Řešení struktury proteinů pomocí NMR spektroskopie

Rozměr: px
Začít zobrazení ze stránky:

Download "Řešení struktury proteinů pomocí NMR spektroskopie"

Transkript

1 Řešení struktury proteinů pomocí NMR spektroskopie

2 Využití NMR spektroskopie v jednotlivých oborech podle nositele Nobelovy ceny za chemii Prof. Richarda Ernsta: Medicine Biochemistry Chemistry Physics J.W. Emsley: NMR started as the plaything of the physicists, became the favourite toy of the chemists and finally went on to seduce biochemists.

3 Důvody pro využití NMR spektroskopie ke studiu biomolekul fyziologické prostředí jednoduchá příprava vzorku vysoce selektivní odezva široký rozsah fyzikálně-chemických vlastností protože se zabýváme NMR spektroskopií

4 1. Jaké typy biologicky aktivních molekul? peptidy a proteiny nukleové kyseliny oligosacharidy 2. Jaký typ informace může být pomocí NMR získán? identifikace substrátu prostorová struktura molekuly studium dynamického chování systému prostorová struktura komplexu zkoumání vazby ligandu a substrátu

5

6 Strategie pro určování struktur biomolekul NMR vzorek NMR experimenty NMR spektra Přiřazení signálů Přiřazení experimentálních NMR parametrů (NOE ) Obecné informace o molekule (primární struktura, kovalentní vazby ) Odhad přibližné struktury Zhodnocení kvality struktur Oprava přiřazení NMR parametrů, signálů Výpočet souboru struktur Výpočet statistických údajů pro soubor konečných struktur Porovnání s databázemi (Procheck, Whatif.) Výpočet NOESY spekter

7 Požadavky na vzorek pro NMR experimenty Úspěšné řešení proteinových struktur bezpodmínečně vyžaduje kvalitní spolupráci mezi NMR specialisty a biochemiky! Vzorek musí zůstat aktivní a nedenaturovaný během NMR experimentů!!! rozpouštědlo H 2 O % D 2 O (časová stabilizace magnetického pole) pufr teplota aditiva nejběžnější je fosfátový pufr, neobsahuje žádné protony acetátový pufr (lze pořídit deuterovaný) podle požadavků studovaného materiálu (15 40C) nutná aditiva je možné někdy zaměnit za deuterovaná analoga koncentrace pro NMR experimenty musí být v rozsahu alespoň mm, vzorek nesmí podléhat agregaci, koagulaci, sebezničení v tomto konc. rozmezí stabilita nutná dlouhodobá stabilita v rozsahu minimálně několika týdnů

8 Příprava vzorku proteinu pro NMR měření 1. Získání DNA proteinu 2. Příprava plasmidové DNA 3. Exprese rekombinantního proteinu, např. v E.Coli 4. Izolace a čištění 5. Zakoncentrování vzorku 6. Zopakování procesu se značeným médiem

9 Příprava vzorků se zvýšeným obsahem 13 C/ 15 N C C H C H C CO N CO C H H H Exprese proteinů: - v minimálním médiu ( 15 NH 4 Cl, 15 NH 4 SO 4 - jediný zdroj 15 N ) ( 13 C-glukosa, 13 C-glycerol - jediný zdroj 13 C) - izotopově obohacené růstové médium

10 Segmentové izotopové obohacení Capsidový protein HIV-1 N-terminální doména C-terminální doména

11 Segmentové izotopové obohacení 1. Obě domény se exprimují zvlášť N-term Intein N-term Tag Cys C-term 2. Intein se odštěpí thiolem a Tag proteasou N-term Intein N-term Tag Cys C-term 3. Domény se spojí vytvořením peptidové vazby N-term Cys C-term

12 Segmentové izotopové obohacení 15 N 1 doména obohacena ( 15 N) celý protein obohacen ( 15 N) 1 H

13 Cell-free expresní systém Zdroj: propagační materiál firmy Promega

14 Přehled metod pro izotopové obohacení proteinů

15 Postup přípravy izotopově obohaceného vzorku Příprava neznačeného vzorku proteinu o příslušné koncentraci kontrola správného sbalení proteinu kontrola dostatečně vysoké koncentrace sledování dlouhodobé stability Příprava 15 N obohaceného vzorku proteinu kontrola čistoty proteinu kontrola správného sbalení proteinu kontrola dostatečně vysoké koncentrace Příprava 13 C/ 15 N ( 13 C/ 15 N/ 2 H) obohaceného vzorku proteinu vlastní strukturní studie

16 Zakoncentrování vzorku Koncentrace měřeného vzorku v případě využití chlazené sondy Objem roztoku ~ 0,5 1,0 mm ~ 0,1 0,5 mm l

17 Srovnání NMR spekter sbalené a nesbalené struktury proteinu správně sbalená forma proteinu WVQPI 107 AA (12 kda) IMMCS 83 AA (9 kda) WVQPI 107 AA (12 kda) IMMCS nesbalená forma téhož proteinu ( 1 H) ppm 1 H- 15 N korelace v oblasti amidických vodíků (vzorek nespecificky obohacen 15 N) čerstvě připravený vzorek ( 15 N) vzorek po 5 dnech ( 1 H) ppm ppm

18 Strategie pro určování struktur biomolekul NMR vzorek NMR experimenty NMR spektra Přiřazení signálů Přiřazení experimentálních NMR parametrů (NOE ) Obecné informace o molekule (primární struktura, kovalentní vazby ) Odhad přibližné struktury Zhodnocení kvality struktur Oprava přiřazení NMR parametrů, signálů Výpočet souboru struktur Výpočet statistických údajů pro soubor konečných struktur Porovnání s databázemi (Procheck, Whatif.) Výpočet NOESY spekter

19 Biomolekulární NMR spektroskopie: měřená jádra 1 H 13 C 15 N 2 H vysoké přirozené zastoupení (99.98%) vysoká citlivost (1.00) malá disperze chemických posunů NMR signálů (~15.0 ppm) velká disperze chemických posunů NMR signálů (~200.0 ppm) nízké přirozené zastoupení (1.108%), možné uměle navýšit až na 100% nízká citlivost (1.76x10-4 ), po 100%ním izotopovém obohacení (1.59x10-2 ) střední disperze chemických posunů NMR signálů (~30.0 ppm) (oproti 13 C nezávislost na typu aminokyseliny) nízké přirozené zastoupení (0.37%), možné uměle navýšit až na 100% velmi nízká citlivost (3.85x10-6 ), po 100%ním izotopovém obohacení (1.04x10-3 ) používá se pro speciální účely

20 Proč H 2 O? Potlačení signálu vody 1. Voda je fyziologické prostředí 2. Nelze použít D 2 O z důvodů chemické výměny s amidickými protony. Signál H 2 O je násobně intenzivnější než odezva měřené molekuly.

