VÝVOJ DNA ČIPŮ PRO DETEKCI GENETICKY MODIFIKOVANÝCH ORGANISMŮ
|
|
- Kateřina Horáčková
- před 8 lety
- Počet zobrazení:
Transkript
1 VÝVOJ DNA ČIPŮ PRO DETEKCI GENETICKY MODIFIKOVANÝCH ORGANISMŮ Lucie Vištejnová 2, Jan Hodek 1, Patrik Sekerka 2, Jaroslava Ovesná 1, Kateřina Demnerová 2 1. Výzkumný ústav rostlinné výroby, Drnovská 507, Praha 6 Ruzyně 2. Ústav biochemie a mikrobiologie, Fakulta potravinářské a biochemické technologie, VŠCHT Praha, Technická 5, Praha 6 Dejvice eroc@centrum.cz Úvod DNA čipy představují v dnešní době nový analytický nástroj v oblasti molekulární biologie a genetiky 1. Jejich hlavním přínosem je možnost detekovat velké množství různých DNA sekvencí v jednom pokusu. Současné běžně používané metody detekce DNA (polymerázová řetězová reakce (PCR)) umožňují stanovení jedné nebo několika DNA sekvencí v jednom experimentu, což může činit problémy v rutinních laboratorních provozech, kde se klade důraz na rychlé získání výsledků. Pěstování geneticky modifikovaných organismů (GMOs) se stává nedílnou součástí zemědělství mnoha států světa a s tím rostou i požadavky na rychlou a spolehlivou metodu, která by umožňovala snadné a levné sledování výskytu GMOs v rostlinách a rostlinných produktech. Současnou používanou detekční metodou je PCR 2. Tato metoda nachází uplatnění ve většině referenčních laboratoří, ale její nevýhodou je nutnost provádět jednu reakci na jeden hledaný gen. DNA čip je malá pevná podložka, na níž jsou imobilizovány různé DNA sekvence. Každá DNA sekvence odpovídá jednomu hledanému genu. Funkce DNA čipu je založena na hybridizaci imobilizované DNA s DNA z analyzovaného vzorku na základě komplementarity. Analyzovaná DNA musí být předem naznačena (fluorescenční barvy, biotin, radioaktivní značky). Po hybridizaci následuje získávání dat, jejich vyhodnocování a interpretace. Cílem naší práce je vyzkoušet funkci připravených DNA čipů. Najít vhodné hybridizační podmínky a navrhnout tuto metodu jako vhodnou pro detekci geneticky modifikovaných organismů. Experimentální část Detekce genetických modifikací v rostlinách je založena průkazu vneseného cizího genu, tzv. transgenu 3. Tab.1 představuje seznam všech genů, které jsou zahrnuty do našeho
2 detekčního systému. Jsou mezi nimi vnitřní geny rostlin kukuřice, sóji, řepky a brambor, dále konkrétní transgeny a jejich promotory a terminátory. Geny byly izolovány z rostlinného materiálu pomocí PCR se specifickými primery a byly vloženy do plasmidového vektoru puc18. Každému genu odpovídal jeden vektor. Vektor byl následně vnesen do kompetentních buněk Escherichia coli. Buněčné kultury jsou uchovávány v mrazáku v -80 C a slouží jako zásobárna hledaných genů. Tab.1: Seznam hledaných genů Vnitřní geny Promotory,terminátory Transgeny Invertáza 35S_inhouse MON 810_3 Lektin_inhouse 35S_1 Bt_176_3 Lektin_1 35S_2 Bt_11_3 Lektin_2 NOS_inhouse Liberty Link_3 Lektin_3 NOS_1 MON 810_inhouse Patatin RounupReady_inhouse Napin RoundupReady_3 NPT II PBS BAR CRY PAT BAR Pro výrobu DNA čipu byly použity křemenná skla s amino skupinou na povrchu, která slouží k navázání DNA sekvence. DNA sekvence byly připraveny následujícím způsobem. Z narostlé buněčné kultury (LB médium, 16 hod, 37 C) byly pomocí kitu High Pure Plasmid Isolation Kit od firmy Roche vyizolovány plasmidy nesoucí hledané geny. Kontrola vyizolované plasmidové DNA byla provedena pomocí gelové elektroforézy (obr.1). Plasmidová DNA byla použita do PCR reakce, jejímž produktem byly DNA sekvence dlouhé přibližně 300 párů bází, které obsahovaly sekvence hledaných genů. PCR produkty byly přečištěny pomocí kitu High Pure PCR Purification Kit od firmy Roche. Kontrola získaných PCR produktů byla provedena opět pomocí gelové elektroforézy (obr. 2). PCR produkty byly společně s plasmidovou DNA naneseny na sklo. Koncentrace nanášených PCR produktů byla ng/µl, koncentrace nanášené plasmidové DNA byla 0,8 1,2 µg/µl. Tisk DNA sekvencí na sklo probíhal ve stanici MicroGrid Compact, Biorobotics. Kovalentní vazby mezi
