěna na následující oblasti: algebra a diskrétní matematika, matematická analýza, numerická matematika, profilový (volitelný) předmět podle zaměření na fyziku, chemii, biologii či geografii. Zkouška bude v případě zaměření Obecná matematika soustředěna na následující oblasti: algebra a diskrétní matematika, matematická analýza a volitelný předmět z výběru: geometrie, pravděpodobnost a matematická statistika. Oblasti otázek k SZZ Matematická analýza Zaměření Matematika v přírodních vědách Povinný blok Zavedení reálných čísel a jejich vlastnosti (algebraické, vzhledem k uspořádání). Konvergence posloupností na množině reálných čísel, její vlastnosti, cauchyovské posloupnosti, Bolzanova-Weierstrassova věta. Řady reálných čísel a jejich konvergence, kritériakonvergence (odmocninové, podílové,leibnizovo, integrální), absolutní konvergence. Reálné funkce reálné proměnné a jejich vlastnosti (monotonie, konvexita, periodicita). Limity a spojitost reálných funkcí reálné proměnné, jejich vlastnosti vzhledem k aritmetickým operacím a vzhledem k uspořádání, skládání, inverzi, Bolzanova věta o obrazech intervalů, Weierstrassova věta o dosahování extrémů. Derivace reálných funkcí reálné proměnné, její geometrický význam a vlastnosti (aritmetické operace), souvislost derivace s monotonií, konvexitou, extrémy, Rolleova věta, Lagrangeova věta o střední hodnotě. Použití derivací (průběh funkce, L'Hospitalovo pravidlo, Taylorovy polynomy). Primitivní funkce, jejich vlastnosti a existence, substituce, per partes, primitivní funkce k racionálním funkcím a funkcím na racionální funkce převoditelné. Newtonův a Riemannův integrál, výpočty pomocí substituce a integrování po částech, přibližné výpočty integrálů (obdélníková a lichoběžníková metoda, Simpsonova metoda). Použití integrálů v geometrii (obsahy, objemy, délky a povrchy) a ve fyzice (hmotnost, těžižtě, práce).

Obyčejné diferenciální rovnice 1.řádu (se separovanými proměnnými, homogenní, lineární) a 2. řádu (lineární s konstantními koeficienty). Použití diferenciálních rovnic. Diferenciální a integrální počet funkcí více proměnných (parciální derivace, gradient, záměna proměnných v integrálu, regulární zobrazení a substituce, geometrický význam derivací a integrálué), použití na hledání extrémů (vázané i nevázané), obsahy a objemy množin v rovině a prostoru, jejich těžiště. Konvergence posloupností a řad funkcí, jejich derivace a integrál, mocninné řady a Taylorovy řady, Fourierovy řady a jejich konvergence. Křivkové a plošné integrály, potenciální pole, věty Greenova, Gaussova-Ostrogradského, Stokesova a jejich fyzikální význam a použití. Integrální transformace (Laplaceova, Fourierova) a jejich použití na řešení diferenciálních rovnic. Úlohy variačního počtu (s pevnými a volnými konci), Eulerova rovnice, použití. Algebra a diskrétní matematika Vektorové prostory (definice, podprostory vektorového prostoru, lineární závislost a nezávislost, báze, Steinitzova věta o výměně, dimenze vektorového prostoru, souřadnice vektoru v bázi, homomorfismus a izomorfismus vektorových prostorů, reprezentace vektorového prostoru konečné dimenze aritmetickým vektorovým prostorem). Euklidovské prostory (definice, Cauchyova nerovnost, norma a metrika, ortogonalita, velikost úhlu vektorů, ortogonální báze, izomorfismus euklidovských prostorů, reprezentace euklidovských prostorů konečné dimenze, ortogonální doplněk podprostoru). Matice nad číselnými tělesy (definice, operace s maticemi, hodnost matice, matice regulární a singulární, matice inverzní). Determinanty (definice, základní vlastnosti determinantů, výpočet determinantů pomocí úprav matic zachovávajících determinant, věta