21 Potlačení signálu vody: metoda presaturace CW-ozařování 90 Během relaxační doby ozařujeme signál vody slabým RF polem. 1 H spektrum proteinu po presaturaci H 2 O zbytkový signál H 2 O

22 Potlačení signálu vody: metoda WATERGATE Selektivní manipulace se signály vody a rozpuštěné látky doplněná o čistící gradientní echo H G t 180 t G G Selektivní 180 puls

23 Potlačení signálu vody: metoda WATERGATE

24 Multidimensionální NMR spektroskopie F 2 ( 13 C) F 3 ( 1 H) F 1 ( 15 N)

25 1 H - spektrum H H H H H H N H ppm

26 1D 1 H spektrum proteinu kuřecí lysozym 129 AA, M w = 14.6 kda methyl H NH-backbone aromatic H NH-SC aliphatic H CH

27 Odezva více jader v jednom spektru p N (0 p N 1) 13 C 35Hz 13 C Hz H C H 35Hz 35Hz p C (0 p C 1) 13 55Hz 13 15Hz C C 15 N 11Hz 13 55Hz C 13 C H 7Hz 90Hz H N 140Hz H <1Hz p H (0 p H 1) pravděpodobnost překryvu při zobrazení jednoho jádra p H (H),p N (N) a p C (C) při zobrazení dvou jader (H-N) najednou P = p H. p N při zobrazení tří jader (H-N-C) najednou P = p H. p N. p C

28 Korelační spektroskopie jako nástroj pro zjednodušení NMR spekter 1D 3D 2D F 1 ( 1 H) F 2 (X) F 2 ( 1 H) 4D F 1 ( 1 H/X) F 3 (X) F 3 ( 1 H) F 1 ( 1 H/X) Lepší rozlišení je ve vícedimenzionálních spektrech zajištěno využitím izotopového obohacení 15 N a 13 C. F 2 (X) F 4 ( 1 H) F 1 ( 1 H)

29 Přiřazování rezonancí NMR experimenty pro přiřazení signálů pracují se dvěma nebo třemi různými jádry najednou (experimenty s trojnásobnou rezonancí), chemické posuny těchto jáder jsou navzájem zkorelovány. Názvy takovýchto experimentů se tvoří podle typu jader, která korelují: HNCA koreluje amidický vodík s příslušným dusíkem a uhlíkem v pozici. HN(CO)CA koreluje stejné typy atomů (jader) jako HNCA, ale přes CO. To naznačuje směr korelace, tj. H a N i-té aminokyseliny a C aminokyseliny v pozici i-1. Směr přenosu magnetizace je v případě těchto experimentů H N C a zpět. Experimenty se nazývají out and back Naproti tomu přenos magnetizace u experimentů např. CBCA(CO)NH začíná na atomu C B (i-1) aminokyseliny a končí na amidickém H aminokyseliny následující, tj. experimenty out and stay.

30 Strategie pro určování struktur biomolekul NMR vzorek NMR experimenty NMR spektra Přiřazení signálů Přiřazení experimentálních NMR parametrů (NOE ) Obecné informace o molekule (primární struktura, kovalentní vazby ) Odhad přibližné struktury Zhodnocení kvality struktur Oprava přiřazení NMR parametrů, signálů Výpočet souboru struktur Výpočet statistických údajů pro soubor konečných struktur Porovnání s databázemi (Procheck, Whatif.) Výpočet NOESY spekter

31 Přiřazování rezonancí 13 C HNCA experiment 35Hz 13 C 13 H C 130Hz H aminokyselinový zbytek I 35Hz aminokyselinový zbytek I-1 35Hz 13 C 55Hz 13 C 15Hz 15 N 11Hz 13 C 55Hz 13 C H 7Hz 90Hz H N 140Hz H <1Hz

32 Konstrukce multidimensionálních NMR spekter 3D HNCA F 2 ( 15 N ) I F 1 ( 13 C ) F 2 ( 15 N ) I-1 F 3 ( 1 H N ) F 1 ( 13 C ) F 3 ( 1 H N )

33 Přiřazování rezonancí 13 C HN(CO)CA experiment 35Hz 13 C 13 H C 130Hz H 35Hz 35Hz 13 C 55Hz 13 C 15Hz 15 N 11Hz 13 C 55Hz 13 C H 7Hz 90Hz H N 140Hz H <1Hz

34 Konstrukce multidimensionálních NMR spekter 3D HNCA/HN(CO)CA F 2 ( 15 N ) F 2 ( 15 N ) I F 1 ( 13 C) F 2 ( 15 N ) I-1 I-1 F 3 ( 1 H N ) F 1 ( 13 C) F 3 ( 1 H N )

35 Sekvenční přiřazení hlavního řetězce HN(CO)CA HNCA missing crosspík

36 HNCACB experiment Přiřazování rezonancí Využití atomů uhlíku C 13 C Výhoda: chemický posun C je charakteristický pro typ aminokyselinového zbytku 35Hz 13 C 13 H C 130Hz H 35Hz aminokyselinový zbytek I-1 35Hz aminokyselinový zbytek I 13 C 55Hz 13 C 15Hz 15 N 11Hz 13 C 55Hz 13 C H 7Hz 90Hz H N 140Hz H <1Hz

37 Přiřazování rezonancí Využití atomů uhlíku C HN(CO)CACB experiment 13 C 35Hz 13 C 13 H C 130Hz H 35Hz 35Hz 13 C 55Hz 13 C 15Hz 15 N 11Hz 13 C 55Hz 13 C H 7Hz 90Hz H N 140Hz H <1Hz