3 DNA sekvencí a amino skupinou byly posíleny sonikací o energii 250 mj a volné reaktivní skupiny na povrchu skla byly vysyceny prehybridizačním roztokem o složení - 5x SSC, 0,1% SDS, 10 mg/ml BSA. Obr.1: Gelová elektroforéza izolovaných plasmidů (0,8% agarózový gel, 55 V, 50 min, 1 µl DNA) Obr.2: Gelová elektroforéza PCR produktů (2% agarózový gel, 60 V, 50 min, 4 µl DNA) V prvních experimentech byla ověřována správná funkce DNA čipů. K hybridizaci byly vybrány dvě DNA sekvence, gen pro lektin_inhouse a gen pro promotor 35S_inhouse, stejné, jako byly imobilizovány na skle. Geny byly získány z bakteriální kultury stejným postupem jako při přípravě na tisk skla. Gen pro lektin byl naznačen fluorescenční barvou cyanin-5 a gen pro 35S promotor byl naznačen fluorescenční barvou cyanin-3 (ASAP RNA Labeling Kit, Micromax). Obě značené DNA sekvence byly zakoncentrovány na objem 2 µl, smíchány a bylo přidáno 16 µl hybridizačního pufru. Směs byla nanesena na sklo a hybridizace byly provedeny v hybridizační komůrce (Takara) ve vodní lázni po dobu 16 hodin při teplotách 42, 55 a 65 C. Po proběhnutí hybridizace se povrch čipů snímal laserovým skenerem GeneTAC UC 4x4 Genomic Solution s excitací při 550 nm (Cy-3) a 650 nm (Cy- 5). Nasnímané obrazy skel byly zpracovány programem GeneTAC Integrator. Výsledky a diskuse Naším cílem bylo vyzkoušet funkci připravených DNA čipů a najít vhodné hybridizační podmínky. Hlavní parametry ovlivňující průběh hybridizace jsou teplota hybridizace, složení hybridizačního pufru, čas hybridizace a množství DNA v analyzovaném vzorku. Hybridizace byly prováděny za různých podmínek. Požadované teploty byly zajišťovány vodní lázní, reakce probíhaly při 42, 55 a 65 C. Bylo vyzkoušeno pět druhů hybridizačních pufrů jeden od firmy ArrayIT a čtyři od firmy Ambion. Doba hybridizace byla vždy stejná, 16 hodin. Koncentrace DNA v analyzovaném vzorku byla 1 µg/µl.
4 První výsledky (obr.3-8) ukazují, že hybridizace neproběhla podle předpokladů. V analyzovaném vzorku byly přítomny pouze dvě různé DNA sekvence, které by měly poskytovat signály v pozicích, kde byly imobilizovány geny pro lektin a 35S promotor (bíle označeno). V ostatních bodech jsou imobilizovány jiné DNA sekvence a na ně by se DNA ze vzorku neměla vázat vůbec a nebo s mnohem menší intenzitou. Obr.3: Ambion_1, 55 C Obr.4: Ambion_2, 55 C Obr.5: Ambion_3_55 C Obr.6: Ambion_4_55 C Obr.7: ArrayIT_65 C Obr.8: ArrayIT_42 C
5 Ze současných obrazových analýz skel jsme vybrali jako vhodný hybridizační pufr číslo 2 od firmy Ambion a teplotu hybridizace 55 C. Tato teplota byla použita při hybridizaci PCR produktů i v jiné studii 4. Při těchto podmínkách byly minimální nespecifické vazby v pozadí a plochy s DNA měly nejlepší kvalitu. Vazby DNA na všechny pozice na skle jsou pravděpodobně zapříčiněny vysokou koncentrací DNA v analyzovaném vzorku a dlouhou dobou hybridizace. Další možnou příčinou můžou být samotné DNA sekvence, se kterou jsou pokusy prováděny. Všechny PCR produkty i plasmidová DNA nanesené na skle, obsahují dva úseky, které jsou přítomny i v DNA z analyzovaného vzorku. Jsou to úseky dohromady dlouhé 170 párů bází, které slouží jako místa pro nasednutí primerů v PCR reakci. Závěr Zatím se nám podařilo najít vhodný hybridizační pufr a hybridizační teplotu. Další experimenty budou zaměřeny na odstranění nespecifického vázání DNA na čipy. Kromě hledání vhodné koncentrace DNA v analyzovaném vzorku se bude zkoušet nová forma DNA, která bude nanášena na sklo. Jednalo by se o produkty PCR, kde by se použily jiné primery, které by nasedaly přímo na vložené geny. Další možností budou syntetizované oligonukleotidy, DNA sekvence dlouhé 20 párů bází, které jsou specifické pro každý hledaný gen zvlášť. Pozornost bude zaměřena i na nové způsoby značení DNA. Tento výzkum je podporován Ministerstvem školství, mládeže a tělovýchovy. 1P05O54 COST Literatura 1. Lamartine J.: Mater. Sci. Eng., C , 26 (2006). 2. Deisingh A.K., Badrie N.: Food Res. Int , 38 (2005). 3. Miraglia M., Berdal K.G., Brera C., Corbisier P., Holst-Jensen A., Kok E.J., Marvin H.J.P., Schimmel H., Rentsch J., van Rie J.P.P.F., Zagon J.: Food Chem. Toxicol , 42 (2004). 4. Xu J., Miao H., Wu H., Huang W., Tang R., Qiu M., Wen J, Zhu S., Li Y.: Biosens. Bioelectron , 22 (2006).
