Přednášky z předmětu Aplikovaná matematika, rok 2012
|
|
- Dominika Zemanová
- před 6 lety
- Počet zobrazení:
Transkript
1 Přednášky z předmětu Aplikovaná matematika, rok 2012 Robert Mařík 23. ledna 2015
2 2
3 Obsah 1 Přednášky Písemky
4 4 OBSAH
5 Kapitola 1 Přednášky prednaska, * kresleni bodu v R^2 * metricke prostory - euklidovska metrika, zakladni pojmy * funkce vice promennych a vektorove funkce (funkce dvou promennych /graf, vrstevnice/, parametricka krivka, vektorove pole v rovine /kresleni vektoru v R^2/) * derivace funkce jedne promenne - definice, pouziti (rychlost zmeny, linearni aproximace) * parcialni derivace funkce dvou a vice promennych * geometricky vyznam 2. prednaska, * rektorske volno 3. prednaska, * Derivace slozene funkce (derivace na prednasce oznacujeme \partial/\partial x...) * Schwarova veta * gradient a poznatek, ze je kolmy k vrstevnicim - za to tak je a proc to tak je * totalni diferencial a kriterium existence kmenove funkce pro dve promenne * zakon sireni chyb (nemusi se cvicit) * tecna rovina * linearni aproximace funkce 5
6 6 KAPITOLA 1. PŘEDNÁŠKY 2012 * divergence a rotace ve 3D - jenom definice a naznaceny vyznam 4. prednaska, * f(x,y)=g(x)h(y) * tecna k vrstevnicim a implicitne zadana funkce * lokalni extremy * moment setrvacnosti vzhledem k ose * Riemannuv integral a krivkovy integral 5. prednaska, * prace * krivkovy integral druheho druhu * nezavislost krivkoveho integralu na integracni ceste * dvojny integral v kartezskych souradnicich * linearni moment, teziste, priklad na teziste trojuhelnika * integralni stredni hodnota funkce dvou promennych 6. prednaska * shrnuti integralniho poctu 7. prednaska * dvojny integral v polarnich souradnicich * greenova veta * krivkovy integral druheho druhu - tok vektoroveho pole krivkou * diveregence a rotace - fyzikalni vyznam 8. prednaska * DR se separovanymi promennymi * linearita a jeji vyuziti pri reseni LDR prvniho a druheho radu
7 7 9. prednaska * Obecna teorie diferencialnich rovnic - uvod * pocatecni uloha, numericke reseni 10. prednaska * Laplaceuv operator * vybrane rovnice matematicke fyziky * separace promennych v parcialnich diferencialnich rovnicich 11. prednaska * okrajova uloha pro diferencialni rovnice druheho radu * Fourieruv rozvoj periodicke funkce 12. prednaska * krivocare souradnice * diferencialni operatory a vybrane rovnice matematicke fyziky v krivocarych souradnicich 13. prednaska * trojny integral, plosny integral * fyzikalni aplikace I 14. prednaska * fyzikalni aplikace II
8 8 KAPITOLA 1. PŘEDNÁŠKY 2012
9 Kapitola 2 Písemky
10 Písemná část zkoušky z Aplikované matematiky, (90 minut) Body Jméno: [6 bodů] Vypočtěte integrál xds po křivce C dané parametrickými rovnicemi x = 2 cos(t), [ C y = 2 sin(t), t 0, π ] 2 2. [10 bodů] Vypočtěte rotaci vektorové funkce F (x, y, z) = z 2 i + x 2 j + y 2 k. Na základě tohoto výpočtu rozhodněte, zda existuje funkce ϕ(x, y, z) s vlastností grad ϕ = F (tj. ϕ = F ). Svou odpověď stručně zdůvodněte, funkci ϕ hledat nemusíte (pokud existuje). 3. [14 bodů] Napište obecný tvar lineárního diferenciálního operátoru prvního řádu a dokažte, že zachovává lineární kombinaci funkcí. Jak je možné tuto vlastnost využít při řešení lineární diferenciální rovnice prvního řádu? (Stačí jedno z možných využití.) 4. [10 bodů] Vyřešte diferenciální rovnici y + y + 2y = x [4 body] Zapište dvojný integrál ydxdy přes množinu M, která M je čtvrtinou jednotkového kruhu v prvním kvadrantu jako dvojnásobný pomocí kartézských souřadnic a pomocí polárních souřadnic. Pro kartézské i polární souřadnice si zvolte jedno libovolné pořadí integrace a ani jeden z integrálů už dál nepočítejte. 