38 ( 13 C) Přiřazování rezonancí Využití atomů uhlíku C HNCACB/HN(CO)CACB experiment Ser11 Leu12 Thr13 Leu14 Trp ( 15 N) ppm ( 15 N) ppm ( 15 N) ppm ( 15 N) ppm ( 15 N) ppm ( 1 H) ( 1 H) ( 1 H) ( 1 H) ( 1 H)

39 Přiřazování rezonancí postranních řetězců H C H H C H H C H H C H C C N C C H H N H

40 ( 13 C) Přiřazování rezonancí postranních řetězců ppm Kompletní přiřazení Prolinu 4 proteázy M-PMV pomocí hcch-cosy spektra H : ppm H : ppm Pro4CG-CB-HB2 H : ppm Pro4CG-CB-HB3 H : ppm Pro4CG-CG-HG H : ppm Pro4CG-CD-HD2 H : ppm Pro4CG-CD-HD3 H H H H N H H H O 30 Pro4CB-CA-HA Pro4CB-CB-HB2 Pro4CB-CB-HB3 Pro4CB-CG-HG 30 H 3 C O D 50 Pro4CD-CG-HG Pro4CD-CD-HD2 Pro4CD-CD-HD3 50 F 2 ( 1 H) 60 Pro4CA-CA-HA Pro4CA-CB-HB2 Pro4CA-CB-HB3 60 F 1 ( 13 C) ( 13 C) ppm F 3 ( 13 C)

41 Práce s extra velkými molekulami M w > 25 kda Práce s velkými molekulami způsobuje dvojí komplikaci velmi komplikovaná spektra rychlá spin-spinová relaxace R H ( D) C 8r 6 CH [ J ' s... f t ( )] c H / D ~ 6.6 Řešení: výměna atomů vodíku za deuterium

42 Práce s extra velkými molekulami M w > 25 kda Exprese proteinu v růstovém médiu obohaceném o 13 C/ 15 N/ 2 H 13 C 35Hz CD 3 CD Hz C HD C HD C D 35Hz 13 55Hz 13 15Hz C C H D 7Hz 15 11Hz N 90Hz H N 35Hz 13 55Hz C 140Hz H D 13 C <1Hz N H C D CO Teoreticky může být R 2 snížen až 44 násobně, prakticky většinou maximálně 15x.

43 Fully protonated versus perdeuterated EIN protein

44 Fully protonated versus perdeuterated EIN protein Missing crosspeaks are marked

45

46 Praktické návody-jak na to?

47 Strategie pro určování struktur biomolekul NMR vzorek NMR experimenty NMR spektra Přiřazení signálů Přiřazení experimentálních NMR parametrů (NOE ) Obecné informace o molekule (primární struktura, kovalentní vazby ) Odhad přibližné struktury Zhodnocení kvality struktur Oprava přiřazení NMR parametrů, signálů Výpočet souboru struktur Výpočet statistických údajů pro soubor konečných struktur Porovnání s databázemi (Procheck, Whatif.) Výpočet NOESY spekter

48 Získání experimentálních parametrů z NMR spekter. chemický posun (chemické okolí jádra) NOE interakce (meziatomová vzdálenost) interakční konstanta (dihedrální úhel) zbytková dipolární interakce (orientace) vodíková vazba (vzdálenost, vazebný úhel)

49 Chemický posun Výpočet indexu chemického posunu Změna chemického posunu indukovaná sekundární strukturou (H ) Chemické posuny některých jader jsou ovlivněny typem pravidelné sekundární struktury, do které jsou zahrnuty!!! -sheet random coil -helix Histogram indexu chemického posunu jader H, C a C. Přiřazení rezonancí hlavního řetězce: H,C, C +1 0 Výpočet indexů chemického posunu, tzv. CSI -1 Odhad sekundární struktury na základě lokální hustoty těchto indexů N helix I helix II helix III helix IV C Sekvence aminokyselin

50 CSI Secondary structure of M-PMV PR from CSI

51 Nukleární Overhauserův efekt NOE Experimentální omezení vzdáleností přímá spin-spinová interakce mezi jádry r IS < 5-6 Ǻ interakce mezi dipóly interagujících jader relaxační jev H H výměna energie mezi oběma jádry charakterizuje vzdálenost mezi oběma jádry IS h t c 1 4 t 2 c t c r 6 IS IS - rychlost nárustu NOE t c - korelační čas r IS - meziatomová vzdálenost - pracovní frekvence IS f r 6

52 Převod intenzity NOE krospíků na vzdálenost mezi atomy. 1.8 Ǻ r 2.5 Ǻ 1.8 Ǻ r 3.5 Ǻ 1.8 Ǻ r 5.0 Ǻ Dolní mez :1.8 Ǻ Jedná se o součet vzdáleností van der Waalsovských poloměrů dvou interagujících atomů vodíku Horní mez : Nastavuje se podle intenzity příslušného krospíku. Pro větší molekuly se používá max. vzdálenost až 6 Å.

53 Editovaná NOESY spektra 4D 13 C/ 15 N-editované NOESY 15 N NOE 1 H 1 H 13 C J HN 15 N 13 C J HC 1 H 1 H 3D 15 N-editované NOESY 4D 13 C/ 15 N-editované NOESY 15 N= ppm 15 N= ppm 13 C= 45.8 ppm 15 N= ppm 13 C= 56.1 ppm G78 HN -G78 H G78 HN -S77 H

54 Nepřímá spin-spinová interakční konstanta Experimentální omezení dihedrálních úhlů H O N f C C C y H H C c 1 O H c 2 C 3 J 10 8 Karplusova rovnice 3 J = A cos 2 Q B cosq C Vztah mezi interakční konstantou a dihedrálními úhly peptidu H-NC -H H-NC -CO H-NC -C 6 CO-NC -H [Hz] Q deg

55 Typické hodnoty interakčních konstant 3 J HH pro dihedrální úhel f -helix f ~ 60 deg J 6 Hz typické nastavení pro úhel f: 110 f 10 deg -struktura skládaného listu f ~ 10 6 J 9 Hz typické nastavení pro úhel f: 170 f 70 deg