Hybridizace nukleových kyselin
Hybridizace nukleových kyselin Tvorba dvouřetězcových hybridů za dvou jednořetězcových a komplementárních molekul Založena na schopnosti denaturace a renaturace DNA. Denaturace DNA oddělení komplementárních
Konečná zpráva hodnocení různých způsobů přípravy vzorků pro AMPLICOR HPV test firmy Roche
Konečná zpráva hodnocení různých způsobů přípravy vzorků pro AMPLICOR HPV test firmy Roche Charakteristika testu: Set AMPLICOR HPV vyráběný firmou Roche je určený pro detekci vysoko-rizikových typů lidských
Havarijní plán PřF UP
Havarijní plán PřF UP v němž se nakládá s geneticky modifikovanými organismy (GMO), zpracovaný podle 20, odst. 4 zákona č. 78/2004 Sb. pro pracoviště kateder Buněčné biologie a genetiky a Oddělení molekulární
STUDIE GENOMON VÝSKYT GENETICKY MODIFIKOVANÝCH POTRAVIN V TRŽNÍ SÍTI V ČR V ROCE 2010. M. Mendlová, V. Ostrý, J. Ruprich
STUDIE GENOMON VÝSKYT GENETICKY MODIFIKOVANÝCH POTRAVIN V TRŽNÍ SÍTI V ČR V ROCE 2010 M. Mendlová, V. Ostrý, J. Ruprich Státní zdravotní ústav v Praze Centrum zdraví, výživy a potravin Oddělení analýzy
1. Metodika. Protokol č. F1-4 Metodika: Srovnávací analýza efektivity přípravy rekombinantního proteinu ve fermentoru
Protokol č.: F1-4 Datum: 20.12.2010 Metodika: analýza efektivity přípravy výběr z výsledků ze zkušebních provozů výroby antigenů. Vypracoval: Ing. Václav Filištein, Mgr. Tereza Chrudimská, Spolupracující
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Analýza transkriptomu Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s moderními metodami komplexní
MOŽNOSTI STANOVENÍ GENETICKY MODIFIKOVANÝCH ODRŮD POLNÍCH PLODIN
MOŽNOSTI STANOVENÍ GENETICKY MODIFIKOVANÝCH ODRŮD POLNÍCH PLODIN Identification and Quantification of Genetically Modified Cultivars of Field Plants Jaroslava Ovesná, Ladislav Kučera, David Cháb, Vladimíra
Optimalizace metody PCR pro její využití na vzorky KONTAMINOVANÝCH PITNÝCH VOD
Optimalizace metody PCR pro její využití na vzorky KONTAMINOVANÝCH PITNÝCH VOD Dana Vejmelková, Milan Šída, Kateřina Jarošová, Jana Říhová Ambrožová VODÁRENSKÁ BIOLOGIE, 1. 2. 2017 ÚVOD Sledované parametry,
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci. reg. č.: CZ.1.07/2.2.00/
Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci reg. č.: CZ.1.07/2.2.00/28.0088 Hybridizační metody v diagnostice Mgr. Gabriela Kořínková, Ph.D. Laboratoř molekulární
DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KOLOREKTÁLNÍHO KARCINOMU
Úvod IntellMed, s.r.o., Václavské náměstí 820/41, 110 00 Praha 1 DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KOLOREKTÁLNÍHO KARCINOMU Jednou z nejvhodnějších metod pro detekci minimální
DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIUDÁLNÍ CHOROBY MRD EGFR
Úvod IntellMed, s.r.o., Václavské náměstí 820/41, 110 00 Praha 1 DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIUDÁLNÍ CHOROBY MRD EGFR Jednou z nejvhodnějších metod pro detekci minimální reziduální choroby
GENOTOXICITA A ZMĚNY V GENOVÉ EXPRESI
GENOTOXICITA A ZMĚNY V GENOVÉ EXPRESI INDUKOVANÉ PŮSOBENÍM ORGANICKÝCH LÁTEK Z PRACHOVÝCH ČÁSTIC V OVZDUŠÍ Kateřina Hanzalová Oddělení genetické ekotoxikologie Ústav experimentální medicíny AV ČR v.v.i.
DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KARCINOMU PANKREATU
Úvod IntellMed, s.r.o., Václavské náměstí 820/41, 110 00 Praha 1 DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KARCINOMU PANKREATU Jednou z nejvhodnějších metod pro detekci minimální reziduální
ÚLOHA C Klonování PCR produktu do plasmidu
Jméno a učo: Datum: ÚLOHA C Klonování PCR produktu do plasmidu TEORETICKÝ ÚVOD Při klonování PCR produktů do plasmidů se využívá vlastnosti Taq polymerasy, a jiných non-proofreading polymeras, přidávat
Izolace RNA. doc. RNDr. Jan Vondráček, PhD..
Izolace RNA doc. RNDr. Jan Vondráček, PhD.. Metodiky izolace RNA celková buněčná RNA ( total RNA) zahrnuje řadu typů RNA, které se mohou lišit svými fyzikálněchemickými vlastnostmi a tedy i nároky na jejich
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
Příprava vektoru IZOLACE PLASMIDU ALKALICKÁ LYZE, KOLONKOVÁ IZOLACE DNA GELOVÁ ELEKTROFORÉZA RESTRIKČNÍ ŠTĚPENÍ. E. coli. lyze buňky.
