Amplifikační metody umožňují detekovat. k dispozici minimálně kopií DNA,
|
|
- Jitka Pešková
- před 5 lety
- Počet zobrazení:
Transkript
1 Diagnostické amplifikační metody nevyužívající PCR Amplifikační metody umožňují detekovat jedinou kopii cílové DNA, zatímco při hybridizačních metodách musí být k dispozici minimálně kopií DNA, aby bylo možné při detekci získat signál.
2 Přehled metod používaných pro amplifikaci nukleových kyselin Amplifikační metoda Používané enzymy Rok publikace PCR (polymerázová řetězová reakce) a její modifikace TAS (amplifikace pomocí transkripce) Amplifikace specifické sekvence termofilní DNA polymeráza (Taq, Tth, Tma) zpětná transkriptáza, RNA polymeráza SR (amplifikace pomocí zpětná transkriptáza, 1990 transkripce) RNáza H, RNA polymeráza SDA (amplifikace restrikční endonukleáza, 1992 vytěsňováním řetězce) DNA polymeráza (bez 3 5 exonukleázové aktivity) Amplifikace sondy LAR (ligázová amplifikační reakce) DNA ligáza 1989 LCR (ligázová řetězová termofilní DNA ligáza 1991 reakce) reakce s Qβ-replikázou Qβ-replikáza 1988
3 Amplifikační systémy založené na transkripci (TAS a 3SR) Transcription-based Amplification System: metoda využívá pro amplifikaci nukleových kyselin transkripci in vitro. Každý cyklus TAS se skládá ze dvou částí: syntéza molekuly DNA, která je komplementární k cílové nukleové kyselině (RNA nebo ssdna) transkripce nově syntetizované cdna, která slouží jako intermediát a templát pro RNA polymerázu in vitro. Syntéza cdna je umožněna připojením speciálně navržených primerů: oblast primeru směrem ke 3 -konci je komplementární k cílové DNA oblast primeru směrem k 5 -konci tvoří specifická sekvence obsahující promotor pro T7 RNA polymerázu.
4 Amplifikační systémy založené na transkripci (TAS a 3SR) V prvním kroku je po připojení primeru pro každou cílovou RNA nebo ssdna syntetizována molekula ssdna pomocí zpětné transkriptázy. Syntéza druhého řetězce vyžaduje tepelnou denaturaci *RNA-DNA nebo DNA-DNA hybridních molekul. Po přidání druhého primeru a opět zpětné transkriptázy, probíhá syntéza druhého řetězce. Výsledná kopie dsdna obsahuje funkční T7 promotor na jednom nebo obou koncích cdna. Po přidání T7 RNA polymerázy dochází k transkripci cdna a z každého templátu vzniká až 40 molekul RNA (toto je amplifikační krok).
5 TAS a 3SR Nové molekuly RNA tvoří substrát pro další cyklus TAS. Po několikanásobném opakování cyklu získáme několik miliónů kopií. * proces tepelné denaturace RNA-DNA duplexů může být nahrazen enzymatickým odstraněním RNA pomocí RNázy H. Takto modifikovaná amplifikační technika je isotermní (nevyžaduje změny inkubační teploty a přidávání zpětné transkriptázy při dalším cyklu). Proces se nazývá Self- Sustaining Sequence Replication (3SR) nebo Nucleic Acid Sequence-Based Amplification (NASBA). Aplikace a použití: detekce lidského papilomaviru detekce rezistence k azidotymidinu u HIV detekce Chlamydia trachomatis detekce Mycobacterium tuberculosis
6 Amplifikace DNA vytěsňováním řetězce (Strand Displacement Amplification - SDA) SDA je založená na schopnosti DNA polymerázy iniciovat syntézu DNA v místě jednořetězcového zlomu uvnitř cílové molekuly a vytěsnit řetězec se zlomem během syntézy nového řetězce DNA. Takto vzniklé jednořetězce slouží jako substrát prodalší SDA-reakci a isotermní akumulaci dvou- a jednořetězcových kopií cílové molekuly. Klíčem technologie je vytvoření místně specifických jednořetězcových zlomů pomocí restrikční endonukleázy. Za normálních podmínek restrikční endonukleázy štěpí oba řetězce, což není pro SDA vhodné. Při syntéze DNA je proto použit jeden z nukleotidů α-thio-subtituovaný (např. deoxyadenosin-5 -α-thio-trifosfát, dgtp, dctp a dttp). Jeden z řetězců syntetizované DNA potom obsahuje modifikované nukleotidy. Restrikční endonukleáza v takto modifikovaném rozpoznávacím místě štěpí pouze jeden řetězec a vytvoří místně specifický jednořetězcový zlom. Pro SDA se používá dvojice primerů s dvěma funkčními oblastmi: oblast směrem k 3 -konci obsahuje 15 až 20 bp dlouhou sekvenci komplementární k cílové molekule DNA oblast směrem k 5 -konci obsahuje rozpoznávací sekvenci pro restrikční endonukleázu.
