Daniel Franta. jaro Ústav fyzikální elektroniky, Přírodovědecká fakulta, Masarykova univerzita
|
|
- Vratislav Janda
- před 8 lety
- Počet zobrazení:
Transkript
1 Pokročilé disperzní modely v optice tenkých vrstev Lekce 3: Základní schéma disperzního modelu založeného na TRK sumačním pravidle rozdělení dielektrické funkce na elektronovou a nukleonovou část versus elektronové excitace a fonony; skutečné versus efektivní počty částic; Kvazičásticový popis Daniel Franta Ústav fyzikální elektroniky, Přírodovědecká fakulta, Masarykova univerzita jaro 2014
2 Parametr hustoty Obsah 1 Parametr hustoty 2 Elektrony a jádra vs. elektronové excitace a fonony 3 Kvazičásticový popis 4 Shrnutí Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 2 / 17
3 Parametr hustoty Parametr hustoty Klasické sumační pravidlo QM TRK sumační pravidlo F k(e) = 1 V V rámci dipólové aproximace: 0 0 f ε i(ω)ω dω = π 2 ω2 p = πe2 N e 2ɛ 0m e 0 F k(e)de = Nk V = Nk f i fif k [δ(e f E i E) + δ(e i E f E)]. f k if = 2mk 2 (Ef Ei) f ˆxk i 2 = 2 m k f ˆp xk i 2 E f E i ε i(e) E de = M N e U kde U 1 + me 2u = M = (eh)2 8πɛ 0m e = ev 2 m 3 Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 3 / 17
4 Parametr hustoty Parametr hustoty Hustota pevné látky je řádu proto je vhodné konstantu M na pravé straně zahrnout do parametrů vyjadřující hustotu: 0 ε i(e) E de = N e U = N e + N n kde N e N e = MN e ale N n MN n 0 ε i(e) E de = n en a U kde N a = MN a N a: parametr hustoty (density parameter) n e: průměrný počet elektronů na atom. (u jednoatomových sloučenin např. c-si n e = Z n = 14) Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 4 / 17
5 Parametr hustoty Parametr hustoty 1 1 D. Franta, D. Nečas, L. Zajíčková, Application of Thomas Reiche Kuhn sum rule to construction of advanced dispersion models, Thin Solid Films 534 (2013) Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 5 / 17
6 Parametr hustoty Parametr hustoty Jak tedy v praxi postupujeme? V případě známých látek se známou hustotou N a zafixujeme. V modelu řešíme pouze odchylky od ideálního stavu (teplota, nestechiometrie, atd.). Např. pro c-si je velmi dobře znám lineární teplotní expanzní koeficient e(t): N a(t) = N a(300 K) [ ] e(300 K) 1 + e(t) 2 2 D. Franta, D. Nečas, L. Zajíčková, I. Ohlídal, Utilization of the Sum Rule for Construction of Advanced Dispersion Model of Crystalline Silicon Containing Interstitial Oxygen, Thin Solid Films (in print) Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 6 / 17
7 Parametr hustoty Parametr hustoty V případě známé látky, ale neznámé hustoty (fáze) je N a fitovací parametr. Např. HfO 2: ρ = 9680 kg/m 3 = N a = 180 ev 2 Ve skutečnosti, když vyhodnotíme optická data naměřená v oblasti od FIR do VUV (10.7 ev) a zkombinujeme tyto data s tabulkami pro RTG oblast tak: Čím to je? N a = 148 ev 2 1 N a v tabulkách odpovídá monoklinickému krystalu a měření bylo provedené na porézní polykrystalické vrstvě. 2 Nejistota v oblasti ev (chybí experiment: synchrotron EELS) 3 Použitelnost RTG tabulek v oblasti ev (velmi závisí na autorovi). 4 Platí sumační pravidla? (dipólová aproximace, Z Hf = 72) Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 7 / 17
8 Parametr hustoty Parametr hustoty U neznámých látek, jestliže známe dielektrickou odezvu jen v oblasti přechodů valenčních elektronů, je problematické definovat hustotu. V tomto případě místo parametru hustoty používáme přímo celkovou sílu N přechodu, která při ignoraci excitací core elektronů potom představuje odhad síly valenčních elektronů. V tomto případě můsíme použít jisté odhady, které nám vyjadřují kolik procent elektronů se excituje do valenčního pásu a kolik do vyšších energetických stavů. N = N ve Např. když aplikujeme náš univerzální model na HfO 2 vrstvu potom efektivní počet valenčních elektronů z optických měření vychází: Skutečný počet valenčních elektronů n ve = N = = N a n ve = odpovídá dvěma elektronům Hf 6s, dvěma Hf 5d a šesti O 2p. Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 8 / 17