Příprava vektoru IZOLCE PLSMIDU LKLICKÁ LYZE, KOLONKOVÁ IZOLCE DN E. coli plasmidová DN proteiny proteiny + + vysrážená plasmidová lyze buňky + snížení ph chromosomální DN centrifugace DN chromosomální
Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.
Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou
Mikročipy v mikrobiologii
Mikročipy v mikrobiologii doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 Obsah přednášky 1) Charakteristika biočipů, DNA microarrays a DNA chip 2) Výroba čipů, charakteristika
Písemná zpráva zadavatele
Písemná zpráva zadavatele veřejné zakázky zadávané dle zákona č. 137/2006 Sb., o veřejných zakázkách, ve znění účinném ke dni zahájení zadávacího řízení (dále jen ZVZ ). Veřejná zakázka Název: Ostatní
IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek
IZOLACE, SEPARACE A DETEKCE PROTEINŮ I Vlasta Němcová, Michael Jelínek, Jan Šrámek Studium aktinu, mikrofilamentární složky cytoskeletu pomocí dvou metod: detekce přímo v buňkách - fluorescenční barvení
Mumie versus Zombie: na koho si vsadit v případě jaderné katastrofy
Mumie versus Zombie: na koho si vsadit v případě jaderné katastrofy Čeněk Malík* Tereza Baštová** Marie Dohnalová*** Gymnázium Litoměřická, Litoměřická 726, Praha 9* Gymnázium Česká Lípa, Žitovská 2969,
Laboratorní workshop s teoreticko praktickou ukázkou molekulárně biologických technik ve spolupráci s firmou ROCHE
BiochemNet vytvoření sítě pro podporu spolupráce biomedicínských pracovišť a zvýšení uplatnitelnosti absolventů biochemických oborů v praxi Laboratorní workshop s teoreticko praktickou ukázkou molekulárně
Metody molekulární biologie
Metody molekulární biologie 1. Základní metody molekulární biologie A. Izolace nukleových kyselin Metody využívající různé rozpustnosti Metody adsorpční Izolace RNA B. Centrifugační techniky o Princip
Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk
MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fakulta Ústav experimentální biologie Oddělení genetiky a molekulární biologie Interakce proteinu p53 s genomovou DNA v kontextu chromatinu glioblastoma buněk
ZDRAVOTNÍ NEZÁVADNOST POTRAVIN
ZDRAVOTNÍ NEZÁVADNOST POTRAVIN Možnosti stanovení Listeria monocytogenes popis metod a jejich princip Mária Strážiková Aleš Holfeld Obsah Charakteristika Listeria monocytogenes Listerióza Metody detekce
Jednotné pracovní postupy zkoušení krmiv
Národní referenční laboratoř Strana KVANTITATIVNÍ STANOVENÍ GENETICKÝCH MODIFIKACÍ METODOU qpcr POMOCÍ ROTOR-GENE PROBE PCR KITU Účel a rozsah Postup slouží ke kvantitativnímu stanovení genetických modifikací
Seminář izolačních technologií
Seminář izolačních technologií Zpracoval: Karel Bílek a Kateřina Svobodová Podpořeno FRVŠ 2385/2007 a 1305/2009 Úpravy a aktualizace: Pavla Chalupová ÚMFGZ MZLU v Brně 1 Lokalizace jaderné DNA 2 http://www.paternityexperts.com/basicgenetics.html
DEN OTEVŘENÝCH DVEŘÍ NA ÚMG
DEN OTEVŘENÝCH DVEŘÍ NA ÚMG Místo konání: Datum a doba konání: Budova F, Vídeňská 1083, 142 20 Praha 4-Krč 23. 11. 2015 od 9:00 do 15:00 hod. Kontakt pro styk s veřejností: Organizační záležitosti: Odborné
TECHNICKÁ SPECIFIKACE Vybavení genetické laboratoře pro projekt EXTEMIT-K část B
TECHNICKÁ SPECIFIKACE Vybavení genetické laboratoře pro projekt EXTEMIT-K část B OBSAH Sestava pro vertikální elektroforézu... 2 Jednotka pro elektroforézu... 3 Termocykler... 4 Elektrický zdroj pro elektroforézu...
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Vzdělávání zdravotních laborantek v oblasti molekulární biologie
Vzdělávání zdravotních laborantek v oblasti molekulární biologie Beránek M., Drastíková M. Ústav klinické biochemie a diagnostiky, Lékařská fakulta UK a Fakultní nemocnice Hradec Králové beranek@lfhk.cuni.cz
Bi5130 Základy práce s lidskou adna
Bi5130 Základy práce s lidskou adna Mgr. et Mgr. Kristýna Brzobohatá pizova@sci.muni.cz Laboratoř biologické a molekulární antropologie, ÚEB, PřF, Mu Bi5130 Základy práce s lidskou adna PCR polymerase
Microfluidic systems, advantages and applications Monika Kremplová, Mgr.