o rozvoji determinantu, determinant součinu matic). Systémy lineárních rovnic (Frobeniova věta, Cramerova věta, Gaussův Jordanův eliminační algoritmus, homogenní systémy lineárních rovnic). Dělitelnost v oboru celých čísel (přirozená a celá čísla, prvočísla, největší společný dělitel, Euklidův algoritmus, prvočíselný rozklad, kongruence, zbytkové třídy, Eulerova funkce, Čínská zbytková věta). Základní pojmy teorie grup (definice grupy, mocniny, homomorfismy, podgrupy, součiny grup). Příklady grup (grupa jednotek okruhu, symetrická grupa, alternující grupa, obecná lineární grupa, grupa symetrií obrazce, grupy na maticích, grupy v geometrii). Lagrangeova věta a její důsledky. Cyklické grupy (popis všech cyklických grup, podgrupy cyklických grup). Algebraické struktury se dvěma binárními operacemi (okruhy, obory integrity, tělesa definice, příklady, základní vlastnosti). Kvaterniony. Homomorfní a izomorfní zobrazení okruhů. Gaussovy obory. Eukleidovské obory. Podílová tělesa. Charakteristika okruhu. Dělitelnost v oboru polynomů nad oborem integrity. Ireducibilní polynomy. Základní věta algebry. Stromy (definice, základní vlastnosti, počet hran). Kořenové stromy. Königovo lemma. Enumerace stromů (kořenové stromy, stromy, binární stromy, kořenové stromy

s označkovanými vrcholy, stromy s označkovanými vrcholy). Minimální kostra grafu (Primův algoritmus). Rovinné grafy (Eulerova formule, počet hran rovinného grafu, grafy K5 a K3,3 jsou nerovinné, pravidelné konvexní mnohostěny, Kuratowského věta, dualita). Barvení grafů (chromatické číslo, horní hranice chromatického čísla). Barvení rovinných grafů (věta o čtyřech barvách, věta o pěti barvách). Toky v sítích (definice sítě a toku v síti, velikost toku, řez v síti, Fordův- Fulkersonův algoritmus, Fordova Fulkersonova věta). Párování v grafu. Hledání maximálního párování v bipartitním grafu. Numerická matematika Chyby výpočtu. Aproximace. Interpolace. Numerické řešení soustav lineárních rovnic. Numerická integrace a derivování. Numerické metody řešení obyčejných a parciálních diferenciálních rovnic. Oblasti otázek z profilového zaměření na fyziku, chemii, biologii či geografii stanoví studentovi vedoucí bakalářské práce podle zaměření studenta. Matematická analýza Zaměření Obecná matematika Povinný blok Zavedení reálných čísel a jejich vlastnosti (algebraické, vzhledem k uspořádání). Konvergence posloupností na množině reálných čísel, její vlastnosti, cauchyovské posloupnosti, Bolzanova-Weierstrassova věta. Řady reálných čísel a jejich konvergence, kritériakonvergence (odmocninové, podílové,leibnizovo, integrální), absolutní konvergence. Reálné funkce reálné proměnné a jejich vlastnosti (monotonie, konvexita, periodicita). Limity a spojitost reálných funkcí reálné proměnné, jejich vlastnosti vzhledem k aritmetickým operacím a vzhledem k uspořádání, skládání, inverzi, Bolzanova věta o obrazech intervalů, Weierstrassova věta o dosahování extrémů. Derivace reálných funkcí reálné proměnné, její geometrický význam a vlastnosti (aritmetické operace), souvislost derivace s monotonií, konvexitou, extrémy, Rolleova věta, Lagrangeova věta o střední hodnotě. Použití derivací (průběh funkce, L'Hospitalovo pravidlo, Taylorovy polynomy). Primitivní funkce, jejich vlastnosti a existence, substituce, per partes, primitivní funkce k racionálním funkcím a funkcím na racionální funkce převoditelné. Newtonův a Riemannův integrál, výpočty pomocí substituce a integrování po částech, přibližné výpočty integrálů (obdélníková a lichoběžníková metoda, Simpsonova metoda). Použití integrálů v geometrii (obsahy, objemy, délky a povrchy) a ve fyzice (hmotnost, těžižtě, práce).