56 Residual dipolar couplings RDC Long-range constraint NMR experiments: - experiments for measurement J constants - IPAP experiments (better resolution) 15 N Principal axis system B o A zz H N H D Jiso Janiso 15 N D resid J aniso J iso A xx f q A yy H

57 Stretched polyacrylamide gel ~ 6% polyacrylamide gel (crosslinked with bisacrylamide) protein diffuses into dried gel axial stretching (radial compression) of the gel NMR tube squeeze alignment of protein in oblate pores

58 -helix Vodíkové vazby v pravidelných strukturách Další omezení vzdáleností C Měření: - výměnné experimenty s D 2 O - teplotní závislost labilních protonů (NH, OH ) Z NMR experimentů je možné získat pouze informaci o donoru! -sheet-antiparalelní N Informaci o příslušném akceptoru lze získat až z vypočtených struktur N C

59 Strategie pro určování struktur biomolekul NMR vzorek NMR experimenty NMR spektra Přiřazení signálů Přiřazení experimentálních NMR parametrů (NOE ) Obecné informace o molekule (primární struktura, kovalentní vazby ) Odhad přibližné struktury Zhodnocení kvality struktur Oprava přiřazení NMR parametrů, signálů Výpočet souboru struktur Výpočet statistických údajů pro soubor konečných struktur Porovnání s databázemi (Procheck, Whatif.) Výpočet NOESY spekter

60 Jak vše poskládat dohromady???? Omezení vzdáleností (NOEs) Omezení dihedrálních úhlů (interakční konst.) Info o kovalentní struktuře Cray T3E E tot E kin E pot Výpočetní algoritmus: Molekulární mechanika simulované žíhání s experimentálními omezeními (vzdálenosti, dihedrální úhly ) - molekula se ohřeje na vysokou teplotu ( K) - pomalu se ochladí na teplotu blízkou nule simulované žíhání v Kartézském prostoru (Newtonovy pohybové rovnice) simulované žíhání v prostoru torsních úhlů (Lagrangeovy rovnice)

61 Simulované žíhání (simulated annealing) typický průběh teplota [K] vysokoteplotní perioda perioda postupného ochlazování minimalizace potenciálové energie časová osa [ns]

62 Jak vše poskládat dohromady???? E D 2 pot E tot E kin E E kin je kinetická energie vypočítávaná v každém kroku z teploty molekuly E pot je součet energií produkovaných penalizačními funkcemi Molekulární parametry (hmotnost atomů, délka vazby, vazebné úhly vstupují do výpočtu ve formě tzv force fields pot kvdw D kkovd knoed vdw kov NOE DIH ( d d exp 0 ) 2 k DIH D 2... d exp je experimentální nebo aktuální hodnota d 0 je ideální hodnota Př: penalizační fukce pro NOE: E NOE dolní mez (1,8 Å) horní mez (< 6 Å) Cílem je minimalizovat E pot 0 d Soubor struktur vyhovující nejlépe získaným experimentálním omezením

63 Prezentace vypočtených struktur helix III helix IV helix II helix I C N N C C N C N

64 Strategie pro určování struktur biomolekul NMR vzorek NMR experimenty NMR spektra Přiřazení signálů Přiřazení experimentálních NMR parametrů (NOE ) Obecné informace o molekule (primární struktura, kovalentní vazby ) Odhad přibližné struktury Zhodnocení kvality struktur Oprava přiřazení NMR parametrů, signálů Výpočet souboru struktur Výpočet statistických údajů pro soubor konečných struktur Porovnání s databázemi (Procheck, Whatif.) Výpočet NOESY spekter

65 Charakterizace vypočtených struktur 1. Shoda vypočtených struktur s experimentálními daty - velikost potenciálová energie - počet a velikost neshod s experimentálními parametry (NOE, dihedrální úhly. - počet a velikost špatných kontaktů mezi atomy (van der Waalsovský příspěvek) - počet a velikost neshod s ideálními hodnotami kovalentních parametrů (délky vazeb, vazebné úhly, planarita aromatických kruhů ) 2. Rozptyl struktur v souboru RMSD n i1 x i n x 2 - mezi jednotlivými strukturami a průměrnou strukturou (mean) - mezi jednotlivými strukturami navzájem - počítá se buď pro celou molekulu, jednotlivé části nebo jednotlivé aminokyseliny

66 Charakterizace vypočtených struktur 3. Porovnání strukturních parametrů vypočtených struktur s parametry v databázích software Procheck, Whatif Ramachandranův diagram f/y diagram je charakteristický pro konformaci páteře proteinu - takto lze porovnávat i ostatní dihedrální úhly, vazebné úhly, délky vazeb - lze vytypovat problémové oblasti

67 Malate synthase, 723 AA, 82 kda Tugarinov V., Choy W.Y., Orekhov, V.Y., Kay L.E.(2005) PNAS, 102,

68

COSY + - podmínky měření a zpracování dat ztráta rozlišení ve spektru. inphase dublet, disperzní. antiphase dublet, absorpční

COSY + - podmínky měření a zpracování dat ztráta rozlišení ve spektru. inphase dublet, disperzní. antiphase dublet, absorpční y x COSY 90 y chem. posuv J vazba 90 x : : inphase dublet, disperzní inphase dublet, disperzní antiphase dublet, absorpční antiphase dublet, absorpční diagonální pík krospík + - - + podmínky měření a zpracování

Více

NMR spektroskopie biologicky aktivních molekul

NMR spektroskopie biologicky aktivních molekul NMR spektroskopie biologicky aktivních molekul Jak vidí současné a budoucí uplatnění NMR spektroskopie profesor Richard Ernst. Medicine Biochemistry Nobel prize in chemistry 1991 Chemistry Physics J.W.