Název: Školitel: Microfluidic systems, advantages and applications Monika Kremplová, Mgr. Datum: 21. 6. 2013 Reg.č.projektu: CZ.1.07/2.3.00/20.0148 Název projektu: Mezinárodní spolupráce v oblasti "in
analýza dat a interpretace výsledků
Genetická transformace bakterií III analýza dat a interpretace výsledků Předmět: Biologie ŠVP: Prokaryotní organismy, genetika Doporučený věk žáků: 16-18 let Doba trvání: 45 minut Specifické cíle: analyzovat
Výzkumné centrum genomiky a proteomiky. Ústav experimentální medicíny AV ČR, v.v.i.
Výzkumné centrum genomiky a proteomiky Ústav experimentální medicíny AV ČR, v.v.i. Systém pro sekvenování Systém pro čipovou analýzu Systém pro proteinovou analýzu Automatický sběrač buněk Systém pro sekvenování
DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH. Michaela Nesvadbová
DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH Michaela Nesvadbová Význam identifikace živočišných druhů v krmivu a potravinách povinností každého výrobce je řádně a pravdivě označit
Izolace, klonování a analýza DNA
Izolace, klonování a analýza DNA Ing. Pavel Kotrba, Ph.D., Ing. Zdeněk Knejzlík, Ph.D., Ing. Zdeněk Chodora Ústav biochemie a mikrobiologie, VŠCHT Praha HTpavel.kotrba@vscht.czTH, HTzdenek.knejzlik@vscht.czTH,
Kvantitativní detekce houbových patogenů v rostlinných pletivech s využitím metod molekulární biologie
Kvantitativní detekce houbových patogenů v rostlinných pletivech s využitím metod molekulární biologie Leona Leišová Přírodovědecká fakulta UK, Praha 2009 Metody kvantifikace: Nepřímé metody odhad míry
STAFYLOKOKOVÉ ENTEROTOXINY. Zdravotní nezávadnost potravin. Veronika Talianová, FPBT, kruh: 346 Angelina Anufrieva, FPBT, kruh: 336
STAFYLOKOKOVÉ ENTEROTOXINY Zdravotní nezávadnost potravin Veronika Talianová, FPBT, kruh: 346 Angelina Anufrieva, FPBT, kruh: 336 OBSAH: Základní charakteristika Staphylococcus aureus Stafylokokové enterotoxiny
Nanotransportéry pro teranostické aplikace
Název: Nanotransportéry pro teranostické aplikace Školitel: Simona Dostálová, Markéta Vaculovičová Datum: 21. 3. 2014 Reg.č.projektu: CZ.1.07/2.3.00/20.0148 Název projektu: Mezinárodní spolupráce v oblasti
Tkáňový homogenizátor MagNA Lyser od společnosti Roche
Izolace RNA Pracovní postup Homogenizace: Pozn. Postup homogenizace platí pouze pro izolaci RNA z nativní tkáně, v případě izolace z buněčné suspenze je tento krok vynechán a začíná se přídavkem homogenizačního
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII Martina Nováková, VŠCHT Praha MOLEKULÁRNÍ BIOLOGIE V BIOREMEDIACÍCH enumerace FISH průtoková cytometrie klonování produktů PCR sekvenování
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Laboratoř molekulární patologie
Laboratoř molekulární patologie Ústav patologie FN Brno Prof. RNDr. Jana Šmardová, CSc. 19.11.2014 Složení laboratoře stálí členové Prof. RNDr. Jana Šmardová, CSc. Mgr. Květa Lišková Mgr. Lenka Pitrová
Amplifikační metody umožňují detekovat. k dispozici minimálně kopií DNA,
Diagnostické amplifikační metody nevyužívající PCR Amplifikační metody umožňují detekovat jedinou kopii cílové DNA, zatímco při hybridizačních metodách musí být k dispozici minimálně 10 4-10 5 kopií DNA,
TESTOVÁNÍ GMO Praktikum fyziologie rostlin
Teoretický úvod: TESTOVÁNÍ GMO Praktikum fyziologie rostlin 1 Teoretický úvod: TESTOVÁNÍ GMO Obecně na úvod Určitě jste už slyšeli pojem geneticky modifikovaný organismus (GMO). Úprava vlastností přirozeně
Hybridizace. doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz
Hybridizace doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2013 Obsah přednášky 1) Způsoby provedení hybridizace 2) Hybridizace v roztoku 3) Příprava značených sond 4) Hybridizace
NÁVOD K POUŽITÍ PRO HER2 DNA QUANTIFICATION KIT
IČ: 80 DIČ: CZ80 sales@intellmed.eu NÁVOD K POUŽITÍ PRO HER DNA QUANTIFICATION KIT IČ: 80 DIČ: CZ80 sales@intellmed.eu OBSAH Návod k použití pro HER DNA QUANTIFICATION KIT.... Úvod.... Označení.... Rozsah
