c 2 b 2 a Důkazy Pythagorovy věty Předpoklady:

Rozměr: px
Začít zobrazení ze stránky:

Download "c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819"

Transkript

1 .8.0 Důkzy Pythgorovy věty Předpokldy: Pedgogická poznámk: V řešení kždého příkldu jsou uvedeny rdy, které dávám postupně žákům, bych jim pomohl. Pedgogická poznámk: Diskuse o následujícím příkldu je nutná. Žáci čsto vůbec nechápou o co v důkzech jde co v nich mjí njít (nvíc většině z nich je poměrně vzdálená předstv, že by se měli nějkým způsobem přesvědčit, zd jsou informce, které jim někdo předává prvdivé). Př. 1: Nkresli obrázek prvoúhlého trojúhelníku doplň ho o grfické znázornění Pythgorovy věty. Co musíš dokázt, bys dokázl Pythgorovu větu? Obsh čtverce nd přeponou prvoúhlého trojúhelníku je roven součtu obshů čtverců nd oběm odvěsnmi. Musíme nkreslit obrázek (obrázky), ve kterém (kterých): bude prvoúhlý trojúhelník, budou čtverce nd jeho odvěsnmi přeponou, bude zřejmé, že součet obshů čtverců nd odvěsnmi, je stejný jko obsh čtverce nd přeponou. c b c b Pedgogická poznámk: U obou následujících příkldů je zcel zásdní, by žáci dobře překreslili obrázek. 1

2 Př. : N obrázku je nkreslen důkz Pythgorovy věty. Překresli ho do sešitu dopiš k němu vysvětlivky. Je tento důkz úplný? Rdy: N obrázku je devět trojúhelníků. Jké mjí speciální vlstnosti? Jký je vzth mezi trojúhelníky n obrázku? Z čeho jsou složeny jednotlivé čtverce? Obrázek se skládá z devíti shodných prvoúhlých rovnormenných trojúhelníků. Čtverce nd odvěsnmi prostředního bílého trojúhelníku se skládjí ze dvou trojúhelníků těchto trojúhelníků můžeme složit čtverec nd přeponou trojúhelníku. Obsh čtverce nd přeponou prvoúhlého trojúhelníku (čtyři trojúhelníky) je roven součtu obshů čtverců nd oběm odvěsnmi (čtyři trojúhelníky). Uvedený důkz není úplný, pltí jen pro rovnormenné trojúhelníky (kdyby bílý trojúhelník nebyl rovnormenný, nebyly by čtverce nd odvěsnmi shodné nešlo by z nich sestvit čtverec nd přeponou). Pedgogická poznámk: Čstou chybou je šptně nkreslený obrázek. Obvykle žáci kreslí prostřední trojúhelník (v řešení bílý) jko tupoúhlý, pk jsou čtverce nd přeponmi smozřejmě příliš mlé. Př. 3: N obrázku je nkreslen důkz Pythgory věty pomocí dvou shodných různě rozdělených čtverců. Překresli ho do sešitu dopiš k němu vysvětlivky. Je tento

3 důkz úplný? b b Rdy: Co pltí pro všechny trojúhelníky? Kolik menších nerozdělených čtverců obrázek obshuje? Jk jsou sestveny ob velké rozdělené čtverce? Všechny prvoúhlé trojúhelníky jsou shodné. b b c c b b c Vnitřní čtverce v levém čtverci odpovídjí čtvercům nd odvěsnmi libovolného z trojúhelníků, vnitřní čtverec v prvém čtverci odpovídá čtverci n přeponou libovolného z trojúhelníků. Obsh obou velkých čtverců je shodný, obsh všech trojúhelníků je tké shodný proto se obsh červeného čtverce shoduje se součtem obshů modrého zeleného čtverce Pythgorov vět pltí. Tento důkz je úplný. Trojúhelníky jsou prvoúhlé, le nejsou rovnormenné. Čtverec v prvém obrázku můžeme otáčet tím měnit tvr prvoúhlého trojúhelníku ( smozřejmě tím měnit i levý obrázek). Pedgogická poznámk: První problém vzniká při překreslování obrázků, kde žáci nepřekreslí u prvého obrázku úseky, b stejně dlouhé nezískjí tk shodné trojúhelníky. Při smotném důkzu pk nečiní žáků nlezení rovnosti obshů + b = c zdlek tkové problémy jko uvědomění si toho, že čtverce předstvují čtverce nd odvěsnmi nd přeponou (tedy, že jde o čtverce vystupující v Pythgorově větě). 3