Více

Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů

Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Dynamické procesy & Pokročilé aplikace NMR chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Chemická výměna jakýkoli proces při kterém dané jádro mění svůj stav

Více

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB

Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Využití NMR spektroskopie pro studium biomakromolekul RCSB PDB Uplatnění NMR spektroskopie chemická struktura kovalentní struktura konformace, geometrie molekul dynamické procesy chemické a konformační

Více

NMR biomakromolekul RCSB PDB. Progr. NMR

NMR biomakromolekul RCSB PDB. Progr. NMR NMR biomakromolekul Typy biomakromolekul a možnosti studia pomocí NMR proteiny a peptidy rozmanité složení, omezení jen velikostí molekul nukleové kyseliny (RNA, DNA) a oligonukleotidy omezení malou rozmanitostí

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) Nukleární Overhauserův efekt (NOE) NOE je důsledek dipolární interakce mezi dvěma jádry. Vzniká přímou interakcí volně přes prostor, tudíž není ovlivněn chemickými vazbami jako nepřímá spin-spinová interakce.

Více

Experimentální data pro určení struktury proteinu

Experimentální data pro určení struktury proteinu Experimentální data pro určení struktury proteinu přiřazení co největšího počtu rezonancí intenzita NOESY krospíků chemické posuvy J-vazby vodíkové můstky zbytková dipolární interakce... omezení vzdáleností

Více

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0

spinový rotační moment (moment hybnosti) kvantové číslo jaderného spinu I pro NMR - jádra s I 0 Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla energetické stavy jádra v magnetickém poli rezonanční podmínka - instrumentace pulsní metody, pulsní sekvence relaxační

Více

ZÁKLADNÍ EXPERIMENTÁLNÍ

ZÁKLADNÍ EXPERIMENTÁLNÍ Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ

Více

Základní parametry 1 H NMR spekter

Základní parametry 1 H NMR spekter LEKCE 1a Základní parametry 1 NMR spekter Počet signálů ve spektru (zjištění počtu skupin chemicky ekvivalentních jader) Integrální intenzita (intenzita pásů závisí na počtu jader) Chemický posun (polohy

Více

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Metody spektrální. Metody molekulové spektroskopie NMR. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Metody spektrální Metody molekulové spektroskopie NMR Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Spektroskopie NMR - teoretické základy spin nukleonů, spin jádra, kvantová čísla

Více

Nukleární Overhauserův efekt (NOE)

Nukleární Overhauserův efekt (NOE) LEKCE 8 Nukleární verhauserův efekt (NE) určení prostorové struktury molekul využití REY spektroskopie projevy NE a chemické výměny v jednom systému Nukleární verhauserův efekt (NE) důsledek dipolární

Více

Základy NMR 2D spektroskopie

Základy NMR 2D spektroskopie Základy NMR 2D spektroskopie Jaroslav Kříž Ústav makromolekulární chemie AV ČR v.v.i. puls 1D : d 1 Fourierova transformace časového rozvoje odezvy dá 1D spektrum 2D: d 1 d 1 d 1 d 0 d 0 + in 0 d 0 + 2in

Více

Měření a interpretace NMR spekter

Měření a interpretace NMR spekter Měření a interpretace NMR spekter Bohumil Dolenský E-mail : Telefon : Místnost : www : dolenskb@vscht.cz (+420) 220 44 4110 budova A, místnost 28 http://www.vscht.cz/anl/dolensky/technmr/index.html Řešení

Více

LEKCE 1b. Základní parametry 1 H NMR spekter. Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)*

LEKCE 1b. Základní parametry 1 H NMR spekter. Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* Základní parametry 1 NMR spekter LEKCE 1b Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* 3.5 3.0 2.5 2.0 1.5 Základní parametry 1 NMR spekter Počet signálů ve

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

LEKCE 3b. Využití 2D experimentů k přiřazení složitější molekuly. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm

LEKCE 3b. Využití 2D experimentů k přiřazení složitější molekuly. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm LEKCE 3b Využití D experimentů k přiřazení složitější molekuly ppm ppm 10 1.0 1.5 15.0 130.5 3.0 135 3.5 140 4.0 4.5 145 5.0 150 5.5 155 6.0 6.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0.5.0 1.5 1.0 ppm 160.6.4..0

Více

Studium komplexace -cyklodextrinu s diclofenacem s využitím NMR spektroskopie

Studium komplexace -cyklodextrinu s diclofenacem s využitím NMR spektroskopie Jména: Datum: Studium komplexace -cyklodextrinu s diclofenacem s využitím NMR spektroskopie Cílem laboratorního cvičení je prozkoumat interakce léčiva diclofenac s -cyklodextrinem v D 2 O při tvorbě komplexu

Více

12.NMR spektrometrie při analýze roztoků

12.NMR spektrometrie při analýze roztoků Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 12.NMR spektrometrie při analýze roztoků Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com 12.NMR spektrometrie při analýze

Více

LEKCE 7. Interpretace 13 C NMR spekter. Využití 2D experimentů. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm

LEKCE 7. Interpretace 13 C NMR spekter. Využití 2D experimentů. Zpracování, výpočet a databáze NMR spekter (ACD/Labs, Topspin, Mnova) ppm LEKCE 7 Interpretace 13 C MR spekter Využití 2D experimentů ppm 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm Zpracování, výpočet a databáze MR spekter

Více

Naše NMR spektrometry

Naše NMR spektrometry Naše NMR spektrometry Varian NMR System 300 MHz Varian INOVA 400 MHz Bruker Avance III 600 MHz NMR spektrometr magnet průřez supravodičem NMR spektrometr sonda Tvar spektra reálná část imaginární část

Více

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE SPEKTROSKOPIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Obecné základy nedestruktivní metoda strukturní analýzy zabývá se rezonancí atomových jader nutná podmínka pro měření spekter: nenulový spin atomového jádra

Více

O Minimální počet valencí potřebných ke spojení vícevazných atomů = (24 C + 3 O + 7 N 1) * 2 = 66 valencí

O Minimální počet valencí potřebných ke spojení vícevazných atomů = (24 C + 3 O + 7 N 1) * 2 = 66 valencí Jméno a příjmení:_bohumil_dolenský_ Datum:_10.12.2010_ Fakulta:_FCHI_ Kruh:_ÚACh_ 1. Sepište seznam signálů 1 H dle klesajícího chemického posunu (včetně nečistot), uveďte chemický posun, multiplicitu