Polyfázová identifikace kmenů Aeromonas encheleia
Polyfázová identifikace kmenů Aeromonas encheleia D. Nováková, A. Vávrová, P. Švec a I. Sedláček Česká sbírka mikroorganismů Charakterizace aeromonád G-, pohyblivé tyčky, kokotyčky, čeleď Aeromonadaceae
MOLEKULÁRNÍ BIOLOGIE. 2. Polymerázová řetězová reakce (PCR)
MOLEKULÁRNÍ BIOLOGIE 2. Polymerázová řetězová reakce (PCR) Náplň praktik 1. Izolace DNA z buněk bukální sliznice - izolační kit MACHEREY-NAGEL 2. PCR polymerázová řetězová reakce (templát gdna) 3. Restrikční
Školení GMO Ústav biochemie a mikrobiologie
Školení GMO Ústav biochemie a mikrobiologie 8.2.2019 Agrobacterium tumefaciens OZNÁMENÍ o uzavřeném nakládání první a druhé kategorie rizika na Ústavu biochemie a mikrobiologie VŠCHT a Ústavu biotechnologie
Column DNA Lego Kit UNIVERZÁLNÍ SOUPRAVY PRO RYCHLOU IZOLACI ČISTÉ DNA (Katalogové číslo D201 + D202)
Column DNA Lego Kit UNIVERZÁLNÍ SOUPRAVY PRO RYCHLOU IZOLACI ČISTÉ DNA (Katalogové číslo D201 + D202) Popis Column DNA Lego Kit je základ moderní stavebnicové (Lego) soupravy pro izolaci čisté DNA různého
Molekulární biotechnologie č.9. Cílená mutageneze a proteinové inženýrství
Molekulární biotechnologie č.9 Cílená mutageneze a proteinové inženýrství Gen kódující jakýkoliv protein lze izolovat z přírody, klonovat, exprimovat v hostitelském organismu. rekombinantní protein purifikovat
Externí kontrola kvality sekvenačních analýz
Externí kontrola kvality sekvenačních analýz Radka Bolehovská 1, Lenka Plíšková 2, Kateřina Hrochová 2 Úsek molekulární biologie, 1 Ústav klinické mikrobiologie 2 Ústav klinické biochemie a diagnostiky
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Poziční klonování Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s metodou pozičního klonování genů
Sure-MeDIP II. with agarose beads and Mse I. www.krd.cz
Sure-MeDIP II with agarose beads and Mse I www.krd.cz 1 Obsah soupravy a skladování MeDIP souprava obsahuje reagencie na provedení 25 reakcí. Souprava je rozdělen do dvou částí, jedna je distribuována
1. Definice a historie oboru molekulární medicína. 3. Základní laboratorní techniky v molekulární medicíně
Obsah Předmluvy 1. Definice a historie oboru molekulární medicína 1.1. Historie molekulární medicíny 2. Základní principy molekulární biologie 2.1. Historie molekulární biologie 2.2. DNA a chromozomy 2.3.
Geneticky modifikované rostliny - proč je potřebujeme a jak je získáváme
Geneticky modifikované rostliny - proč je potřebujeme a jak je získáváme Doc. RNDr. Jindřich Bříza, CSc. ÚMBR BC AV ČR,v.v.i. & katedra genetiky PřF JU Branišovská 31, 370 05 České Budějovice GM crops
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Pokročilé biofyzikální metody v experimentální biologii
Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1/1 Proč biofyzikální metody? Biofyzikální metody využívají fyzikální principy ke studiu biologických systémů Poskytují kvantitativní
Soulad studijního programu. Molekulární a buněčná biologie
Standard studijního Molekulární a buněčná biologie A. Specifika a obsah studijního : Typ Oblast/oblasti vzdělávání Základní tematické okruhy Kód Rozlišení Profil studijního Propojení studijního s tvůrčí
Aplikace molekulárně biologických postupů v časné detekci sepse
Aplikace molekulárně biologických postupů v časné detekci sepse Mgr. Jana Ždychová, Ph.D. IKEM PLM - LLG Sepse je častou příčinou úmrtí během hospitalizace. Včasné nasazení odpovídající ATB terapie je
Determinanty lokalizace nukleosomů
METODY STUDIA CHROMATINU Topologie DNA a nukleosomů Struktura nukleosomu 1.65-1.8 otáčky Struktura nukleosomu 10.5 nt 1.8 otáčky 10n, 10n + 5 146 nt Determinanty lokalizace nukleosomů mechanické vlastnosti
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Genetický polymorfismus jako nástroj identifikace osob v kriminalistické a soudnělékařské. doc. RNDr. Ivan Mazura, CSc.