9 Elektrony a jádra vs. elektronové excitace a fonony Obsah 1 Parametr hustoty 2 Elektrony a jádra vs. elektronové excitace a fonony 3 Kvazičásticový popis 4 Shrnutí Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 9 / 17
10 Elektrony a jádra vs. elektronové excitace a fonony Elektrony a jádra vs. elektronové excitace a fonony 0 ε i(e) E de = N e U = N e + N n = N ee + N ph =... N ee > N e N ph < N n Dielektrickou odezvu dále můžeme dělit: elektronové exc. na exc. valenčních a jaderných (core) elektronů N ee = N ve + N ce exc. valenčních el. na excitace val. el. do vodivostního pásu a vyšších energetických stavů (v balku není vakuový stav) N ve = N vc + N vx dále na přímé a nepřímé (za asistence fononů) a lokalizace absorpce na fononech podle počtu: N vc = N dt + N idt + N loc + N ut N ph = N 1ph + N 2ph +... Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 10 / 17
11 Elektrony a jádra vs. elektronové excitace a fonony Elektrony a jádra vs. elektronové excitace a fonony 0 ε i(e) E de = N e U = N e + N n = N ee + N ph =... N ee > N e N ph < N n Dielektrickou odezvu dále můžeme dělit: elektronové exc. na exc. valenčních a jaderných (core) elektronů N ee = N ve + N ce exc. valenčních el. na excitace val. el. do vodivostního pásu a vyšších energetických stavů (v balku není vakuový stav) N ve = N vc + N vx dále na přímé a nepřímé (za asistence fononů) a lokalizace absorpce na fononech podle počtu: N vc = N dt + N idt + N loc + N ut N ph = N 1ph + N 2ph +... Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 10 / 17
12 Kvazičásticový popis Obsah 1 Parametr hustoty 2 Elektrony a jádra vs. elektronové excitace a fonony 3 Kvazičásticový popis 4 Shrnutí Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 11 / 17
13 Kvazičásticový popis Kvazičásticový popis Vezměme jako příklad jednofononovou absorpci, tj. že foton je absorbován nebo emitován za pomoci vzniku nebo zániku fononu. F(E, T) = π ɛ 0V ( e m e ( ) Ω Ei f ˆpx i 2 [ ] exp δ (E f E i E) + δ (E i E f E) k BT E f E i ) 2 i f i,f Z celkové dielektrické odezvy vybereme členy, které odpovídají tomuto procesu tak, že sčítání přes f převedeme na sčítání přes obsazovací čísla jednotlivých fononů p F 1ph(E, T) = π ( ) 2 e ( ) Ω Ei exp δ (E p E ) ɛ 0V E m e k p i BT ( ) npe p ( ) exp i, n p + 1 ˆp x i, n p 2 npe p exp i, n p 1 ˆp x i, n p 2 k BT k BT n p=0 Stejné maticové elementy dáme k sobě tak, že v druhé sumě posuneme sčítací index: n p=1 Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 12 / 17
14 Kvazičásticový popis Kvazičásticový popis F 1ph(E, T) = π ( ) 2 e ( ) Ω Ei exp δ (E p E ) ɛ 0V E m e k p i BT [ ( )] 1 exp Ep ( ) npe p exp i, n p + 1 ˆp x i, n p 2 k BT k BT n p=0 Výsledný vztah stále závisí na teplotě T. Stavová suma (normalizační konstanta) má při našem sčítání následující tvar: ( exp Ω ) = k BT i n p=0 ( ) Ei + npep exp k BT Za předpokladu, že maticové elementy nezávisí na i, ale pouze na n p, základním předpokladu kvazičásticového přístupu: i, n p + 1 ˆp x i, n p 2 (n p + 1) i, 1 ˆp x i, 0 2 Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 13 / 17
15 Kvazičásticový popis Kvazičásticový popis teplotní závislost pro jednofononovou absorpci potom vymizí: F 1ph(E, T) = π ( ) 2 e i, 1 ˆp x i, 0 2 δ (E p E ) ɛ 0V E m e F 1ph(E, T) = N n α p F1ph(E, 0 T) = N n α p δ (E p(t) E ) p Po rozšíření je odpovídající dielektrická funkce dána následujícím vztahem: ( ) ε 1ph(E, T) = N n α p β F0 1ph(E, T) E kde β je Gauss Dawson funkce a značí konvoluci. Je-li F 0 1ph delta funkce lze konvoluci vyjádřit pomocí gaussovy a dawsonovy funkce. p p p Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 14 / 17