4 N druhou strnu se mi při hodině zdálo, že mnozí do tohoto okmžiku tápjící žáci konečně pochopili, o co jde u dlších důkzů postupovli podsttně jistěji. Př. 4: N obrázku je kus dlžby. Njdi v ní důkz Pythgorovy věty. V obrázku můžeme vytáhnout první z důkzů pro rovnormenný prvoúhlý trojúhelník. Př. 5: Vezmi si jednu skládčku dokž s její pomocí Pythgorovu větu. Rdy: Skládej čtverce. Bílý trojúhelník se n skládání čtverců nepoužívá. Hledej, které strny kousků psují n strny bílého trojúhelníku. Polož skládčku n podložku. Z kousků skládčky můžeme složit buď dv čtverce nd odvěsnmi bílého trojúhelníku nebo jeden čtverec nd jeho přeponou Obsh čtverce nd přeponou prvoúhlého trojúhelníku je roven součtu obshů čtverců nd oběm odvěsnmi (Pythgorov vět pltí). 4

5 Pedgogická poznámk: Skládčku tisknu n polokrtón, podložku n normální ppír (obojí je v souboru skládčk). Př. 6: Nrýsuj n volný ppír čtverec ABCD o strně lespoň 8 cm. Spoj vrchol B s libovolným vnitřním bodem X strny CD. Nrýsuj přímku p, která je kolmá n úsečku BX prochází bodem C. Průsečík této přímky s úsečkou BX oznč P. Nrýsuj přímku q, která je kolmá n úsečku BX prochází bodem A. Průsečík této přímky s úsečkou BX znč R. Tímto se čtverec ABCD rozdělil n trojúhelníky ABR, BCP pětiúhelník ARPCD. Rozstřihni čtverec n tyto tři útvry. Jejich vhodným přeskládáním získáš důkz Pythgorovy věty. Rdy: Jké jsou ob trojúhelníky, které jsi vystřihl? Jkou roli hrje čtverec, který jsi rozstříhl? Jk dlouhá musí být strn čtverců, které ještě potřebuješ sestvit? D X C P p R q A B 5

6 Rozdělením čtverce jsme získli dv shodné prvoúhlé trojúhelníky pětiúhelník. Strn rozstříhného čtverce má stejnou délku jko přepony obou shodných trojúhelníků všechny tří dílky dohromdy mjí obsh c. c A c Pokud chceme důkz dokončit, musíme dílky přeskládt tk, by tvořily dv čtverce (jeden o strně druhý o strně b). 6

7 b b S dílků jsme postvili dv čtverce o obszích b. Protože jsou postveny ze stejných dílků (nepřekrývjících se), mjí dohromdy stejný obsh jko původní čtverec o obshu c Pythgorov vět pltí. Pedgogická poznámk: Rád bych poděkovl Michlu Čučkovi, jehož diplomová práce byl skvělým zdrojem různých důkzů. Shrnutí: Při důkzech Pythgorovy věty hledáme k prvúhlému trojúhelníky čtverce, o kterých i bez Pythgorovy věty víme, že součet obshů dvou z nich se rovná obshu třetího. 7

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

PRAVIDELNÉ MNOHOSTĚNY

PRAVIDELNÉ MNOHOSTĚNY PRVIDELNÉ MNOHOĚNY Vlst Chmelíková, Luboš Morvec MFF UK 007 1 Úvod ento text byl vytvořen s cílem inspirovt učitele středních škol k zčlenění témtu prvidelné mnohostěny do hodin mtemtiky, neboť při výuce

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo

Více

II. kolo kategorie Z5

II. kolo kategorie Z5 II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

Goniometrické funkce obecného úhlu

Goniometrické funkce obecného úhlu 0 Goniometrické funkce oecného úhlu V prvoúhlém trojúhelníku ABC jsou definovány funkce,, tg, cotg liovolného úhlu tkto: α α tg α cotg α Význmné hodnoty gon. funkcí 0 0 60 90 α 0 α 0 tg α 0 nedef. cotg