Genetický polymorfismus jako nástroj identifikace osob v kriminalistické a soudnělékařské praxi doc. RNDr. Ivan Mazura, CSc. Historie forenzní genetiky 1985-1986 Alec Jeffreys a satelitní DNA 1980 Ray
ODLIŠENÍ ODRŮD PŠENICE OBECNÉ TRITICUM AESTIVUM L. METODOU RAPD
ODLIŠENÍ ODRŮD PŠENICE OBECNÉ TRITICUM AESTIVUM L. METODOU RAPD Distinguishing of Wheat Varieties (Tritium aestivum L.) by Method RAPD Zuzana Kohutová, Zuzana Kocourková, Hana Vlastníková, Petr Sedlák
Yi TPMT. Diagnostická souprava. Návod k použití. Haasova 27 Brno Česká republika. tel.:
Yi TPMT Diagnostická souprava Návod k použití Výrobce: YBUX s.r.o. Haasova 27 Brno 616 00 Česká republika IČ 63487951 tel.: +420 541 423 710 e-mail: ybux@ybux.eu Název: Yi TPMT Popis: Diagnostická souprava
DETEKCE A IDENTIFIKACE FYTOPATOGENNÍCH BAKTERIÍ METODOU PCR-RFLP
DETEKCE A IDENTIFIKACE FYTOPATOGENNÍCH BAKTERIÍ METODOU PCR-RFLP Polymerázová řetězová reakce (PCR) je in vitro metoda pro enzymatickou syntézu definované sekvence DNA. Reakce využívá dvou oligonukleotidových
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ 4. Metody molekulární biologie I Izolace DNA a RNA Specifické postupy pro baktérie, kvasinky, rostlinné a živočišné tkáně U RNA nutno zabránit kontaminaci RNasami
Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno
Mendelova genetika v příkladech Transgenoze rostlin Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Využití živých organismů pro uskutečňování definovaných chemických procesů pro průmyslové nebo komerční aplikace Organismus je geneticky upraven metodami genetického
Krátkodobá vědecká stáž pro talentované středoškolské studenty na excelentním univerzitním pracovišti
Krátkodobá vědecká stáž pro talentované středoškolské studenty na excelentním univerzitním pracovišti Brno, 26. 30. června 2017 Krátkodobá stáž v Centrálních laboratořích Farmaceutické fakulty Veterinární
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Ivo Frébort 4. Metody molekulární biologie I Izolace DNA a RNA Specifické postupy pro baktérie, kvasinky, rostlinné a živočišné tkáně U RNA nutno zabránit kontaminaci
Detekce GMO a mezinárodní projekt ERA-NET PreSTO. Kateřina Demnerová, VŠCHT Jaroslava OVESNÁ. VÚRV, v.v.i.
Detekce GMO a mezinárodní projekt ERA-NET PreSTO Kateřina Demnerová, VŠCHT Jaroslava OVESNÁ. VÚRV, v.v.i. GMO: bezpečnost především Platí Evropská legislativa, která se opírá o dokumenty Codex Alimentarius,
V. letní škola metod molekulární biologie nukleových kyselin a genomiky 16. - 20. 6. 2014. Ústav morfologie, fyziologie a genetiky zvířat AF MENDELU
V. letní škola metod molekulární biologie nukleových kyselin a genomiky 16. - 20. 6. 2014 Ústav morfologie, fyziologie a genetiky zvířat AF MENDELU Zemědělská 1, Budova A, 4. patro (učebny dle programu)
NA ANTIBIOTIKA NA ČOV
Vodárenská biologie 2018, 6. 2. 2018 DETEKCE GENŮ REZISTENCE NA ANTIBIOTIKA NA ČOV TESTOVÁNÍ METODIKY Dana Vejmelková Kristýna Časarová Eva Proksová Jana Říhová Ambrožová PROBLEMATIKA REZISTENCE NA ANTIBIOTIKA
Jan Hodek, Jaroslava Ovesná, Lucie Pavlátová. METODIKA DETEKCE GENETICKY MODIFIKOVANÉ PAPÁJI LINIÍ 55-1 a 63-1 METODIKA PRO PRAXI
Jan Hodek, Jaroslava Ovesná, Lucie Pavlátová METODIKA DETEKCE GENETICKY MODIFIKOVANÉ PAPÁJI LINIÍ 55-1 a 63-1 METODIKA PRO PRAXI Výzkumný ústav rostlinné výroby, v.v.i. 2008 Metodika byla vypracována pracovníky
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Transformace ptdna tabáku genem E7/GUS a eliminace selekčního genu za využití homologní rekombinace
Transformace ptdna tabáku fúzním genem E7/GUS a eliminace selekčního genu za využití homologní rekombinace Jiřich ich BřízaB 1,, Josef Vlasák 1, Štěpán n Ryba, Viera Ludvíkov ková 3, Hana Niedermeierová
J09 Průkaz nukleové kyseliny
J09 Průkaz nukleové kyseliny VLLM0421c (jaro 2016) Osnova využití a metody průkazu NK PCR a její modifikace proces prokazování specifické sekvence NK 2/55 Přímé vs. nepřímé metody přímé hledáme mikroba,
Molekulární diagnostika
Molekulární diagnostika Odry 11. 11. 2010 Michal Pohludka, Ph.D. Buňka základní jednotka živé hmoty Všechny v současnosti známé buňky se vyvinuly ze společného předka, tedy buňky, která žila asi před 3,5-3,8
CVIČENÍ II. IZOLACE DNA, DETEKCE GENŮ METODOU PCR, STANOVENÍ PŘÍBUZNOSTI IZOLÁTŮ METODOU ERIC PCR
CVIČENÍ II. PŘEDMĚT ANTIBIOTICKÁ REZISTENCE IZOLACE DNA, DETEKCE GENŮ METODOU PCR, STANOVENÍ PŘÍBUZNOSTI IZOLÁTŮ METODOU ERIC PCR Bakterie řadíme mezi prokaryotické organizmy, které nesou genetickou informaci
Polymerázová řetězová reakce. Základní technika molekulární diagnostiky.