Více

Význam interakční konstanty, Karplusova rovnice. konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY

Význam interakční konstanty, Karplusova rovnice. konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY Význam interakční konstanty, Karplusova rovnice konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TOCSY Karplusova rovnice ve strukturní analýze J(H,H) = A + B cos f

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský

Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR... Počet signálů C 17 18 2 O 2 MeO Počet signálů = počet neekvivalentních skupin OMe = informace o symetrii molekuly Spektrum 1 MR... Počet

Více

Dvourozměrná NMR spektroskopie metody

Dvourozměrná NMR spektroskopie metody Dvourozměrná NMR spektroskopie metody Marcela Strnadová 1D-NMR: experimentální FID je funkcí jediné časové proměnné - detekčního času t 2, spektrum získané Fourierovou transformací je funkcí frekvence

Více

Postup při interpretaci NMR spekter neznámého vzorku

Postup při interpretaci NMR spekter neznámého vzorku Postup při interpretaci NMR spekter neznámého vzorku VŠCT 2017, Bohumil Dolenský, dolenskb@vscht.cz Tento text byl vypracován pro projekt Inovace předmětu Semestrální práce oboru analytická chemie I. Slouží

Více

Korelační spektroskopie jako základ multidimensionální NMR spektroskopie

Korelační spektroskopie jako základ multidimensionální NMR spektroskopie Korelační spektroskopie jako základ multidimensionální NMR spektroskopie Richard Hrabal Laboratoř NMR spektroskopie, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6, tel. 220 443

Více

02 Nevazebné interakce

02 Nevazebné interakce 02 Nevazebné interakce Nevazebné interakce Druh chemické vazby Určují 3D konfiguraci makromolekul, účastní se mnoha biologických procesů, zodpovědné za uspořádání molekul v krystalu Síla nevazebných interakcí

Více

Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze

Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí, kvantitativní NMR spektroskopie a využití NMR spektroskopie ve forenzní analýze Analýza směsí a kvantitativní NMR NMR spektrum čisté látky je lineární kombinací spekter jejích jednotlivých

Více

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev

Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekapling Dekapling, koherentní transfer polarizace, nukleární Overhauserův jev Dekaplingem rozumíme odstranění vlivu J-vazby XA na na spektra jader A působením dalšího radiofrekvenčního pole ( ω X )na

Více

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová Počítačová chemie výpočetně náročné simulace chemických a biomolekulárních systémů Zora Střelcová Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Česká Republika

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance II. Příprava předmětu byla podpořena

Více

Mezimolekulové interakce

Mezimolekulové interakce Mezimolekulové interakce Interakce molekul reaktivně vzniká či zaniká kovalentní vazba překryv elektronových oblaků, mění se vlastnosti nereaktivně vznikají molekulové komplexy slabá, nekovalentní, nechemická,

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Mgr. Zdeněk Moravec, Ph.D. Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii

Více

Význam interakční konstanty, Karplusova rovnice

Význam interakční konstanty, Karplusova rovnice LEKCE 9 Význam interakční konstanty, Karplusova rovnice konfigurace na dvojné vazbě a na šestičlenných kruzích konformace furanosového kruhu TCSY T E E 1 E 1 T 0 6 T E 1 T 0 88 7 0 T E 0 0 E T 0 5 108

Více

Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin

Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními principy hmotnostní spektrometrie a v žádném případě nezahrnuje

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty

Více

Molekulární krystal vazebné poměry. Bohumil Kratochvíl

Molekulární krystal vazebné poměry. Bohumil Kratochvíl Molekulární krystal vazebné poměry Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2017 Složení farmaceutických substancí - API Z celkového portfolia API tvoří asi 90 % organické sloučeniny,

Více

LEKCE 2b. NMR a chiralita, posunová činidla. Interpretace 13 C NMR spekter

LEKCE 2b. NMR a chiralita, posunová činidla. Interpretace 13 C NMR spekter LEKCE 2b NMR a chiralita, posunová činidla Interpretace 13 C NMR spekter Stanovení optické čistoty Enantiomery jsou nerozlišitelné v NMR spektroskopii není možné rozlišit enantiomer od racemátu!!! Enantiotopické

Více

NMR spektroskopie Instrumentální a strukturní analýza

NMR spektroskopie Instrumentální a strukturní analýza NMR spektroskopie Instrumentální a strukturní analýza prof. RNDr. Zdeněk Friedl, CSc. Použitá a doporučená literatura Solomons T.W.G., Fryhle C.B.: Organic Chemistry, 8th Ed., Wiley 2004. Günther H.: NMR

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Autor: martina urbanová, jiří brus. Základní experimentální postupy NMR spektroskopie pevného stavu

Autor: martina urbanová, jiří brus. Základní experimentální postupy NMR spektroskopie pevného stavu Autor: martina urbanová, jiří brus Základní experimentální postupy NMR spektroskopie pevného stavu Obsah přednášky anizotropní interakce v pevných látkách techniky rušení anizotropie jaderných interakcí

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Aplikovaná bioinformatika

Aplikovaná bioinformatika Aplikovaná bioinformatika Číslo aktivity: 2.V Název klíčové aktivity: Na realizaci se podílí: Implementace nových předmětů do daného studijního programu doc. RNDr. Michaela Wimmerová, Ph.D., Mgr. Josef

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Více

Nukleární magnetická rezonance (NMR)

Nukleární magnetická rezonance (NMR) Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR

Více

STANOVENÍ STRUKTURY LÁTEK

STANOVENÍ STRUKTURY LÁTEK STANOVENÍ STRUKTURY LÁTEK 1nm 10 10 2 10 3 10 4 10 5 10 6 10 7 (the wave) X-ray UV/VIS Infrared Microwave Radio Frequency (the transition) electronic Vibration Rotation Nuclear (spectrometer) X-ray UV/VIS

Více

Základní parametry 1 H NMR spekter

Základní parametry 1 H NMR spekter LEKCE 6 Základní parametry 1 NMR spekter Počet signálů ve spektru (zjištění počtu skupin chemicky ekvivalentních jader) Integrální intenzita (intenzita pásů závisí na počtu jader) Chemický posun (polohy