7 Strand Displacement Amplification - Reakce zahrnuje následující kroky: denaturaci cílové molekuly dsdna připojení SDA primerů syntézu α-thiolovaných řetězců pomocí DNA polymerázy štěpení jednoho řetězce restrikční endonukleázou reakci s DNA polymerázou (s deficientní 3 5 exonukleázovou aktivitou) nový cyklus s nový cyklus s vytěsněnými řetězci obou polarit SDA
8 Použití a aplikace SDA: detekce různých mykobakterií na základě amplifikace IS6110 Nevýhody: Cenově náročná metoda. Je potřeba vhodná restrikční endonukleáza. Další rozpoznávací místo pro restrikční endonukleázu se nesmí Další rozpoznávací místo pro restrikční endonukleázu se nesmí nacházet v amplifikované sekvenci.
9 Skupina metod pro amplifikaci molekuly navázané sondy Alternativní metody pro detekci nízkého počtu molekul cílové sekvence využívající amplifikaci samotné sondy po vazbě na cílovou sekvenci.
10 Amplifikace RNA-sondy pomocí Qβ-replikázy Qβ-replikázaβ je RNA-dependentní RNA polymeráza, která replikuje genomovou RNA bakteriofága Qβ (Leviviridae). Enzym rozpoznává specifickou sekundární strukturu RNA tvořenou párováním bazí uvnitř molekuly bakteriofágové RNA. Jiné sekundární struktury RNA nejsou enzymem rozpoznávány. Sonda se připravuje transkripcí in vitro. Pro konstrukci sondy, která je schopná replikace se využívá: predikce sekundární struktury RNA podobné standardní struktuře v genomu bakteriofága sonda nese navíc ve smyčce s vlásenkou na 3 nebo 5 konci sekvenci specifickou pro cílovou molekulu. Po provedení hybridizace se volná sonda se odstraní RNázou III (u navázané sondy chybí rozpoznávací místo pro RNázu III v důsledku změny sekundární struktury po vazbě na cíl). Systém s Qβ-replikázou byl vyvinut za účelem zesílení hybridizačních signálů amplifikací samotné sondy. Využívá se pro detekci obtížně kultivovatelných mikroorganizmů, např. Chlamydia trachomatis.
11 Amplifikace sondy Qβ-replikázou
12 Ligázová řetězová reakce (Ligase chain reaction - LCR) Amplifikace cílové sekvence pomocí ligázy je alternativní metoda pro amplifikaci oligonukleotidové sondy navázané na cílovou sekvenci využívající DNA ligázu. Při LCR se nevytváří nové kopie cílové sekvence, proto se řadí do skupiny metod pro amplifikaci sondy. Metoda využívá DNA ligázu ke spojení dvou párů komplementárních oligonukleotidových sond po jejich připojení na cílovou sekvenci. Úspěšná ligace proběhne pouze při dokonalém párování 3 a 5 konců obou oligonukleotidových sond k cílové molekule. Po proběhnutí první úspěšné ligace vzniká produkt, který napodobuje původní molekulu a slouží jako templát pro připojení zbývající dvojice oligonukleotidů a jejich ligaci. Nevýhodou ligázové amplifikační reakce (LAR) je teplotní nestabilita DNA ligázy a nutnost přidávát ligázu po každé denaturaci. V současnosti sepoužívá ternostabilní DNA ligáza z Thermus aquaticus, V současnosti sepoužívá ternostabilní DNA ligáza z Thermus aquaticus, která je stabilní po mnoha cyklech denaturace (LCR).
13 Ligázová řetězová reakce (LCR) ssdna
14 Použití LCR pro detekci obtížně kultivovatelných patogenů Neisseria gonorrhoae Borrelia burgdorferi Mycobacterium sp. pro detekci mutací v lidských genech (dědičná nemocnění)
15 Oligonukleotidové ligační stanovení (OLA) Modifikace LCR využívající pouze jedné dvojice sousedících oligonukleotidů může být kvantitativní metodou ligázová detekční reakce (LDR) oligonukleotidové ligační stanovení (OLA) Lineární kinetika amplifikace Ve spojení s analýzou produktů PCR, kde se dá očekávat dostatečné množství templátu, je OLA používáno jako účinný detekční systém bodových mutací (PCR-OLA). Tento přístup nevyžaduje průkaz amplifikovaného produktu na elektroforéze využívá 5'-koncového značení první oligonukleotidové sondy afinitní značkou - biotinem a opačného konce druhé sondy reportérskou značkou (např. fluorescenční látka, digoxigenin nebo alkalická fosfatáza). Pouze po ligaci jsou obě značky neseny jednou molekulou. Po ligázové reakci jsou produkty zachyceny na afinitní matrici se streptavidinem a nezligované reportérské sondy jsou odmyty. Navázaný materiál je měřen na základě fluorescence, barevné reakce enzymatické aktivity FRET může se stát v budoucnu rozšířenou automatizovanou metodou využívající DNAčipy pro detekci nízkokopiových cílů a změn v nukleotidových bázích