Polymerázová řetězová reakce Základní technika molekulární diagnostiky. Kdo za to může? Kary Mullis 1983 Nobelova cena 1993 Princip PCR Polymerázová řetězová reakce (polymerase chain reaction PCR) umožňuje
Zuzana Zemanová, Kyra Michalová Centrum nádorové cytogenetiky, Ústav klinické biochemie a laboratorní diagnostiky VFN a 1.
Návrh laboratorní směrnice pro molekulárně cytogenetickou analýzu chromosomových odchylek metodou mnohobarevné fluorescenční in situ hybridizace (mfish) a mnohobarevného pruhování s vysokou resolucí (mband).
METODA RLB (REVERSE LINE BLOT) V DETEKCI ARBOVIRŮ
METODA RLB (REVERSE LINE BLOT) V DETEKCI ARBOVIRŮ MVDr. Petra Drzewnioková; MVDr. Tomáš Csank, PhD.; prof. MVDr. Juraj Pistl, PhD. Katedra mikrobiológie a imunológie Univerzita veterinárskeho lekárstva
METODY STUDIA PROTEINŮ
METODY STUDIA PROTEINŮ Mgr. Vlasta Němcová vlasta.furstova@tiscali.cz OBSAH PŘEDNÁŠKY 1) Stanovení koncentrace proteinu 2) Stanovení AMK sekvence proteinu Hmotnostní spektrometrie Edmanovo odbourávání
α-globin StripAssay Kat. číslo 4-160 10 testů 2-8 C
α-globin StripAssay Kat. číslo 4-160 10 testů 2-8 C Popis stripů: Pracovní postup Izolace DNA Doporučujeme použít následující kit pro izolaci DNA z plné krve nebo jiných typů vzorků: Spin Micro DNA Extraction
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
VÝBĚROVÁ ŘÍZENÍ CENTRUM REGIONU HANÁ PROJEKT EXCELENTNÍ VÝZKUM (OP VVV)
VÝBĚROVÁ ŘÍZENÍ CENTRUM REGIONU HANÁ PROJEKT EXCELENTNÍ VÝZKUM (OP VVV) Oddělení biofyziky - absolvování magisterského studia v oboru biofyzika, biochemie nebo v biologickém oboru - prezenční Ph.D. studium
Molekulárně biologické metody v mikrobiologii. Mgr. Martina Sittová Jaro 2014
Molekulárně biologické metody v mikrobiologii Mgr. Martina Sittová Jaro 2014 Harmonogram 1. den Izolace DNA 2. den Měření koncentrace DNA spektrofotometricky, real-time PCR 3. den Elektroforéza Molekulární
Praktické cvičení: Izolace a purifikace rekombinantního proteinu
Praktické cvičení: Izolace a purifikace rekombinantního proteinu Toto blokové praktické cvičení spočívá v teoretickém i praktickém seznámení s rekombinantními proteiny, jejich izolací, purifikací a využitím.
Metody používané v MB. analýza proteinů, nukleových kyselin
Metody používané v MB analýza proteinů, nukleových kyselin Nukleové kyseliny analýza a manipulace Elektroforéza (délka fragmentů, čistota, kvantifikace) Restrikční štěpení (manipulace s DNA, identifikace
Polymorfizmy detekované. polymorfizmů (Single Nucleotide
Polymorfizmy detekované speciálními metodami s vysokou rozlišovací schopností Stanovení jednonukleotidových polymorfizmů (Single Nucleotide Polymorphisms - SNPs) Příklad jednonukleotidových polymorfizmů
Jaroslava Ovesná, Jan Hodek, Lucie Pavlátová,
Jaroslava Ovesná, Jan Hodek, Lucie Pavlátová, METODIKA DETEKCE GENETICKY MODIFIKOVANÉHO TABÁKU VIRŽINSKÉHO (Nicotina tabacum L. cv. Samsun) S VNESENÝM KVASINKOVÝM MITOTICKÝM AKTIVÁTOREM (gen SpCdc25 z
Detekce Leidenské mutace
Detekce Leidenské mutace MOLEKULÁRNÍ BIOLOGIE 3. Restrikční štěpení, elektroforéza + interpretace výsledků Restrikční endonukleasy(restriktasy) bakteriální enzymy štěpící cizorodou dsdna na kratší úseky
Mendelova univerzita v Brně Agronomická fakulta Ústav biologie rostlin
Mendelova univerzita v Brně Agronomická fakulta Ústav biologie rostlin Inovace laboratorních úloh genetických předmětů metodikami pracujícími s ribonukleovými kyselinami pšenice Metodické návody pro laboratorní
PCR IN DETECTION OF FUNGAL CONTAMINATIONS IN POWDERED PEPPER
PCR IN DETECTION OF FUNGAL CONTAMINATIONS IN POWDERED PEPPER Trojan V., Hanáček P., Havel L. Department of Plant Biology, Faculty of Agronomy, Mendel University of Agriculture and Forestry in Brno, Zemedelska
Metody používané v MB. analýza proteinů, nukleových kyselin
Metody používané v MB analýza proteinů, nukleových kyselin Nukleové kyseliny analýza a manipulace Elektroforéza (délka fragmentů, čistota, kvantifikace) Restrikční štěpení (manipulace s DNA, identifikace