Více

Hemoglobin a jemu podobní... Studijní materiál. Jan Komárek

Hemoglobin a jemu podobní... Studijní materiál. Jan Komárek Hemoglobin a jemu podobní... Studijní materiál Jan Komárek Bioinformatika Bioinformatika je vědní disciplína, která se zabývá metodami pro shromážďování, analýzu a vizualizaci rozsáhlých souborů biologických

Více

Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)*

Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* Základní parametry 1 NMR spekter NMR a chiralita, posunová činidla Symetrie v NMR spektrech: homotopické, enantiotopické, diastereotopické protony (skupiny)* 3.5 3.0 2.5 2.0 1.5 Základní parametry 1 NMR

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Seminář NMR. Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/

Seminář NMR. Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/ Seminář NMR Mgr. Zdeněk Moravec, Ph.D.; hugo@chemi.muni.cz Ústav chemie, PřF MU, 22.-25. 7. 2013 http://nmrlab.chemi.muni.cz/ Osnova Úvod, základní princip Instrumentace magnety, měřící sondy, elektronika

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1. Jan Sýkora

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1. Jan Sýkora Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1 Jan Sýkora LC/NMR Jan Sýkora (ÚCHP AV ČR) LC - NMR 1 H NMR (500 MHz) mez detekce ~ 1 mg/ml (5 µmol látky) NMR parametry doba

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc.

Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc. Genomické databáze Shlukování proteinových sekvencí Ivana Rudolfová školitel: doc. Ing. Jaroslav Zendulka, CSc. Obsah Proteiny Zdroje dat Predikce struktury proteinů Cíle disertační práce Vstupní data

Více

jako modelové látky pro studium elektronických vlivů při katalytických hydrogenacích

jako modelové látky pro studium elektronických vlivů při katalytických hydrogenacích Pt(0) komplexy jako modelové látky pro studium elektronických vlivů při katalytických hydrogenacích David Karhánek Školitelé: Ing. Petr Kačer, PhD.; Ing. Marek Kuzma Katalytické hydrogenace eterogenní

Více

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní

Více

Program. Materiály ke studiu NMR. Data, Soubory. Seminář z Analytické chemie B. \\PYR\SCRATCH\

Program. Materiály ke studiu NMR. Data, Soubory. Seminář z Analytické chemie B.  \\PYR\SCRATCH\ Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Seminář z Analytické chemie B Tento materiál vznikl za podpory projektu CHEMnote PPA CZ..7/../48 Inovace bakalářského studijního programu

Více

10A1_IR spektroskopie

10A1_IR spektroskopie C6200-Biochemické metody 10A1_IR spektroskopie Petr Zbořil IR spektroskopie Excitace vibračních a rotačních přechodů Valenční vibrace n Deformační vibrace d IR spektroskopie N atomů = 3N stupňů volnosti

Více

(9) X-X a X-Y korelace zvýšení spektrálního rozlišení

(9) X-X a X-Y korelace zvýšení spektrálního rozlišení (9) X-X a X-Y korelace zvýšení spektrálního rozlišení 90 ±y 1 H: CP Decoupling (TPPM) 13 C: 180 t t t 1 180 t t Acquisition t 2 ppm 6 1 11 15 17 9 5 3 4 13 2 19 7 140 6/ 7 7/ 6 160 180 200 220 240 260

Více

Strukturní analýza. NMR spektroskopie

Strukturní analýza. NMR spektroskopie Strukturní analýza NMR spektroskopie RNDr. Zdeněk Tošner, Ph.D. lavova 8, místnost 020 tel. 22195 1323 tosner@natur.cuni.cz www.natur.cuni.cz/nmr/vyuka.html Literatura Böhm, Smrčková-Voltrová: Strukturní

Více

Magnetická rezonance (3)

Magnetická rezonance (3) Magnetická rezonance (3) J. Kybic, J. Hornak 1, M. Bock, J. Hozman 2008 2018 1 http://www.cis.rit.edu/htbooks/mri/ MRI zobrazovací techniky Multislice imaging Šikmé zobrazování Spinové echo Inversion recovery

Více

Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň

Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Využití magneticko-rezonanční tomografie v měřicí technice Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Osnova Podstata nukleární magnetické rezonance (MR) Historie vývoje MR Spektroskopie MRS Tomografie MRI

Více

Vybrané kapitoly z praktické NMR spektroskopie

Vybrané kapitoly z praktické NMR spektroskopie Vybrané kapitoly z praktické NMR spektroskopie DRX 500 Avance SPECTROSPIN 500 Způsob snímání dat, CW versus FT CW frekvence RF záření postupně se mění B eff 2 efektivní magnetické pole zůstává konstantní

Více

Magnetická rezonance (3)

Magnetická rezonance (3) Magnetická rezonance (3) J. Kybic, J. Hornak 1, M. Bock, J. Hozman April 28, 2008 1 http://www.cis.rit.edu/htbooks/mri/ MRI zobrazovací techniky Multislice imaging Šikmé zobrazování Spinové echo Inversion

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

Vazebné interakce protein s DNA

Vazebné interakce protein s DNA Vazebné interakce protein s DNA Vazebné možnosti vn jší vazba atmosféra + iont kolem nabité DNA vazba ve žlábku van der Waalsovský kontakt s lé ivem ve žlábku interkalace vmeze ení planárního aromat.