16 Amplifikace otáčivou kružnicí - RCA (Rolling Circle Amplification) Metoda amplifikace sondy navržená pro detekci jednonukleotidových polymorfizmů přímo v genomové DNA. Pro každý polymorfizmus je navržena alelově specifická sonda, kterou tvoří oligonukleotid dlouhý 80 až 90 bází. Fosforylovaný 5'-konec sondy nese přibližně 20 nukleotidů, které hybridizují k oblasti bezprostředně vedle 5' polymorfního místa. 3'-konec sondy obsahuje 10 až 20 nukleotidů, komplementárních k oblasti bezprostředně vedle 3' polymorfního místa. Používané alelově-specifické sondy jsou identické s výjimkou báze na 3'-konci, která se liší tak aby byla komplementární k polymorfnímu místu. První krok RCA zahrnuje společnou hybridizaci obou konců sondy s cílovou sekvencí (vytvoření otevřené kružnice) diskriminační ligaci sondy termostabilní ligázou, jejímž výsledkem je kružnicová ssdna. Ligační krok proběhne pouze v případě, že se 3'-konec sondy páruje s polymorfním místem. Mezi koncovými rameny sondy, která jsou cílově specifická pro detekovanou sekvenci jsou vtěsnaná vazebná místa pro RCA-primery. Druhý krok RCA zahrnuje hybridizaci RCA-primerů, případně náhodných hexanukleotidů na cirkularizovanou sondu izotermní replikaci otáčivou kružnicí v přítomnosti DNA-polymerázy vytěsňující řetězce (např. DNA-polymeráza fága 29) Prodlužující se řetězce jsou vytěsňovány a tvoří jednořetězcové konkatemery původní
17 RCA v homogenním roztoku Ligáza katalyzuje ligaci sondy ve formě otevžené kružnice, která přesně svými 3 - a 5 -konci hybridizuje k místu se SNP Hybridizace náhodných hexanukleotidů Replikace otáčivou kružnicí pomocí DNA-polymerázy fága 29 Vznikme až 10 9 kopií sekvence Rca.swf
18 Stanovení SNP pomocí DNA čipu a RCA Metoda pracuje na principu amplifikace signálu na DNA-čipu Studovaná cílová molekula DNA je denaturována Při hybridizaci k cílové sekvenci ligáza katalyzuje spojení dvou oligonukleotidových sond z nichž jedna je imobilizovaná na pevném podkladu čipu Ligace nastane pouze tehdy jestliže je 5 báze v místě SNP přesně komplementární k cílové DNA (je 500 efektivnější než při nehomologickém páru) Rozdíly v sekvenci na 5 -konci poskytují možnost specificky a simultánně detekovat jednotlivé varianty SNP φ29 DNA-polymeráza katalyzuje izotermní replikaci formou otáčivé kružnice, inkorporuje značené nukleotidy a rostoucí řetězec je vytěsňován
19 Technologie cirkulující sondy Cycling Probe Technology (CPT) CPT využívá hybridizaci cílové sekvence DNA (může být použit i amplifikovaný produkt PCR) s chimérickou na obou koncích fluorescenčně značenou DNA-RNA-DNA sondou Sonda po navázání na komplementární sekvenci poskytuje vytvoření štěpitelného místa pro RNázu H. Reakce probíhá za specifické konstantní teploty, která umožňuje jak hybridizaci sondy, tak zachování templátové DNA v jednořetězcovém stavu. Vytvořený duplex chimérické sondy a cílové sekvence je rozpoznán RNázou H a RNA-sekvence sondy je degradována. Rozštěpené fragmenty sondy nemají v cílovém místě při reakční teplotě stabilní vazbu a disociují do prostředí. Uvolněná fluorescenčně značená část sondy emituje fluorescenci, jejíž intenzita je měřena. Cílové místo je potom volné, hybridizuje s další sondou a celý cyklus se opakuje Fragmenty sondy se akumulují lineární kinetikou a slouží jako základ pro detekci a kvantifikaci cílové sekvence. Výhodou oproti PCR je, že cílová sekvence sama o sobě není amplifikována a tím se minimalizuje riziko přenosu kontaminace. Současnou snahou je optimalizace reakce CPT tak, aby bylo možné
20 CPT
21 Amplifikace signálu Pro zvýšení citlivosti hybridizačních metod je možné použít alternativní techniky k technikám enzamatickým (založeným na polymeráze nebo ligáze). Zesílení signálu vytvořeného navázanou sondou může být dosaženo větší reportérskou molekulou skupinou více molekul připojených na samotnou sondu (složené sondy) Výsledkem metod pro amplifikaci signálu nejsou amplifikované sekvence DNA, proto jsou tyto metody více citlivé na kontaminaci a nespecifické signály Detekční citlivost metod pro amplifikaci signálu je vyšší než u klasických hybridizačních metod s autoradiografickou barevnou nebo chemiluminiscenční detekcí.
22 Amplifikace signálu pomocí složené sondy
Amplifikační metody v molekulární diagnostice mikroorganismů. doc. RNDr. Milan Bartoš, Ph.D.