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

a a Posloupnost ( ) je totožná s posloupností: (A) 9 (B) 17 (C) 21 (D) 34 (E) 64 (B) (C) (E)

a a Posloupnost ( ) je totožná s posloupností: (A) 9 (B) 17 (C) 21 (D) 34 (E) 64 (B) (C) (E) . Když c + d + bc + bd = 68 c+ d = 4, je + b+ c+ d rovno: 9 7 34 64 4. Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n + 3n + n je totožná s posloupností: n n =. n+ = 3, = n Povrch rotčního

Více

4.2. Lineární rovnice s jednou neznámou, její řešení a ekvivalentní úpravy

4.2. Lineární rovnice s jednou neznámou, její řešení a ekvivalentní úpravy 4. Lineární rovnice 8. ročník 4. Lineární rovnice 4.. Rovnost. Vlstnosti rovnosti. Rovnost v ritmetice vzth mezi dvěm číselnými výrzy Př. 4 + 8 = 0 + Skládá se z : levé strny rovnosti prvé strny rovnosti

Více

7. AUTOEVALUACE ŠKOLY A JEJÍ EVALUAČNÍ ČINNOST

7. AUTOEVALUACE ŠKOLY A JEJÍ EVALUAČNÍ ČINNOST 7. AUTOEVALUACE ŠKOLY A JEJÍ EVALUAČNÍ ČINNOST Autoevluce školy dlší evluční činnosti slouží ke zjištění toho, jk se dří uskutečňovt stnovené vzdělávcí jká je mteriální úroveň školy. Oblstí hodnocení je

Více

celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!!

celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!! . Dělení celku zlomek 0 zlomek zlomková čár čittel udává z kolik stejných částí se zlomek skládá ( z ) jmenovtel udává n kolik stejných částí je celek rozdělen () Vlstnosti: Je-li v čitteli zlomku nul

Více

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují . Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n +. = = n+ 3, 3n + n je totožná s posloupností: n n n = Dvid hrje kždý všední den fotbl v sobotu i v neděli chodí do posilovny. Dnes se sportovně

Více

9. Planimetrie 1 bod

9. Planimetrie 1 bod 9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 750, 7507 Př : Vrchol elips leží v odech A[ ;], B [ 3;], [ ;5], [ ; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

8. Stereometrie 1 bod

8. Stereometrie 1 bod 8. Stereometrie 1 bod 8.1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného válce je 4 : π b) : π c) : π d) : π e) 4 : π. 8.. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

Nové parapetní oceloplechové kanály tehalit.brs. Nové možnosti kompletace přístrojů

Nové parapetní oceloplechové kanály tehalit.brs. Nové možnosti kompletace přístrojů Nové prpetní oceloplechové knály tehlit.brs Nové možnosti kompletce přístrojů Moderní řešení do knceláře: Nový oceloplechový prpetní knál tehlit.brs V součsné době jsou pro prcoviště vyždovány jednoduché

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie Mgr. Jrmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Výpočty v prvoúhlém trojúhelníku VY_3_INOVACE_05_3_1_M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou PRAVOÚHLÝ TROJÚHELNÍK 1 Pojmy oznčení:,.odvěsny

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometire Gradovaný řetězec úloh Téma: obsahy a obvody mnohoúhelníků, grafy funkcí s absolutní

Více

uzavírají ve smyslu ust. 1746 odst. 2 zákona č. 89/2012 Sb., občanský zákoník tuto DOHODU O JISTOTNÍM ÚČTU,

uzavírají ve smyslu ust. 1746 odst. 2 zákona č. 89/2012 Sb., občanský zákoník tuto DOHODU O JISTOTNÍM ÚČTU, Reg. č. UniCredit Bnk Czech Republic nd Slovki,.s. sídlem Prh 4 Michle, Želetvská 1525/1, PSČ 140 92, IČ 64948242, zpsná v obchodním rejstříku vedeném Městským soudem v Prze, oddíl B, vložk 3608, zstoupená