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

Techniky přenosu polarizace cross -polarizace a spinová difuse

Techniky přenosu polarizace cross -polarizace a spinová difuse (3) jiri brus Techniky přenosu polarizace cross -polarizace a spinová difuse laboratory frame, spin rotating frame laboratory frame, spin Ω H B H ω, ω, ω 0, B H ω 0, Ω C B C ω B 0,, 0 ω B, B C B B,, Zvýšení

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 4110, dolenskb@vscht.cz Hmotnostní spektrometrie II. Příprava předmětu byla podpořena projektem

Více

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie

Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované

Více

Heteronukleární korelační experimenty

Heteronukleární korelační experimenty () jiri brus eteronukleární korelační eperimenty = ±lg ±lg +lg -lg +lg -lg +lg +lg -lg +lg -lg +lg -lg kz AM 9 ±±±y LGPI ±±±y ±±±y : - - - - - - - - - - t t C: ±±± ±±± t f t f - - - r ττ ττ r rotor period

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

INTERPRETACE HMOTNOSTNÍCH SPEKTER

INTERPRETACE HMOTNOSTNÍCH SPEKTER INTERPRETACE HMOTNOSTNÍCH SPEKTER Hmotnostní spektrometrie hmotnostní spektrometrie = fyzikálně chemická metoda založená na rozdělení hmotnosti iontů v plynné fázi podle jejich poměru hmotnosti a náboje

Více

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná)

Jiří Brus. (Verze 1.0.1-2005) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz Transverzální magnetizace, která vykonává precesi

Více

ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE

ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE ZÁKLADY SPEKTROMETRIE NUKLEÁRNÍ MAGNETICKÉ REZONANCE Co to je NMR? nedestruktivní spektroskopická metoda využívající magnetických vlastností atomových jader ke studiu struktury molekul metoda č.1 pro určování

Více

Struktura atomů a molekul

Struktura atomů a molekul Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 40, dolenskb@vscht.cz Nukleární Magnetická Rezonance I. Příprava předmětu byla podpořena projektem

Více

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. doc. RNDr. Jan Lang, PhD. Ing. Jan Prchal, Ph.D.

doc. Ing. Richard Hrabal, CSc. Ing. Hana Dvořáková, CSc. doc. RNDr. Jan Lang, PhD. Ing. Jan Prchal, Ph.D. Vyučující: doc. Ing. Richard rabal, CSc. Ing. ana Dvořáková, CSc. doc. RNDr. Jan Lang, PhD. Ing. Jan Prchal, Ph.D. Číslo dveří A 42, telefon 3805, e-mail hrabalr@vscht.cz Termín: každý čtvrtek od 10,00

Více

Určení molekulové hmotnosti: ESI a nanoesi

Určení molekulové hmotnosti: ESI a nanoesi Cvičení Určení molekulové hmotnosti: ESI a nanoesi ) 1)( ( ) ( H m z H m z M k j j j m z z zh M Molekula o hmotnosti M se nabije z-krát protonem, pík iontu ve spektru je na m z : ) ( H m z M z Pro dva

Více

Spektrální metody NMR I

Spektrální metody NMR I Spektrální metody NMR I RNDr. Zdeněk Tošner, Ph.D. Hlavova 8, místnost 020 tel. 22195 1323 tosner@natur.cuni.cz www.natur.cuni.cz/nmr/vyuka.html Literatura Böhm, Smrčková-Voltrová: Strukturní analýza organických

Více

Bioinformatika pro PrfUK 2003

Bioinformatika pro PrfUK 2003 Bioinformatika pro PrfUK 2003 Jiří Vondrášek Ústav organické chemie a biochemie vondrasek@uochb.cas.cz Jan Pačes Ústav molekulární genetiky hpaces@img.cas.cz http://bio.img.cas.cz/prfuk2003 What is Bioinformatics?---The

Více

P ro te i n o vé d a ta b á ze

P ro te i n o vé d a ta b á ze Proteinové databáze Osnova Základní stavební jednotky proteinů Hierarchie proteinové struktury Stanovení proteinové struktury Důležitost proteinové struktury Proteinové strukturní databáze Proteinové klasifikační

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

Chromatofokusace. separace proteinů na základě jejich pi vysoké rozlišení. není potřeba připravovat ph gradient zaostřovací efekt jednoduchost

Chromatofokusace. separace proteinů na základě jejich pi vysoké rozlišení. není potřeba připravovat ph gradient zaostřovací efekt jednoduchost Chromatofokusace separace proteinů na základě jejich pi vysoké rozlišení není potřeba připravovat ph gradient zaostřovací efekt jednoduchost Polypufry - amfolyty Stacionární fáze Polybuffer 96 - ph 9-6

Více

Jiří Brus. (Verze ) (neupravená a neúplná)

Jiří Brus. (Verze ) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Vodík-vodíkový korelační dvou-dimenzionální experiment byl prvně navržen Jeanem Jeenerem na letní škole v Basko Polje už v roce 1971. Po pěti letech

Více

Laboratoř NMR Strukturní analýza a 2D NMR spektra

Laboratoř NMR Strukturní analýza a 2D NMR spektra Laboratoř NMR Strukturní analýza a 2D NMR spektra Místo: Laboratoř NMR, místnost A28, Kontakt: doc. Ing. Bohumil DOLENSKÝ, Ph.D., Ústav analytické chemie, Vysoká škola chemicko-technologická, Technická

Více

Chemická reaktivita NK.

Chemická reaktivita NK. Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově

Více

CHEMIE - Úvod do organické chemie

CHEMIE - Úvod do organické chemie Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Vzdělávací okruh Druh učebního materiálu Cílová skupina Anotace SŠHS Kroměříž CZ.1.07/1.5.00/34.0911

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 Molekulární interakce SAR Možné interakce jednotlivých funkčních skupin 1. Interakce alkoholů

Více

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek IZOLACE, SEPARACE A DETEKCE PROTEINŮ I Vlasta Němcová, Michael Jelínek, Jan Šrámek Studium aktinu, mikrofilamentární složky cytoskeletu pomocí dvou metod: detekce přímo v buňkách - fluorescenční barvení

Více

Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled

Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology

Více

Jiří Brus. (Verze ) (neupravená a neúplná)

Jiří Brus. (Verze ) (neupravená a neúplná) Jiří Brus (Verze 1.0.1-2005) (neupravená a neúplná) Ústav makromolekulární chemie AV ČR, Heyrovského nám. 2, Praha 6 - Petřiny 162 06 e-mail: brus@imc.cas.cz I v roztoku probíhá řada experimentů tak že,

Více

Úvod do studia organické chemie

Úvod do studia organické chemie Úvod do studia organické chemie 1828... Wöhler... uměle připravil močovinu Organická chemie - chemie sloučenin uhlíku a vodíku, případně dalších prvků (O, N, X, P, S) Příčiny stability uhlíkových řetězců:

Více