Amplifikační metody v molekulární diagnostice mikroorganismů doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2012 Doporučená literatura 1) Persing et al. (1993): Diagnostic Molecular
Polymorfizmy detekované. polymorfizmů (Single Nucleotide
Polymorfizmy detekované speciálními metodami s vysokou rozlišovací schopností Stanovení jednonukleotidových polymorfizmů (Single Nucleotide Polymorphisms - SNPs) Příklad jednonukleotidových polymorfizmů
Polymerázová řetězová reakce. Základní technika molekulární diagnostiky.
Polymerázová řetězová reakce Základní technika molekulární diagnostiky. Kdo za to může? Kary Mullis 1983 Nobelova cena 1993 Princip PCR Polymerázová řetězová reakce (polymerase chain reaction PCR) umožňuje
DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KOLOREKTÁLNÍHO KARCINOMU
Úvod IntellMed, s.r.o., Václavské náměstí 820/41, 110 00 Praha 1 DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KOLOREKTÁLNÍHO KARCINOMU Jednou z nejvhodnějších metod pro detekci minimální
Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci. reg. č.: CZ.1.07/2.2.00/
Implementace laboratorní medicíny do systému vzdělávání na Univerzitě Palackého v Olomouci reg. č.: CZ.1.07/2.2.00/28.0088 Hybridizační metody v diagnostice Mgr. Gabriela Kořínková, Ph.D. Laboratoř molekulární
DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KARCINOMU PANKREATU
Úvod IntellMed, s.r.o., Václavské náměstí 820/41, 110 00 Praha 1 DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIDUÁLNÍ CHOROBY U KARCINOMU PANKREATU Jednou z nejvhodnějších metod pro detekci minimální reziduální
Enzymy používané v molekulární biologii
Enzymy používané v molekulární biologii Rozdělení enzymů 1. Podle substrátové specifity: většina metod molekulární biologie je závislá na použití enzymů, jejichž substrátem jsou nukleové kyseliny. Tyto
Metody molekulární biologie
Metody molekulární biologie 1. Základní metody molekulární biologie A. Izolace nukleových kyselin Metody využívající různé rozpustnosti Metody adsorpční Izolace RNA B. Centrifugační techniky o Princip
Molekulární genetika
Molekulární genetika Genetické inženýrství Technologie rekombinantní DNA Vektor Genomová DNA Štěpení RE Rozštěpení stejnou RE, lepivé konce Ligace Transformace Bakteriální chromozóm Rekombinantní vektor
Enzymy v molekulární biologii, RFLP. Molekulární biologie v hygieně potravin 3, 2014/15, Ivo Papoušek
Enzymy v molekulární biologii, RFLP Molekulární biologie v hygieně potravin 3, 2014/15, Ivo Papoušek Enzymy v molekulární biologii umožňují nám provádět celou řadu přesně cílených manipulací Výhody enzymů:
Enzymy používané v molekulární biologii
Enzymy používané v molekulární biologii Rozdělení enzymů 1. Podle substrátové specifity: většina metod molekulární biologie je závislá na použití enzymů, jejichž substrátem jsou nukleové kyseliny. Tyto
Hybridizace nukleových kyselin
Hybridizace nukleových kyselin Tvorba dvouřetězcových hybridů za dvou jednořetězcových a komplementárních molekul Založena na schopnosti denaturace a renaturace DNA. Denaturace DNA oddělení komplementárních
J09 Průkaz nukleové kyseliny
J09 Průkaz nukleové kyseliny VLLM0421c (jaro 2016) Osnova využití a metody průkazu NK PCR a její modifikace proces prokazování specifické sekvence NK 2/55 Přímé vs. nepřímé metody přímé hledáme mikroba,
MOLEKULÁRNÍ BIOLOGIE. 2. Polymerázová řetězová reakce (PCR)
MOLEKULÁRNÍ BIOLOGIE 2. Polymerázová řetězová reakce (PCR) Náplň praktik 1. Izolace DNA z buněk bukální sliznice - izolační kit MACHEREY-NAGEL 2. PCR polymerázová řetězová reakce (templát gdna) 3. Restrikční
POLYMERÁZOVÁ ŘETĚZOVÁ REAKCE (PCR)
POLYMERÁZOVÁ ŘETĚZOVÁ REAKCE (PCR) Polymerázová řetězová reakce (PCR, z anglického Polymerase Chain Reaction) je metoda rychlého zmnožení (amplifikace) vybraného úseku DNA. Množený (amplifikovaný) úsek
DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIUDÁLNÍ CHOROBY MRD EGFR
Úvod IntellMed, s.r.o., Václavské náměstí 820/41, 110 00 Praha 1 DIAGNOSTICKÝ KIT PRO DETEKCI MINIMÁLNÍ REZIUDÁLNÍ CHOROBY MRD EGFR Jednou z nejvhodnějších metod pro detekci minimální reziduální choroby
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
Ivo Papoušek. Biologie 8, 2015/16
Ivo Papoušek Biologie 8, 2015/16 Doporučená literatura: Metody molekulární biologie (2005) Autoři: Jan Šmarda, Jiří Doškař, Roman Pantůček, Vladislava Růžičková, Jana Koptíková Izolace nukleových kyselin
Metody studia exprese mrna. jádro a genová exprese 2007