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

3.2.1 Shodnost trojúhelníků I

3.2.1 Shodnost trojúhelníků I 3.2.1 hodnost trojúhelníků I Předpokldy: 3108 v útvry jsou shodné, pokud je možné je přemístěním ztotožnit. v prxi těžko proveditelné hledáme jinou možnost ověření shodnosti v útvry jsou shodné, pokud

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha. 18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

4. 5. Pythagorova věta

4. 5. Pythagorova věta 4. 5. Pythgoro ět Pythgoro ět - úod Pythgoro ět popisuje zth, který pltí mezi délkmi strn proúhlém trojúhelníku. Vět zní: Geometrická definice: Obsh čterce sestrojeného nd přeponou (nejdelší strnou) proúhlého

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách. Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách. Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

SBÍRKA PŘÍKLADŮ Z MATEMATIKY

SBÍRKA PŘÍKLADŮ Z MATEMATIKY SBÍRKA PŘÍKLADŮ Z MATEMATIKY . Proměnná, výroky, množiny Dlší dovednosti znlosti: - hypotéz - tutologie - kvntifikátory kvntifikovné výroky - výrokový form - druhy mtemtických vět - oměn, negce, orácení

Více

M - Příprava na 3. zápočtový test pro třídu 2D

M - Příprava na 3. zápočtový test pro třídu 2D M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

3. Mocnina a odmocnina. Pythagorova věta

3. Mocnina a odmocnina. Pythagorova věta . Mocnina a odmocnina. Pythagorova věta 7. ročník -. Mocnina, odmocnina, Pythagorovavěta.. Mocnina... Vymezení pojmu Součin stejných činitelů můţeme napsat v podobě mocniny. Například : součin...... můţeme

Více

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ Níže uvedeného dne, měsíce roku uzvřeli: JUDr. Pvel Mikeš, insolvenční správce se sídlem Z mlýnem 2945/56, 750 02 Přerov, ustnovený prvomocným Usnesením č.j. KSOS 33 INS 2300/2012-A-5, ze dne 20. únor

Více

Vzdálenost rovin

Vzdálenost rovin 510 zdálenost rovin ředpokldy: 509 Kdy má cenu uvžovt o vzdálenosti dvou rovin? ouze, když jsou rovnoběžné, jink se protínjí ř 1: Nvrhni definici vzdálenosti dvou rovnoběžných rovin Z vzdálenost dvou rovnoběžných

Více

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky. 2.cvičení 1. Polopřímk: od O dělí přímku n dvě nvzájem opčné polopřímky. Úsečk: průnik dvou polopřímek,. Polorovin: přímk dělí rovinu n dvě nvzájem opčné poloroviny. Úhel: průnik polorovin (pozor n speciální

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l

Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Baudhayana (kolem 800 př.n.l) Pythagoras ze Sámu (asi 580 př.n.l asi 500 př.n.l) Motivace: Tato věta mě zaujala, protože se o ní

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

1.3.8 Množiny - shrnutí

1.3.8 Množiny - shrnutí 1.3.8 Množiny - shrnutí Předpokldy: 010307 Pedgogická poznámk: Kpitol o množinách spolu s následujícími dvěm kpitolmi (výroky dělitelnost) slouží k nácviku učení. Součástí učení je tké příprv n písemky

Více

Vzdálenosti přímek

Vzdálenosti přímek 5..11 Vzdálenosti přímek Předpokldy: 510 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

Moderně s letitou tradicí

Moderně s letitou tradicí ZPRÁVA O ŽIVOTNÍM PROSTŘEDÍ ZA ROK 2010 Moderně s letitou trdicí Zprcovl: Schválil: Ing. Tomáš Gociek Ing. Zdeněk Vldár referent životního prostředí ředitel společnosti Slévárny Třinec,.s. Dtum: 01.03.2011

Více

Zákon o významné tržní síle

Zákon o významné tržní síle Mteriál pro jednání 114. Plenární schůze RHSD ČR konné dne 1. prosince 2014 Zákon o význmné tržní síle Zprcovl: Svz obchodu cestovního ruchu ČR Bude projednáno n PT RHSD pro vnitřní trh dne 18. 11. 201

Více

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů. 7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y

Více

Vzdálenosti přímek

Vzdálenosti přímek 5..1 Vzdálenosti přímek Předpokldy: 511 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy

Více

Definice limit I

Definice limit I 08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí

Více

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205 3..6 Pythgoro ět, Euklidoy ěty II Předpokldy: 305 V kždém proúhlém trojúhelníku s oděsnmi, přeponou pltí: =, =, =, kde je ýšk n přeponu, jsou úseky přepony přilehlé ke strnám,. Kždou z předhozíh ět je

Více

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n /9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x

Více

Prostorové nároky... 35. Zatížení... 37 Velikost zatížení... 37 Směr zatížení... 37. Nesouosost... 40. Přesnost... 40. Otáčky... 42. Tichý chod...