16 Kvazičásticový popis Kvazičásticový popis Normalizovaná dielektrická funkce odpovídající jednomu fononovému píku je tedy popsaná následovně: ) )] ε 0 1 (E Ep)2 (E + Ep)2 i,p = [exp ( exp (, 2πBpE p 2B 2 p 2B 2 p ε 0 r,p(e) = [ ( ) ( )] 2 E Ep E + Ep D D, πb pe p 2Bp 2Bp kde D(x) je Dawsonův integrál definovaný jako: D(x) = exp( x 2 ) x 0 exp(t 2 ) dt. Dowsonův integrál lze v počítači efektivně implementovat jako funkce počítaná pomocí polynomů s libovolnou přesností (ostatně většina běžných funkcí je takto implementována) a potom tyto vztahy jsou co se týká efektivity výpočtu ekvivalentní analytickému vyjádření tlumeného harmonického oscilátoru a plně Loretzovy oscilátory nahrazují. Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 15 / 17
17 Shrnutí Obsah 1 Parametr hustoty 2 Elektrony a jádra vs. elektronové excitace a fonony 3 Kvazičásticový popis 4 Shrnutí Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 16 / 17
18 Shrnutí Shrnutí Daniel Franta (Ústav fyzikální elektroniky) Pokročilé disperzní modely 17 / 17
Daniel Franta. jaro Ústav fyzikální elektroniky, Přírodovědecká fakulta, Masarykova univerzita
Pokročilé disperzní modely v optice tenkých vrstev Lekce 4: Univerzální disperzní model amorfních pevných látek aplikace na elipsometrická a spektrofotometrická měření HfO 2 vrstvy v rozsahu.86-.8 ev Daniel
Daniel Franta. jaro Ústav fyzikální elektroniky, Přírodovědecká fakulta, Masarykova univerzita
Pokročilé disperzní modely v optice tenkých vrstev Lekce 2: Kvantově mechanický popis Thomas-Reiche-Kuhnovo (TRK) sumační pravidlo; Fermiho zlaté pravidlo; dipólová aproximace; dielektrická odezva Daniel
Daniel Franta Ústav fyzikální elektroniky, Přírodovědecká fakulta, Masarykova univerzita
Pokročilé disperzní modely v optice tenkých vrstev Lekce 3: Kvantově mechanický popis Thomas-Reiche-Kuhnovo (TRK) sumační pravidlo; Fermiho zlaté pravidlo; dipólová aproximace; dielektrická odezva Daniel
Daniel Franta Ústav fyzikální elektroniky, Přírodovědecká fakulta, Masarykova univerzita
Pokročilé disperzní modely v optice tenkých vrstev Lekce 2: Klasické modely Drudeho model, Lorentzův oscilátor; empirické modely; semiklasické modely zahrnující gap; použitelnost klasických modelů Daniel
1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.
. Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Daniel Franta. jaro Ústav fyzikální elektroniky, Přírodovědecká fakulta, Masarykova univerzita
Pokročilé disperzní modely v optice tenkých vrstev Lekce 1: Úvod dielektrická odezva; časově reverzní symetrie; Kramers-Kronigovy relace; sumační pravidlo; klasické modely Daniel Franta Ústav fyzikální
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži
Vibrace jader atomů v krystalové mříži v krystalu máme N základních buněk, v každé buňce s atomů, které kmitají kolem rovnovážných poloh výchylky kmitů jsou malé (Taylorův rozvoj): harmonická aproximace
elektrony v pevné látce verze 1. prosince 2016
F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
Opakování: shrnutí základních poznatků o struktuře atomu
11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické
Tepelná vodivost pevných látek
Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné
EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření
FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých
ρ = 0 (nepřítomnost volných nábojů)
Učební text k přednášce UFY Světlo v izotropním látkovém prostředí Maxwellovy rovnice v izotropním látkovém prostředí: B rot + D rot H ( r, t) div D ρ rt, ( ) div B a materiálové vztahy D ε pro dielektrika
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
Fluktuace termodynamických veličin
Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ
Detektory. požadovaná informace o částici / záření. proudový puls p(t) energie. čas příletu. výstupní signál detektoru. poloha.