Metody studia exprese mrna Buněčné jádro a genová exprese 2007 Aktivita genu je primárn ě vyjád ř ena jeho transkripcí-prvním krokem vedoucím k syntéze kódovaného proteinu. Cíle metod Ur č ení mno ž ství
Polymerázová řetězová reakce (PCR) Molekulární biologie v hygieně potravin 4, 2013/14, Ivo Papoušek
Polymerázová řetězová reakce (PCR) Molekulární biologie v hygieně potravin 4, 2013/14, Ivo Papoušek Polymerázová řetězová reakce (PCR) Zavedení PCR v roce 1983 (Kary B. Mullis) Nobelova cena 1993 Metodika
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Analýza DNA. Co zjišťujeme u DNA DNA. PCR polymerase chain reaction. Princip PCR PRINCIP METODY PCR
o zjišťujeme u DN nalýza DN enetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů), chromosomové aberace (numerické, strukturální) Polymorfismy konkrétní mutace,
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ 4. Metody molekulární biologie I Izolace DNA a RNA Specifické postupy pro baktérie, kvasinky, rostlinné a živočišné tkáně U RNA nutno zabránit kontaminaci RNasami
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) SNPs Odvozování a genotyping Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s problematikou hledání
Analýza DNA. Co zjišťujeme u DNA
Analýza DNA Co zjišťujeme u DNA Genetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů, záměny), chromosomové aberace (numerické, strukturní) Polymorfismy konkrétní
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Analýza transkriptomu Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s moderními metodami komplexní
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer
Rekombinantní protilátky, bakteriofágy, aptamery a peptidové scaffoldy pro analytické a terapeutické účely Luděk Eyer Virologie a diagnostika Výzkumný ústav veterinárního lékařství, v.v.i., Brno Alternativní
ZDRAVOTNÍ NEZÁVADNOST POTRAVIN
ZDRAVOTNÍ NEZÁVADNOST POTRAVIN Možnosti stanovení Listeria monocytogenes popis metod a jejich princip Mária Strážiková Aleš Holfeld Obsah Charakteristika Listeria monocytogenes Listerióza Metody detekce
Pokročilé biofyzikální metody v experimentální biologii
Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1/1 Proč biofyzikální metody? Biofyzikální metody využívají fyzikální principy ke studiu biologických systémů Poskytují kvantitativní
REPLIKACE A REPARACE DNA
REPLIKACE A REPARACE DNA 1 VÝZNAM REPARACE DNA V MEDICÍNĚ Příklad: Reparace DNA: enzymy reparace nukleotidovou excizí Onemocnění: xeroderma pigmentosum 2 3 REPLIKACE A REPARACE DNA: Replikace DNA: 1. Podstata
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Ivo Frébort 4. Metody molekulární biologie I Izolace DNA a RNA Specifické postupy pro baktérie, kvasinky, rostlinné a živočišné tkáně U RNA nutno zabránit kontaminaci
REAL - TIME PCR V DIAGNOSTICE INFEKČNÍ NEMOCI
UNIVERZITA KARLOVA V PRAZE FARMACEUTICKÁ FAKULTA V HRADCI KRÁLOVÉ Katedra biochemických věd REAL - TIME PCR V DIAGNOSTICE INFEKČNÍ NEMOCI Bakalářská práce Vedoucí bakalářské práce : Ing. Barbora Szotáková,
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Hybridizace. doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz
Hybridizace doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2013 Obsah přednášky 1) Způsoby provedení hybridizace 2) Hybridizace v roztoku 3) Příprava značených sond 4) Hybridizace
Modifikace PCR, sekvenování. Molekulární biologie v hygieně potravin Molekulárně biologická analýza potravin Přednáška 5, 2017/18, Ivo Papoušek
Modifikace PCR, sekvenování Molekulární biologie v hygieně potravin Molekulárně biologická analýza potravin Přednáška 5, 2017/18, Ivo Papoušek Multiplex PCR Reakční směs obsahuje ne jeden, ale několik
DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH. Michaela Nesvadbová
DNA TECHNIKY IDENTIFIKACE ŽIVOČIŠNÝCH DRUHŮ V KRMIVU A POTRAVINÁCH Michaela Nesvadbová Význam identifikace živočišných druhů v krmivu a potravinách povinností každého výrobce je řádně a pravdivě označit
Modifikace PCR, sekvenování. Molekulární biologie v hygieně potravin 5, 2013/14, Ivo Papoušek
Modifikace PCR, sekvenování Molekulární biologie v hygieně potravin 5, 2013/14, Ivo Papoušek Multiplex PCR Reakční směs obsahuje ne jeden, ale několik párů primerů rozpoznávajících různé cílové sekvence
Využití rekombinantní DNA při studiu mikroorganismů
Využití rekombinantní DNA při studiu mikroorganismů doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 1 2 Obsah přednášky 1) Celogenomové metody sekvenování 2) Sekvenování H.