Prostorové nároky... 35. Zatížení... 37 Velikost zatížení... 37 Směr zatížení... 37. Nesouosost... 40. Přesnost... 40. Otáčky... 42. Tichý chod... Vol typu ložisk Prostorové nároky... 35 Ztížení... 37 Velikost ztížení... 37 Směr ztížení... 37 Nesouosost... 40 Přesnost... 40 Otáčky... 42 Tichý chod... 42 Tuhost... 42 Axiální posuvnost... 43 Montáž

Více

4.4.2 Kosinová věta. Předpoklady: 4401

4.4.2 Kosinová věta. Předpoklady: 4401 44 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek) Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel

Více

Pájený výměník tepla, XB

Pájený výměník tepla, XB Popis / plikce Deskové výměníky tepl pájené mědí řdy XB jsou určené pro použití v soustvách centrálního zásoování teplem (tzn. v klimtizčních soustvách, v soustvách určených pro vytápění neo ohřev teplé

Více

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}? 1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

Výfučtení: Goniometrické funkce

Výfučtení: Goniometrické funkce Výfučtení: Goniometriké funke Tentokrát se seriál ude zývt spíše mtemtikým než fyzikálním témtem. Pokud počítáte nějkou úlohu, ve které vystupují síly, tk je potřeujete dost čsto rozložit n součet dopočítt

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204 3..5 ythgoro ět, Euklidoy ěty I ředpokldy: 1107, 304 roúhlý trojúhelník = trojúhelník s nitřním úhlem 90 (s prým nitřním úhlem) prý úhel je z nitřníh úhlů nejětší (zýjíí d musí dát dohromdy tké 90 ) strn

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

Zápočtová úloha. Příčka mimoběžek. Grafický software ve výuce deskriptivní geometrie

Zápočtová úloha. Příčka mimoběžek. Grafický software ve výuce deskriptivní geometrie Záočtová úloh Grfický softwre ve výuce deskritivní geometrie říčk mimoběžek Obsh: říčk mimoběžek dným bodem říčk mimoběžek rovnoběžná s dným směrem nejkrtší říčk mimoběžek vyrcovl: Jn Helm školní rok:

Více

matematika vás má it naupravidl

matematika vás má it naupravidl VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti.

Více

Úřední věstník Evropské unie 25.6.2004 ÚŘEDNÍ VĚSTNÍK EVROPSKÉ UNIE

Úřední věstník Evropské unie 25.6.2004 ÚŘEDNÍ VĚSTNÍK EVROPSKÉ UNIE 03/sv. 45 75 32004R0854 25.6.2004 ÚŘEDNÍ VĚSTNÍK EVROPSKÉ UNIE L 226/83 NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 854/2004 ze dne 29. dubn 2004, kterým se stnoví zvláštní prvidl pro orgnizci úředních

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

I. kolo kategorie Z9

I. kolo kategorie Z9 58. ročník Matematické olympiády I. kolo kategorie Z9 Z9 I Do tří prázdných polí na obrázku patří taková přirozená čísla, aby součin tří čísel na každé straně trojúhelníku byl stejný. 42 6 72 Jakénejmenšíajakénejvětšíčíslomůžebýtzatétopodmínkyvepsánodošeděvybarveného

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I .4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli

Více

1 HSS vrtáky. 2 TK vrtáky Vrtání. 3 Vrtáky s vyměnitelnými destičkami. 4 Výstružníky a záhlubníky. 5 Závitníky 5. 7 Soustružení závitů.