Detektory požadovaná informace o částici / záření energie čas příletu poloha typ citlivost detektoru výstupní signál detektoru proudový puls p(t) E Q p t dt účinný průřez objem vnitřní šum vstupní okno
E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií
Polovodiče To jestli nazýváme danou látku polovodičem, závisí především na jejích vlastnostech ve zvoleném teplotním oboru. Obecně jsou to látky s 0 ev < Eg < ev. KOV POLOVODIČ E g IZOLANT Zakázaný pás
Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3
Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý
Jiří Oswald. Fyzikální ústav AV ČR v.v.i.
Jiří Oswald Fyzikální ústav AV ČR v.v.i. I. Úvod Polovodiče Zákládní pojmy Kvantově-rozměrový jev II. Luminiscence Si nanokrystalů III. Luminiscence polovodičových nanostruktur A III B V IV. Aplikace Pásová
V mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6.
Nekvantový popis interakce světla s pasivní látkou Zcela nekvantová fyzika nemůže interakci elektromagnetického záření s látkou popsat, např. atom jako soustava kladných a záporných nábojů by vůbec nebyl
Ideální krystalová mřížka periodický potenciál v krystalu. pásová struktura polovodiče
Cvičení 3 Ideální krystalová mřížka periodický potenciál v krystalu Aplikace kvantové mechaniky pásová struktura polovodiče Nosiče náboje v polovodiči hustota stavů obsazovací funkce, Fermiho hladina koncentrace
Poznámky k Fourierově transformaci
Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené
Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů
Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami
Charakterizují kvantitativně vlastnosti předmětů a jevů.
Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost
Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.
S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
Balmerova série vodíku
Balmerova série vodíku Eva Bartáková, SGAGY Kladno, evebartak@centrum.cz Adam Fadrhonc, SSOU a U, Černá za Bory, Pardubice, adam@kve.cz Lukáš Malina, gymn. Christiana Dopplera, Praha, lukas-malina@seznam.cz
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
Kvantová mechanika - model téměř volných elektronů. model těsné vazby
Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme
SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
Rozměr a složení atomových jader
Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10
Fyzika IV Dynamika jader v molekulách
Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment
Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
OPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
Fyzika atomového jádra
Fyzika atomového jádra (NJSF064) František Knapp http://www-ucjf.troja.mff.cuni.cz/~knapp/jf/ frantisek.knapp@mff.cuni.cz Slupkový model jádra evidence magických čísel: hmoty, separační energie, vazbové
Polovodičové senzory. Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy
Polovodičové senzory Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy Polovodičové materiály elementární polovodiče Elementární
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
Pozitron teoretická předpověď
Pozitron teoretická předpověď Diracova rovnice: αp c mc x, t snaha popsat relativisticky pohyb elektronu x, t ˆ i t řešení s negativní energií vakuum je Diracovo moře elektronů pozitrony díry ve vaku Paul
Kapitola 7: Integrál.
Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Operátory a maticové elementy
Operátory a matice Operátory a maticové elementy operátory je výhodné reprezentovat maticemi maticové elementy operátorů jsou dány vztahy mezi Slaterovými determinanty obsahujícími ortonormální orbitaly
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 3
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 3 Zpracoval: Jakub Juránek Naměřeno: 24. duben 2013 Obor: UF Ročník: II Semestr: IV Testováno:
4 Přenos energie ve FS
4 Přenos energie ve FS Petr Ilík KF a CH, PřF UP Přenos energie (excitace) do C - 1-1 molekula chl je i při vysoké ozářenosti excitována max. 10x za sekundu neefektivní pro C - nténní systém s mnoha pigmenty
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
Teorie Molekulových Orbitalů (MO)
Teorie Molekulových Orbitalů (MO) Kombinace atomových orbitalů na všech atomech v molekule Vhodná symetrie Vhodná (podobná) energie Z n AO vytvoříme n MO Pro začátek dvouatomové molekuly: H 2, F 2, CO,...
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
4. Stanovení teplotního součinitele odporu kovů
4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf
Systémy pro využití sluneční energie
Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
Kapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.
Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností
Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika
Fotonásobič vstupní okno fotokatoda E h fokusační elektrononová optika systém dynod anoda e zesílení G N typicky: - koeficient sekundární emise = 3 4 - počet dynod N = 10 12 - zisk: G = 10 5-10 7 Fotonásobič
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii
Theory Česky (Czech Republic)
Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider
Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty
Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení
12. Křivkové integrály
12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty
Od kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
Skenovací tunelová mikroskopie a mikroskopie atomárních sil
Skenovací tunelová mikroskopie a mikroskopie atomárních sil M. Vůjtek Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky v rámci projektu Vzdělávání výzkumných
Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka
Posouzení přesnosti měření
Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Speciální praktikum z abc
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Speciální praktikum z abc Zpracoval: Jan Novák Naměřeno: 1. ledna 2001 Obor: F Ročník: IV Semestr: IX Testováno:
U01 = 30 V, U 02 = 15 V R 1 = R 4 = 5 Ω, R 2 = R 3 = 10 Ω
B 9:00 hod. Elektrotechnika a) Definujte stručně princip superpozice a uveďte, pro které obvody platí. b) Vypočítejte proudy větvemi uvedeného obvodu metodou superpozice. 0 = 30 V, 0 = 5 V R = R 4 = 5
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
Spektrometrické metody. Luminiscenční spektroskopie
Spektrometrické metody Luminiscenční spektroskopie luminiscence molekul a pevných látek šířka spektrální čar a doba života luminiscence polarizace luminiscence korekce luminiscenčních spekter vliv aparatury
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII Pavla Pekárková Katedra analytické chemie, Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, 611 37 Brno E-mail: 78145@mail.muni.cz
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Úloha 8: Absorpce beta záření. Určení energie betarozpadu měřením absorpce emitovaného záření.
Petra Suková, 3.ročník 1 Úloha 8: Absorpce beta záření. Určení energie betarozpadu měřením absorpce emitovaného záření. 1 Zadání Vtétoúlozesepoužívázářič 90 Sr,kterýserozpadápodleschematunaobr.1.Spektrumemitovaných
TERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
October 1, Interpretujte význam jejích parametrů. Vypočítejte jeho momenty. Napište vzorec pro. I(n, a, b) :=
Kvantová fyzika cvičení s návody a výsledky October 1, 007 Návody zde uvedené jsou záměrně uváděny ve stručné formě, jako nápověda a vodítko, jak při řešení úloh postupovat; nepředstavují a nenahrazují
Měření šířky zakázaného pásu polovodičů
Měření šířky zakázaného pásu polovodičů Úkol : 1. Určete šířku zakázaného pásu ze spektrální citlivosti fotorezistoru pro šterbinu 1,5 mm. Na monochromátoru nastavujte vlnovou délku od 200 nm po 50 nm
2. Elektrotechnické materiály
. Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů
Kovy - model volných elektronů
Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.
Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011
Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení
Měření permitivity a permeability vakua
Měření permitivity a permeability vakua Online: http://www.sclpx.eu/lab3r.php?exp=2 Permitivita i permeabilita vakua patří svojí hodnotou měřenou v základních jednotkách SI mezi poměrně malé fyzikální
Přednáška IX: Elektronová spektroskopie II.
Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném
Úloha 5: Spektrometrie záření α
Petra Suková, 3.ročník 1 Úloha 5: Spektrometrie záření α 1 Zadání 1. Proveďte energetickou kalibraci α-spektrometru a určete jeho rozlišení. 2. Určeteabsolutníaktivitukalibračníhoradioizotopu 241 Am. 3.
Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy
Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných
17 Vlastnosti molekul
17 Vlastnosti molekul Experimentálně molekuly charakterizujeme pomocí nejrůznějších vlastností: můžeme změřit třeba NMR posuny, elektrické či magnetické parametry či třeba jejich optickou otáčivost. Tyto
Modelové výpočty na H 2 a HeH +
Modelové výpočty na H 2 a HeH + Minimální báze Všechny teoretické poznatky je užitečné ilustrovat modelovým výpočtem. Budeme aplikovat Hartree-Fockovy výpočty na uzavřených slupkách systémů H 2 a HeH +.
Metody nelineární optiky v Ramanově spektroskopii
Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu
VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI
VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI Přehled dosimrických veličin: Daniel KULA (verze 1.0), 1. Aktivita: Definice veličiny: Poč radioaktivních přeměn v radioaktivním materiálu, vztažený na
ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE.
ATOMY + MOLEKULY ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE H ˆψ = Eψ PRO PŘÍPAD POTENCIÁLNÍ ENERGIE Vˆ = Ze 2 4πε o r ŘEŠENÍ HLEDÁME
Barevné principy absorpce a fluorescence
Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 27.9.2007 2 1 Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické
Kapitola 7: Integrál. 1/17
Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený
TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;
TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.
Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
Šíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
Prověřování Standardního modelu
Prověřování Standardního modelu 1) QCD hluboce nepružný rozptyl, elektron (mion) proton, strukturní funkce fotoprodukce γ proton produkce gluonů v e + e produkce jetů, hadronů 2) Elektroslabá torie interference