Viry a bakteriofágy. Databáze testových otázek. Zpracovaly: Veronika Čurečková a Iveta Vaňková
Téma 1: Viry Viry a bakteriofágy Databáze testových otázek Zpracovaly: Veronika Čurečková a Iveta Vaňková 1. Virus obecně charakterizujeme jako: a) striktně intracelulární, potenciálně patogenní submikroskopický
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Replikace DNA
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Replikace DNA Jan Šmarda Ústav experimentální biologie, PřF MU 1 Buněčné dělení a reprodukce každá buňka potřebuje svou úplnou sadu genů: rodičovská
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Ivo Frébort 5. Metody molekulární biologie II DNA footprinting hledání interakcí DNA s proteiny Polymerázová řetězová reakce (Polymerase chain reaction PCR) Malé
Mendelova genetika v příkladech. Genetické markery
Mendelova genetika v příkladech Genetické markery Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Hodnocení genetické proměnlivosti Fenotypový
v raném stádiu se embryo rozpadlo do dvou skupin buněk správná odpověď: dvojčata obsahují kopie stejných rodičovských
Replikace DNA Jsou monozygotní dvojčata identická? vyvinula se z jednoho oplozeného vajíčka v raném stádiu se embryo rozpadlo do dvou skupin buněk obě skupiny buněk prodělaly úplný vývoj a dozrály do úplných
Ivo Papoušek. Biologie 6, 2017/18
Ivo Papoušek Biologie 6, 2017/18 Doporučená literatura: Metody molekulární biologie (2005) Autoři: Jan Šmarda, Jiří Doškař, Roman Pantůček, Vladislava Růžičková, Jana Koptíková Izolace nukleových kyselin
Genetické markery, markery DNA
Obecná genetika Genetické markery, markery DNA Prof. Ing. Dušan GÖMÖRY, DrSc. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII Martina Nováková, VŠCHT Praha MOLEKULÁRNÍ BIOLOGIE V BIOREMEDIACÍCH enumerace FISH průtoková cytometrie klonování produktů PCR sekvenování
DNA a RNA diagnostika lidských chorob
Kapitola 20 DNA a RNA diagnostika lidských chorob 20.1. Úvod DNA (DeoxyriboNucleic Acid, deoxyribonukleová kyselina) a RNA (RiboNucleic Acid, ribonukleová kyselina) diagnostika využívá metod molekulární
Bi5130 Základy práce s lidskou adna
Bi5130 Základy práce s lidskou adna Mgr. et Mgr. Kristýna Brzobohatá pizova@sci.muni.cz Laboratoř biologické a molekulární antropologie, ÚEB, PřF, Mu Bi5130 Základy práce s lidskou adna PCR polymerase
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
Determinanty lokalizace nukleosomů
METODY STUDIA CHROMATINU Topologie DNA a nukleosomů Struktura nukleosomu 1.65-1.8 otáčky Struktura nukleosomu 10.5 nt 1.8 otáčky 10n, 10n + 5 146 nt Determinanty lokalizace nukleosomů mechanické vlastnosti
TECHNIKY PCR. PCR - polymerase chain reaction -polymerázová řetězová reakce
TECHNIKY PCR PCR - polymerase chain reaction -polymerázová řetězová reakce Přehled Molekulárně-biologický úvod, DNA struktura, replikace, DNA polymerasa Princip procesu PCR Optimalizace PCR Typy PCR Aplikace
Detekce geneticky modifikovaných organizmů v potravinách a potravinářských surovinách
Detekce geneticky modifikovaných organizmů v potravinách a potravinářských surovinách Kamila Zdeňková Transgenní rostliny, tj. takové rostliny, do jejichž dědičného základu byly metodami genového inženýrství
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Polymerázová řetězová reakce
Polymerázová řetězová reakce doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2013 Obsah přednášky 1) Co je to PCR, princip, jednotlivé kroky 2) Technické provedení PCR 3) Fyzikální
Hybridizace nukleových kyselin
Hybridizace nukleových kyselin tvorba dvouřetězcových hybridů ze dvou jednořetězcových a alespoň částečně komplementárních molekul nukleových kyselin založena na schopnosti denaturace a renaturace DNA
Sekvenování DNA. stanovení pořadí nukleotidů v molekule DNA (primární struktury)
Sekvenování DNA stanovení pořadí nukleotidů v molekule DNA (primární struktury) Sekvencování / Sekvenování?? Sequencing / - die Sequenzierung / - Klasické techniky sekvenování 2 metody: Chemická (Maxamova-Gilbertova)
Metody používané v MB. analýza proteinů, nukleových kyselin
Metody používané v MB analýza proteinů, nukleových kyselin Nukleové kyseliny analýza a manipulace Elektroforéza (délka fragmentů, čistota, kvantifikace) Restrikční štěpení (manipulace s DNA, identifikace
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Metody používané v MB. analýza proteinů, nukleových kyselin
Metody používané v MB analýza proteinů, nukleových kyselin Nukleové kyseliny analýza a manipulace Elektroforéza (délka fragmentů, čistota, kvantifikace) Restrikční štěpení (manipulace s DNA, identifikace
Co zjišťujeme u DNA ACGGTCGACTGCGATGAACTCCC ACGGTCGACTGCGATCAACTCCC ACGGTCGACTGCGATTTGAACTCCC