1 HSS vrtáky. 2 TK vrtáky Vrtání. 3 Vrtáky s vyměnitelnými destičkami. 4 Výstružníky a záhlubníky. 5 Závitníky 5. 7 Soustružení závitů. HSS vrtáky 2 TK vrtáky Vrtání 3 Vrtáky s vyměnitelnými destičkmi 4 Výstružníky záhlubníky Závitování 6 irkulární frézování frézování závitů 7 Soustružení závitů 8 Soustružnické nože s vyměnitelnými destičkmi

Více

Pythagorova věta

Pythagorova věta .8.19 Pythagorova věta Předpoklady: 00801 Pedagogická poznámka: Z následujícího příkladu rýsuje každý žák pouze jeden bod podle toho, v jakém sedí oddělení. Př. 1: Narýsuj pravoúhlý trojúhelník: a) ABC:

Více

Čtvrtletní výkaz nebankovních peněžních institucí

Čtvrtletní výkaz nebankovních peněžních institucí Čtvrtletní výkz nebnkovních peněžních institucí Pen 3b- Registrováno ČSÚ ČV 78/ ze dne 4. 9.20 IKF 2730 20 Výkz je součástí Progrmu sttistických zjišťování n rok 20. Podle zákon č. 89/5 Sb., o státní sttistické

Více

P Y T H A G O R O V A V T A V P R O S T O R U (2 hodiny)

P Y T H A G O R O V A V T A V P R O S T O R U (2 hodiny) P Y T H A G O R O V A V T A V P R O T O R U hodiny V této ýkoé hodin si zksíš nkolik málo úloh n žití Pythgoroy ty tlesech. Doosd znáš dobe oze tto tles kádr, krychle jso to lstn tyboké hrnoly, trojboký

Více

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů .8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících

Více

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování matematiky a fysiky Časopis pro pěstování matematiky a fysiky Jaroslav Bílek Pythagorova věta ve třetí třídě středních škol Časopis pro pěstování matematiky a fysiky, Vol. 66 (1937), No. 4, D265--D268 Persistent URL: http://dml.cz/dmlcz/123381

Více

ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE

ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE ZÁKLADY MATEMATIKY 2. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE I. P íprvní úlohy. V této sérii pot ebujete znlost výpo t následujících úloh - otestujte si ji:. Vypo ítejte neur ité integrály: ) (x 2 x + ) 2 dx

Více

Planimetrie. Obsah. Stránka 668

Planimetrie. Obsah. Stránka 668 Obsh 3. Plnimetrie... 669 3.. Úhel... 669 3.. Prvidelné mnohoúhelníky... 67 3.3. Pythgorov vět Eukleidovy věty konstruke úseček... 678 3.4. Euklidovy věty, prvoúhlý trojúhelník... 683 3.5. Obvody obshy

Více

Nerovnosti a nerovnice

Nerovnosti a nerovnice Nerovnosti nerovnice Doc. RNDr. Leo Boček, CSc. Kurz vznikl v rámci projektu Rozvoj systému vzdělávcích příležitostí pro ndné žáky studenty v přírodních vědách mtemtice s využitím online prostředí, Operční

Více

Neurčité výrazy

Neurčité výrazy .. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu

Více

1.7.4 Výšky v trojúhelníku II

1.7.4 Výšky v trojúhelníku II 1.7.4 Výšky v trojúhelníku II Předpokldy: 010703 Opkování z minulé hodiny Výšk trojúhelníku: úsečk, která spojuje vrhol trojúhelníku s ptou kolmie n protější strnu. 0 0 v v 0 Př. 1: Nrýsuj trojúhelník

Více

5.2.3 Kolmost přímek a rovin I

5.2.3 Kolmost přímek a rovin I 5.2.3 Kolmost římek rovin I ředokldy: 5202 vě římky jsou k soě kolmé rávě tehdy, když jejich odchylk je 90. Nvzájem kolmé mohou ýt i mimoěžky. vě úsečky jsou kolmé, rávě když leží n kolmých římkách. íšeme:

Více

Ergotron LX LCD/Notebook Rameno

Ergotron LX LCD/Notebook Rameno Ergotron LX LCD/Notebook Rmeno US 1-800-888-8458 Europe +31 (0)33-45 45 600 NÁVOD K MONTÁŽI Ergotron LX 330 mm (13") rozpětí výšky Náklon displeje +5/-75 dopředu/dozdu Otáčení displeje 180 vprvo/vlevo