1 y M 1 x 6. [6 bodů] Napište, jak je definován Laplaceův operátor a jak vypadá vlnová rovnice. (Pojmy použité v této definici a rovnici vysvětlovat nemusíte. Odpověď zapište buď obecně v libovolné dimenzi nebo ve 3D.) Požadavek: po vynásobení koeficientem za aktivitu je požadováno alespoň 16 bodů z 50 možných. Známky budou zapsány do UISu až po zapsání do indexu! Řešení příkladů budou na webových stránkách předmětu (chráněny heslem). Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce (derivace, integrály) a kalkulačky jsou povoleny.
11
12
13 Písemná část zkoušky z Aplikované matematiky, (90 minut) Body Jméno: [7 bodů] Vypočtěte integrál (x y)dx + (x + y)dy po křivce C dané parametrickými rovnicemi C x = t, y = t 2, t [0, 1] 2. [7 bodů] Najděte rovnici tečny v bodě [1, 2] ke křivce dané v okolí tohoto bodu rovnicí x 3 y xy = 0 3. [12 bodů] Uvažujme diferenciální rovnici y = ϕ(x, y) a) Kdy říkáme, že rovnice je rovnicí se separovanými proměnnými. b) Napište nutnou a postačující podmínku na funkci ϕ, pomocí které je možno efektivně určit, zda rovnice je nebo není rovnicí se separovanými proměnnými. c) Ukažte na jednoduchém (avšak dostatečně ilustrativním) příkladě, jak tyto rovnice rešíme. 4. [7 bodů] Vyřešte diferenciální rovnici y + 2y = e x. 5. [7 bodů] V polárních souřadnicích vypočtěte dvojný integrál M přes množinu M, která je horní polovinou jednotkového kruhu. ydxdy 1 y M 1 x 6. [10 bodů] Vysvětlete hlavní myšlenku řešení paricální diferenciální rovnice separací a ukažte tento postup na na difuzní rovnici u t = 2 u. Obyčejné diferenciální rovnice, ke kterým se dostanete, již řešit x2 nemusíte. Požadavek: po vynásobení koeficientem za aktivitu je požadováno alespoň 16 bodů z 50 možných. Známky budou zapsány do UISu až po zapsání do indexu! Řešení příkladů budou na webových stránkách předmětu (chráněny heslem). Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce (derivace, integrály) a kalkulačky jsou povoleny.
14
15
16 Písemná část zkoušky z Aplikované matematiky, (90 minut) Body Jméno: [8 bodů] Vypočtěte integrál (2x y)ds po křivce C dané parametrickými rovnicemi [ C x = cos(t), y = sin(t), t 0, π ] 2 2. [5 bodů] Vypočtěte divergenci funkce F (x, y) = x 2 x + y i + xy 2 j. 3. [10 bodů] Napište dvě aplikace křivkového integrálu prvního druhu. Vždy napište, jakou funkci je nutno integrovat a jakou fyzikální veličinu obdržíme. 4. [7 bodů] Zformulujte Greenovu větu pro převod toku vektorového pole P (x, y) i + Q(x, y) j uzavřenou křivkou, tj. napište, jak je možno převést integrál Q(x, y)dx + P (x, y)dy po vhodné uzavřené křivce na dvojný integrál. Napište i jak jsou svázány obory integrace v obou integrálech (křivka u křivkového integrálu a množina v R 2 u dvojného integrálu). Podmínky na regularitu a hladkost funkcí a křivek vypisovat nemusíte. Předpokládejte, že všechny objekty jsou dostatečně hladké a regulární. 5. [10 bodů] Vyřešte rovnici y 4y + 5y = x 6. [10 bodů] Napište rovnici kontinuity v diferenciálním tvaru a napište stručnou interpretaci jednotlivých členů. Požadavek: po vynásobení koeficientem za aktivitu je požadováno alespoň 16 bodů z 50 možných. Známky budou zapsány do UISu až po zapsání do indexu! Řešení příkladů budou na webových stránkách předmětu (chráněny heslem). Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce (derivace, integrály) a kalkulačky jsou povoleny.