Analýza DNA Co zjišťujeme u DNA Genetickou podstatu konkrétních proteinů Mutace bodové (sekvenční delece nebo inzerce nukleotidů), chromosomové aberace (numerické, strukturální) Polymorfismy konkrétní
Co zjišťujeme u DNA ACGGTCGACTGCGATGAACTCCC ACGGTCGACTGCGATCAACTCCC ACGGTCGACTGCGATTTGAACTCCC
Analýza DNA Co zjišťujeme u DNA genetickou podstatu konkrétních proteinů mutace bodové, sekvenční delece/inzerce nukleotidů, chromosomové aberace (numerické, strukturální) polymorfismy konkrétní mutace,
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti NUKLEOVÉ KYSELINY
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti NUKLEOVÉ KYSELINY 3 složky Nukleotidy dusík obsahující báze (purin či pyrimidin) pentosa fosfát Fosfodiesterová vazba. Vyskytuje se mezi
Příprava rekombinantních molekul pro diagnostické účely
1 Příprava rekombinantních molekul pro diagnostické účely doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 2 Obsah přednášky 1) Pojem rekombinantní DNA 2) Historické milníky
ÚVOD DO KVANTITATIVNÍ REAL-TIME PCR. VI. Aplikace qrt-pcr
ÚVOD DO KVANTITATIVNÍ REAL-TIME PCR VI. Aplikace qrt-pcr 1. Detekce DNA - Diagnóza infekčních onemocnění (přítomnost patogenů v krvi, séru, plazmě ) - Sledování minimální reziduální nemoci - Detekce patogenů
Výzkumné centrum genomiky a proteomiky. Ústav experimentální medicíny AV ČR, v.v.i.
Výzkumné centrum genomiky a proteomiky Ústav experimentální medicíny AV ČR, v.v.i. Systém pro sekvenování Systém pro čipovou analýzu Systém pro proteinovou analýzu Automatický sběrač buněk Systém pro sekvenování
KVANTIFIKACE ZMĚN GENOVÉ EXPRESE
KVANTIFIKACE ZMĚN GENOVÉ EXPRESE Northern bloty Genové čipy pracné a zdlouhavé nákladné Semikvantitativní RT-PCR nepřesné qpcr vysoké dynamické rozpětí metodiky real-time PCR Vysokoučinné sekvenování transkriptomu
4. Centrální dogma, rozluštění genetického kódu a zrod molekulární biologie.
4. Centrální dogma, rozluštění genetického kódu a zrod molekulární biologie. Od genu k proteinu - centrální dogma biologie Geny jsou zakódovány v DNA - Jakým způsobem? - Jak se projevují? Již v roce 1902
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Metody molekulární biologie
školní rok 2010/2011, kurz Bi6400 Metody molekulární biologie prof. Jan Šmarda doc. Roman Pantůček Ústav experimentální biologie Přírodovědecká fakulta MU Osnova kurzu manipulace s nukleovými kyselinami:
Izolace, klonování a analýza DNA
Izolace, klonování a analýza DNA Ing. Pavel Kotrba, Ph.D., Ing. Zdeněk Knejzlík, Ph.D., Ing. Zdeněk Chodora Ústav biochemie a mikrobiologie, VŠCHT Praha HTpavel.kotrba@vscht.czTH, HTzdenek.knejzlik@vscht.czTH,
PCR v reálném čase. doc. RNDr. Milan Bartoš, Ph.D.
PCR v reálném čase doc. RNDr. Milan Bartoš, Ph.D. Bartos.Milan@atlas.cz Přírodovědecká fakulta MU, 2017 Doporučená literatura Bustin S.A. (2004): A-Z of Quantitative PCR, International University Line,
Univerzita Palackého v Olomouci. Bakalářská práce
Univerzita Palackého v Olomouci Bakalářská práce Olomouc 2012 Eliška Růžičková Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra buněčné biologie a genetiky Real-time PCR a jeho využití pro
Pokračování kultivačních metod
Pokračování kultivačních metod Fenotyp je tvořen všemi pozorovatelnými charakteristikami nebo znaky organizmu: jako je morfologie, růst, biochemické nebo fyziologické vlastnosti. Fenotyp je výsledek projevu
studium množství určitého transkriptu v daném vzorku a v množství dané molekuly mrna v dané buňce a v daném
Analýza genové exprese Analýza genomu genomika Analýza transkriptomu transkriptomika Analýza proteinu - proteomika Analýza transkripce studium množství určitého transkriptu v daném vzorku a v daném čase
OBSAH. PP Master Mixy... 11 PPP Master Mix 12 Plain PP Master Mix 13 Combi PPP Master Mix 14
OBSAH DNA polymerázy pro PCR a pufry.................. 3 Taq DNA polymeráza 4 Taq DNA polymeráza Unis 5 TaqPurple DNA polymeráza 6 Taq DNA polymeráza 1.1 7 Combi Taq DNA polymeráza 8 LA DNA Polymerases
Molekulární diagnostika
Molekulární diagnostika Odry 11. 11. 2010 Michal Pohludka, Ph.D. Buňka základní jednotka živé hmoty Všechny v současnosti známé buňky se vyvinuly ze společného předka, tedy buňky, která žila asi před 3,5-3,8
Genové knihovny a analýza genomu
Genové knihovny a analýza genomu Klonování genů Problém: genom organismů je komplexní a je proto obtížné v něm najít a klonovat specifický gen Klonování genů Po restrikčním štěpení genomové DNA pocházející
REKOMBINACE Přestavby DNA
REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných
2 Inkompatibilita v systému Rhesus. Upraveno z A.D.A.M.'s health encyclopedia
2 Inkompatibilita v systému Rhesus Upraveno z A.D.A.M.'s health encyclopedia 3 Inkompatibilita v systému Rhesus Úkol 7, str.119 Které z uvedených genotypových kombinací Rh systému u manželů s sebou nesou
Mikrobiologické diagnostické metody. MUDr. Pavel Čermák, CSc.