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více

Úvod do numerické matematiky. Přednáška pro posluchače informatiky. Zimní resp. Letní semestr 2/2

Úvod do numerické matematiky. Přednáška pro posluchače informatiky. Zimní resp. Letní semestr 2/2 Úvod do numerické mtemtiky Přednášk pro posluchče informtiky Zimní resp Letní semestr 2/2 Ivo Mrek, Petr Myer Bohuslv Sekerk 1 Úvodní poznámky Vymezení problemtiky vystihuje následující chrkteristik Numerická

Více

1 i= VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ. OTAKAR TRNKA a MILOSLAV HARTMAN. i M

1 i= VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ. OTAKAR TRNKA a MILOSLAV HARTMAN. i M Chem. Listy, 55 53 (7) VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ OTAKAR TRNKA MILOSLAV HARTMAN Ústv chemických procesů, AV ČR, Rozvojová 35, 65 Prh 6 trnk@icpf.cs.cz

Více

4 HAS NAPOJENÍ OTOPNÝCH TĚLES CENÍK 2016 HAS 4.1

4 HAS NAPOJENÍ OTOPNÝCH TĚLES CENÍK 2016 HAS 4.1 4 HAS NAPOJENÍ OTOPNÝCH TĚLES CENÍK 2016 HAS 4.1 OBSAH 4.1 Trubky RAUTHERM S příslušenství k trubkám 4.3 4.2 Násuvné objímky fitinky 4.5 Spojky 4.5 Kolen 4.5 T-kus přechody 4.6 Připojovcí grnitury s příslušenstvím

Více

LOGOMANUÁL. informace a doporučení k užití logotypu Singing Rock. Verze 1.5 Česky. Lukáš Matěja +420 775 282 064 lukas.mateja@singingrock.

LOGOMANUÁL. informace a doporučení k užití logotypu Singing Rock. Verze 1.5 Česky. Lukáš Matěja +420 775 282 064 lukas.mateja@singingrock. LOGOMANUÁL informce doporučení k užití logotypu Singing Rock V přípdě dotzů kontktujte nšeho grfického designer. Lukáš Mtěj +420 775 282 064 luks.mtej@singingrock.cz Verze 1.5 Česky ZAKLADNÍ LOGOTYP Zákldní

Více

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu:

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu: vz je lgebr ( M ; ) vzy = se dvěm binárními opercemi tková že pro libovolné prvky b c M pltí následující podmínky xiomy svzu: ( b) c = ( b c) ( b) c = ( b c) b = b b = b ( ) ( ) b = b =. Operce se nzývá

Více

ROZ(H)LED. O Nadání a dovednosti. O projektu Roz(h)led. Hlavní informace. www.nadaniadovednosti.cz

ROZ(H)LED. O Nadání a dovednosti. O projektu Roz(h)led. Hlavní informace. www.nadaniadovednosti.cz O Ndání dovednosti Pomáháme mldým lidem z dětských domovů pěstounských rodin s rozvojem jejich ndání dovedností se správným výběrem studi s příprvou n profesní život se vstupem n trh práce by po odchodu

Více

Vodorovné protipožární konstrukce > Podhledy Interiér/Exteriér > Vzhled s utěsněnou spárou a hlavičkami vrutů

Vodorovné protipožární konstrukce > Podhledy Interiér/Exteriér > Vzhled s utěsněnou spárou a hlavičkami vrutů Technický průvodce Vodorovné protipožární konstrukce > Rozsh pltnosti N zákldě výsledků zkoušek, které jsou zde uvedené, lze plikovt desky CETRIS v těchto typech protipožárních vodorovných konstrukcí:

Více

Dopravní společnost Zlín - Otrokovice, s.r.o.

Dopravní společnost Zlín - Otrokovice, s.r.o. 7 9 linka 8 - - - Platnost od.. do 8.. 7 8 9 7 7 7 7 7 7 7 7 Neděle.. a 8.. Podvesná XVII/8, 7 Zlín, tel.: 77 7 9, fa: 77, http://www.dszo.cz Poznámky: Pracovní dny L a Z -.7.-.8., 9. a.. Provoz. a.. jako

Více