Obyčejné diferenciální rovnice 1.řádu (se separovanými proměnnými, homogenní, lineární) a 2. řádu (lineární s konstantními koeficienty). Použití diferenciálních rovnic. Diferenciální a integrální počet funkcí více proměnných (parciální derivace, gradient, záměna proměnných v integrálu, regulární zobrazení a substituce, geometrický význam derivací a integrálué), použití na hledání extrémů (vázané i nevázané), obsahy a objemy množin v rovině a prostoru, jejich těžiště. Konvergence posloupností a řad funkcí, jejich derivace a integrál, mocninné řady a Taylorovy řady, Fourierovy řady a jejich konvergence. Křivkové a plošné integrály, potenciální pole, věty Greenova, Gaussova-Ostrogradského, Stokesova a jejich fyzikální význam a použití. Integrální transformace (Laplaceova, Fourierova) a jejich použití na řešení diferenciálních rovnic. Úlohy variačního počtu (s pevnými a volnými konci), Eulerova rovnice, použití. Algebra a diskrétní matematika Vektorové prostory (definice, podprostory vektorového prostoru, lineární závislost a nezávislost, báze, Steinitzova věta o výměně, dimenze vektorového prostoru, souřadnice vektoru v bázi, homomorfismus a izomorfismus vektorových prostorů, reprezentace vektorového prostoru konečné dimenze aritmetickým vektorovým prostorem). Euklidovské prostory (definice, Cauchyova nerovnost, norma a metrika, ortogonalita, velikost úhlu vektorů, ortogonální báze, izomorfismus euklidovských prostorů, reprezentace euklidovských prostorů konečné dimenze, ortogonální doplněk podprostoru). Matice nad číselnými tělesy (definice, operace s maticemi, hodnost matice, matice regulární a singulární, matice inverzní). Determinanty (definice, základní vlastnosti determinantů, výpočet determinantů pomocí úprav matic zachovávajících determinant, věta o rozvoji determinantu, determinant součinu matic). Systémy lineárních rovnic (Frobeniova věta, Cramerova věta, Gaussův Jordanův eliminační algoritmus, homogenní systémy lineárních rovnic). Dělitelnost v oboru celých čísel (přirozená a celá čísla, prvočísla, největší společný dělitel, Euklidův algoritmus, prvočíselný rozklad, kongruence, zbytkové třídy, Eulerova funkce, Čínská zbytková věta). Základní pojmy teorie grup (definice grupy, mocniny, homomorfismy, podgrupy, součiny grup). Příklady grup (grupa jednotek okruhu, symetrická grupa, alternující grupa, obecná lineární grupa, grupa symetrií obrazce, grupy na maticích, grupy v geometrii). Lagrangeova věta a její důsledky. Cyklické grupy (popis všech cyklických grup, podgrupy cyklických grup). Algebraické struktury se dvěma binárními operacemi (okruhy, obory integrity, tělesa definice, příklady, základní vlastnosti). Kvaterniony. Homomorfní a izomorfní zobrazení okruhů. Gaussovy obory. Eukleidovské obory. Podílová tělesa. Charakteristika okruhu. Dělitelnost v oboru polynomů nad oborem integrity. Ireducibilní polynomy. Základní věta algebry. Stromy (definice, základní vlastnosti, počet hran). Kořenové stromy. Königovo lemma. Enumerace stromů (kořenové stromy, stromy, binární stromy, kořenové stromy

s označkovanými vrcholy, stromy s označkovanými vrcholy). Minimální kostra grafu (Primův algoritmus). Rovinné grafy (Eulerova formule, počet hran rovinného grafu, grafy K5 a K3,3 jsou nerovinné, pravidelné konvexní mnohostěny, Kuratowského věta, dualita). Barvení grafů (chromatické číslo, horní hranice chromatického čísla). Barvení rovinných grafů (věta o čtyřech barvách, věta o pěti barvách). Toky v sítích (definice sítě a toku v síti, velikost toku, řez v síti, Fordův- Fulkersonův algoritmus, Fordova Fulkersonova věta). Párování v grafu. Hledání maximálního párování v bipartitním grafu. Geometrie Volitelný blok Parametrická vyjádření podprostorů. Vzájemná poloha podprostorů euklidovského prostoru. Shodná, podobná a afinní zobrazení. Parametrická vyjádření křivek a ploch. Pravděpodobnost a matematická statistika Pravděpodobnostní prostory Náhodné veličiny, rozdělení důležitá pro aplikace Bodové a intervalové odhady Testování statistických hypotéz Regrese