17
18
19
20
21
Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, minut. Součet Koeficient Body. 4. [10 bodů] Integrální počet. 5.
Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, 6.2.204 60 minut 2 3 4 5 6 Jméno:................................... Součet Koeficient Body. [2 bodů] V následující tabulce do každého z šesti
VíceMatematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VíceMatematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Více7.[4body] Jedánautonomnísystém. 8.[4 body] Integrál
Písemná část zkoušky z Inženýrské matematiky, 9.2.20(60 minut) Body Jméno:... 2 3 4 5 6 7 8 První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách..[povinný] Pro mytí autobusů
VícePříklady ke zkoušce z Aplikované matematiky
Příklady ke zkoušce z Aplikované matematiky Robert Mařík 2. února 205 Odpovědi nechápejte prosím jako vzorové odpovědi na jedničku. Často nejsou úplné, neodpovídají na všechny části otázky a slouží spíše
VíceVysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)
VíceBody. 5. [10 bodů] Vyřešte diferenciální rovnici y + 2y + y = x [8 bodů] Vypočtěte dvojný integrál x 2 dxdy. Množina
Písemná zkouška z Inženýrské matematiky, 8.2.202 (60 minut) Body Jméno:...................................... 2 3 4 5 6 7 8 První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách..
VíceMatematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VíceZáklady vyšší matematiky arboristika Zadání písemek ze školního roku
Základy vyšší matematiky arboristika Zadání písemek ze školního roku 20 202 Robert ařík 9. ledna 203 Níže najdete zadání písemek předmětu ZVTA. Za některými písemkami je vloženo i řešení. Písemná část
VíceZkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body
Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,
VíceOtázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
VícePožadavky ke zkoušce
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 2 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
VíceMatematika 2 (2016/2017)
Matematika 2 (2016/2017) Co umět ke zkoušce Průběh zkoušky Hodnocení zkoušky Co umět ke zkoušce Vybrané partie diferenciálního počtu funkcí více proměnných Vybrané partie integrálního počtu funkcí více
VíceMATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
VíceMATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
VícePožadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
VíceÚvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
VíceMATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
VíceI. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou
Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici
VíceObčas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:
PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se
VíceStátní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
Více12. Křivkové integrály
12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ
VíceDEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib
INFORMACE O PRŮBĚHU A POŽADAVKY KE ZKOUŠCE Z MAT. ANALÝZYIbVLS2010/11 Ke zkoušce mohou přistoupit studenti, kteří získali zápočet. Do indexu jej zapíši na zkoušce, pokud cvičící potvrdí, že na něj student
VícePříklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1
Více1. Cvičení: Opakování derivace a integrály
. Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )
VíceNetradiční výklad tradičních témat
Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi
VíceMATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
VíceParametrické rovnice křivky
Křivkový integrál Robert Mařík jaro 2014 Tento text je tištěnou verzí prezentací dostupných z http://user.mendelu.cz/marik/am. Křivkový integrál Jedná se o rozšíření Riemannova integrálu, kdy množinou
VíceDrsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
VíceVEKTOROVÁ POLE Otázky
VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,
Více2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n.