Mikrobiologické diagnostické metody MUDr. Pavel Čermák, CSc. Princip identifikace soubor ZNAKŮ s rozdílnou separační hodnotou S HODNOTA S: S 1 S 2 S 3 Základní problémy Minimum morfologických znaků Podobná
Diagnostika retrovirů Lentiviry - HIV. Vladislava Růžičková
Diagnostika retrovirů Lentiviry - HIV Vladislava Růžičková VI. Třída RNA-viry se zpětnou transkriptázou RT Čeleď: Retroviridae (hostitelé: Obratlovci) Rody: Alpharetrovirus Betaretrovirus Gammaretrovirus
DY D NE N X Hana Vlastníková
DYNEX Hana Vlastníková Molekulární biologie: Vybavení laboratoře na klíč Přístrojová technika Kompatibilní diagnostické soupravy Profesionální přístup SOP Technická podpora Servis Přístrojové vybavení:
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Příprava vektoru IZOLACE PLASMIDU ALKALICKÁ LYZE, KOLONKOVÁ IZOLACE DNA GELOVÁ ELEKTROFORÉZA RESTRIKČNÍ ŠTĚPENÍ. E. coli. lyze buňky.
Příprava vektoru IZOLCE PLSMIDU LKLICKÁ LYZE, KOLONKOVÁ IZOLCE DN E. coli plasmidová DN proteiny proteiny + + vysrážená plasmidová lyze buňky + snížení ph chromosomální DN centrifugace DN chromosomální
Izolace nukleových kyselin
Izolace nukleových kyselin Požadavky na izolaci nukleových kyselin V nativním stavu z přirozeného materiálu v dostatečném množství požadované čistotě. Nukleové kyseliny je třeba zbavit všech látek, které
Fingerprinting mikrobiálního společenstva (DGGE/TGGE, RFLP,T-RFLP, AFLA, ARDRA, (A)RISA)
EKO/MEM - Molekulární ekologie mikroorganizmů Fingerprinting mikrobiálního společenstva (DGGE/TGGE, RFLP,T-RFLP, AFLA, ARDRA, (A)RISA) EKO/MEM - Molekulární ekologie mikroorganizmů DNA fingerprinting genetická
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna
Obsah přednášky 1) Klonování složených eukaryotických genů 2) Úprava rekombinantních genů 3) Produkce rekombinantních proteinů v expresních systémech 4) Promotory 5) Vektory 6) Reportérové geny Zdrojem
Jihočeská univerzita v Českých Budějovicích Přírodovědecká fakulta
Jihočeská univerzita v Českých Budějovicích Přírodovědecká fakulta Mgr. Ondřej Lenz Doktorská disertační práce České Budějovice, 2007 Paralelní detekce vybraných virů ovocných stromů pomocí oligonukleotidového
DETEKCE A IDENTIFIKACE FYTOPATOGENNÍCH BAKTERIÍ METODOU PCR-RFLP
DETEKCE A IDENTIFIKACE FYTOPATOGENNÍCH BAKTERIÍ METODOU PCR-RFLP Polymerázová řetězová reakce (PCR) je in vitro metoda pro enzymatickou syntézu definované sekvence DNA. Reakce využívá dvou oligonukleotidových
Vícefunkční chemické a biochemické mikrosystémy Strana 1. Mikrofluidní bioaplikace
Vícefunkční chemické a biochemické mikrosystémy Strana 1 Mikrofluidní bioaplikace Vícefunkční chemické a biochemické mikrosystémy Strana 2 Mikrofluidní aplikace pro bioanalýzu Transport, dávkování, promíchávání
Nukleové kyseliny Milan Haminger BiGy Brno 2017
ukleové kyseliny Milan aminger BiGy Brno 2017 ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových
Nukleové kyseliny (NK)
Eva Roubalová B10 2007/2008 Předmět: - Obecná biologie - Biologie a genetika Zdroj velké části materiálů: učebnice Metody molekulární biologie (2005) Autoři: Jan Šmarda, Jiří Doškař, Roman Pantůček, Vladislava
Mikročipy v mikrobiologii
Mikročipy v mikrobiologii doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 Obsah přednášky 1) Charakteristika biočipů, DNA microarrays a DNA chip 2) Výroba čipů, charakteristika