Písemka matematika 3 s řešením 1. Vypočtěte lim n( 1 + n 2 n), n lim n (( 1 + 1 n e ) n ) n. 1/2, 1/ e 2. Určte hromadné body, limitu superior a limitu inferior posloupností: a n = sin nπ ( 2, b n = n
VíceKapitola 8: Dvojný integrál 1/26
Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet
VíceObsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
VíceCvičení z AM-DI. Petr Hasil, Ph.D. Verze: 1. března 2017
z AM-DI Petr Hasil, Ph.D. hasil@mendelu.cz Verze: 1. března 017 Poznámka. Příklady označené na cvičení dělat nebudeme, protože jsou moc dlouhé, popř. složité (jako takové, nebo pro psaní na tabuli). V
Více[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2
4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch
VíceKapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
Víceverze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu
Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové
VíceVEKTOROVÁ POLE VEKTOROVÁ POLE
Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s
Více1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
VíceMatematická analýza III.
3. Implicitní funkce Miroslav Hušek, Lucie Loukotová UJEP 2010 V této kapitole se seznámíme s dalším možným zadáním funkce jejím implicitním vyjádřením. Doplní tak nám již známé explicitní a parametrické
VíceIII. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).
III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,
VícePŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
VíceVybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 18 Vektorová analýza a teorie pole Vybrané kapitoly z matematiky 2018-2019 2 / 18 Vektorová funkce jedné
VíceDiferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)
2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h
VíceMFT - Matamatika a fyzika pro techniky
MFT - Matamatika a fyzika pro techniky Pro každou přednášku by zde měl být seznam klíčových témat, odkaz na literaturu, zápočtový příklad k řešení a další příklady k procvičování převážně ze sbírky příkladů
VíceMatematika I. dvouletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy
VíceAplikovaná matematika
Aplikovaná matematika Robert Mařík 31. března 2014 Obsah 1 Diferenciální počet 1 2 Integrální počet 14 3 Obyčejné diferenciální rovnice 25 4 Rovnice matematické fyziky 35 1 Diferenciální počet 1.1 Euklidovský
Více4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
Více8.4. Shrnutí ke kapitolám 7 a 8
8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti
VíceKapitola 1. Léto 2011
Kapitola 1 Léto 2011 1 Písemná část zkoušky z Matematiky (LDF, 25.5.2011) 60 minut Jméno:................................. 1. [11 bodů] Vyšetřete průběh funkce 1 y (určete intervaly kde je 2 ( + 1) funkce
Vícepouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
VíceMatematika pro chemické inženýry
Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní
Více6. [8 bodů] Neurčitý integrál
Zkouška ze Aplikované matematiky pro arboristy, LDF, 9..205, 60 minut 2 3 4 5 6 Jméno:................................... Body Známka. [2 bodů] Prostá a inverzní funkce a) Definujte pojmy prostá funkce
VíceDiferenciální rovnice
Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích
VíceMatematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19
Matematika 1 Jiří Fišer 19. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 19. září 2016 1 / 19 Zimní semestr KMA MAT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy teorie
VíceMatematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
VíceMatematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
VíceParciální diferenciální rovnice
Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s
VíceVeronika Chrastinová, Oto Přibyl
Integrální počet II. Příklady s nápovědou. Veronika Chrastinová, Oto Přibyl 16. září 2003 Ústav matematiky a deskriptivní geometrie FAST VUT Brno Obsah 1 Dvojný integrál 3 2 Trojný integrál 7 3 Křivkový
VíceDefinice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),
Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako
VíceZáznam o ústní zkoušce z předmětu 01MAB4 (akademický školní rok 2017/2018) Příjmení a jméno studenta Finální hodnocení Datum ústní zkoušky
hladká funkce na oblasti G E r 1. matematickým zápisem vystihněte geometrickou interpretaci abstraktního Lebesgueova integrálu Kam míří gradf( a)? Své tvrzení podpořte výpočtem. Jaký je rozdíl mezi symboly
VíceNalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
Více0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému
2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka
VíceZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III
ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK Matematika pro fyziky III OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Tomáš Los, Michal Pavelka, Michal Pavelka, Vít Průša Termíny přednášek: čtvrtek
Více8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule
Cíle Ve výkladu o funkcích dvou proměnných jsme se seznámili také s jejich diferenciálem prvního řádu, který je pro funkci F(x, y) vyjádřen výrazem df dx + dy. Nyní budeme hledat odpověd na otázku, zda
Více5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
VíceŘešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
VícePOŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)
VíceKarta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 714-0513 Garantující institut: Garant předmětu: Vybrané kapitoly z matematiky (VKM) Katedra matematiky a deskriptivní geometrie doc. RNDr.
VíceKLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
VícePožadavky ke zkoušce. Ukázková písemka
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
VíceCo jsme udělali: Au = f, u D(A)
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
VíceMatematika III. Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík. Ústav matematiky
Matematika III Základy vektorové analýzy Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Skalární a vektorový součin Skalární součin Vektorový součin
VíceDiferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
Více+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)
Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené
VíceDnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
VíceFunkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018
Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf
Víceˇ EDNA SˇKA 9 DALS ˇ I METODY INTEGRACE
PŘEDNÁŠKA 9 DALŠÍ METODY INTEGRACE 1 9.1. Věta o substituci Věta 1 (O substituci) Necht je ϕ(x) prosté regulární zobrazení otevřené množiny X R n na množinu Y R n. Necht je M X, f(y) funkce definovaná
VíceKŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE
KŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE Jiří Novotný Ústav matematiky a deskriptivní geometrie, Fakulta stavební, Vysoké učení technické v Brně Abstrakt: V rámci řešení projektu Inovace bakalářského studia Počítačová
VíceTransformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
VíceBudeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1
ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu
VíceCZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
VíceQ(y) dy = P(x) dx + C.
Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato
VíceMATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce
Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
VíceRovnice matematické fyziky cvičení pro akademický školní rok 2013-2014
Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra
VíceMaturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
VíceKristýna Kuncová. Matematika B3
(5) Funkce více proměnných II Kristýna Kuncová Matematika B3 Kristýna Kuncová (5) Funkce více proměnných II 1 / 20 Parciální derivace - příklad Otázka Tabulka vpravo znázorňuje hodnoty funkce f (x, y).
Více14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta
14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2010/11 14.1 Úvod Definice (zobecněná plocha) Řekneme, že S R n (n 2) je zobecněná (n
VíceGE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální
VíceNumerická matematika Písemky
Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva
VíceNumerické integrace některých nediferencovatelných funkcí
Numerické integrace některých nediferencovatelných funkcí Ústav matematiky a biomatematiky Přírodovědecká fakulta Jihočeské univerzity v Českých Budějovicích 2. prosince 2014 Školitel: doc. Dr. rer. nat.
VíceÚvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali
NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro
VíceModelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
VíceWolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a
Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?
VíceImplicitní funkce. 2 + arcsin(x + y2 ) = arccos(y + x 2 ), [0, 0] , 5] stacionární bod?
Implicitní funkce V následujících úlohách ukažte, že uvedená rovnice určuje v jistém okolí daného bodu [ 0, y 0 ] implicitně zadanou funkci proměnné. Spočtěte první a druhou derivaci této funkce v bodě
VícePožadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013. Luboš Pick
Požadavky k zápočtu a ke zkoušce z předmětu Matematická analýza 2 kód NMMA102, letní semestr 2012 2013 Luboš Pick Obsah Popis předmětu 1 Zápočet 1 Zkouška 2 Celkové hodnocení zkoušky 4 Seznamy požadovaných
Více1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.
. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,
Víceterminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy
2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená
Vícey = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).
III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce
Více